JPH0397870A - Vapor growth device for superconducting thin film on substrate - Google Patents

Vapor growth device for superconducting thin film on substrate

Info

Publication number
JPH0397870A
JPH0397870A JP1233346A JP23334689A JPH0397870A JP H0397870 A JPH0397870 A JP H0397870A JP 1233346 A JP1233346 A JP 1233346A JP 23334689 A JP23334689 A JP 23334689A JP H0397870 A JPH0397870 A JP H0397870A
Authority
JP
Japan
Prior art keywords
substrate
reaction tube
raw material
susceptor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1233346A
Other languages
Japanese (ja)
Inventor
Shinji Aida
晋二 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoxan Corp
Original Assignee
Hoxan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoxan Corp filed Critical Hoxan Corp
Priority to JP1233346A priority Critical patent/JPH0397870A/en
Publication of JPH0397870A publication Critical patent/JPH0397870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To efficiently grow a superconducting thin film in a vapor phase on a substrate by providing a light transparent block plate in a light transparent reaction tube and juxtaposing a gaseous raw material passage and a carrier gas passage to prevent the cracking of the gaseous raw material by heating. CONSTITUTION:The light transparent block plate 7 consisting of quartz, etc., is horizontally provided on the gaseous raw material supplying port 2 side of the light transparent reaction tube 1 in the position lower than the supplying port 2 and is terminated near a discharge port 3. A susceptor 5 is disposed in the central part of the reaction tube 1 via a supporting bar 4 above this light transparent block plate 7. A carrier gas supplying port 8 is provided below the light transparent block plate 7 and an IR lamp 6 is provided on the outside of the tube right under susceptor 5. The substrate P is placed on the susceptor 5 of this constitution. The substrate P is heated to a prescribed temp. by the IR lamp 6. The gaseous raw material G and the carrier gas CG are respectively supplied from the supplying ports 2, 8 and the film is formed on the substrate P by maintaining a reduced pressure state in the reaction tube 1. The gaseous raw material passage 9 and the carrier gas passage 10 are segmented in such a manner, by which the superconducting thin film having good quality is efficiently produced.

Description

【発明の詳細な説明】[Detailed description of the invention]

《産業上の利用分野》 本発明は反1ε管内に設けたサセプタ−}Zに基板を=
fai&L、当該基板を加熱条件下におくと共に、この
反応管の供給口から原本毒ガスを供給すると「61峙に
、当該反応管の排気口から油気を行うことによって、上
記基板の表面に超伝導薄膜を形戊することができるよう
構威された上記薄膜の気相或k装置に関する. 《従来の技術》 上記の気相装置として、これまで用いられているものに
は、業2図、第3図、第4図に夫々図示されている通り
、抵抗加熱方式、高周波誘導加熱方式、赤外線方式によ
るものが存する.L記何れの方式によるものも5石英等
による反応管dに、原料ガスGの供給口bと排気口Cと
が雛11J1位,改に夫々設けられ、当該反応答aから
突aQした石英等による支持!adの先端にlよ、Si
Cコートによるカーボン製のサセプタeが. ′?!3
(”+1反応管a内の中央部に配設され、当該サセ/タ
eに基板Pを載Hするようになっている。 そして、第1図の抵抗加熱方式によるものは、反応管δ
の外周側に、断熱材fと電気ヒータgと番こよる加熱手
段を施し、第2図の高周波誘導加熱方式による場合は、
これまた反応管aの外周側に高周波コイルhを臨設して
あり、第3図の赤外線方式によるものでは,反I5管a
の外側直下にあって、};方を開
<<Industrial Application Field>> The present invention is a method for attaching a substrate to a susceptor Z provided in an anti-1ε tube.
fai & L, when the substrate is placed under heating conditions and the original poisonous gas is supplied from the supply port of this reaction tube, "61, by supplying oil from the exhaust port of the reaction tube, superconductivity occurs on the surface of the substrate. This invention relates to the above-mentioned thin film vapor phase apparatus configured to form a thin film. <Prior art> The above-mentioned vapor phase apparatuses that have been used so far include those shown in Figure 2 and Figure 2. As shown in Figures 3 and 4, there are resistance heating methods, high-frequency induction heating methods, and infrared heating methods.In any of the methods listed in L, a raw material gas G is placed in a reaction tube d made of quartz or the like. A supply port b and an exhaust port C are provided at the chick 11J1 and 1, respectively, and a support made of quartz or the like that protrudes from the reaction a is placed at the tip of the ad, l, Si.
Carbon susceptor e with C coating. ′? ! 3
("+1" is arranged at the center of the reaction tube a, and the substrate P is mounted on the saccharifier e. In the case of the resistance heating method shown in FIG. 1, the reaction tube δ
If heating means such as a heat insulating material f and an electric heater g are applied to the outer circumference of the heater, and the high frequency induction heating method shown in Fig.
In addition, a high frequency coil h is installed on the outer periphery of the reaction tube a, and in the case of the infrared method shown in FIG.
Directly below the outside of the

【ゴした反射筒i内に
赤外線ランブJを設けることで加8f段を構成している
.ここで、■−.配従来の抵抗加熱方式による気相或長
装置にあっては、電気ヒータgによって基板Pが加熱さ
れる際、当然反l5管a自体も加熱されてしまうことに
なる. この結果、キャリアガス中にBi (Cg H5) 3
(トリ7 . ..: IL/ビスマス)、 Sr(D
PM)zCa(DPM)2(2,2.6.6一テトラメ
チル−3.5−ヘプ々ンジ十ンストロンチ^ム)等が含
まれているi東本4力゛スGを用いてB!. Sr等系
酸化物超伝導薄膜の気相改.Rを、当詠基板P J二に
施すような場合、I記原料ガ゛スGが、反応答尚の内壁
面による加熱により分解してしまい、この結果当該ガス
Gが基板Pに達する以前に分解してしまうものもあって
、薄板に対する良好な成膜が行われないこととなるだけ
でなく、当該ガスGの分解物G゛が反応管改の内壁にX
印にて示した如く付着し,これにより、電気ヒータgに
よる基板Pの加熱が、充分に行い難くなってしまう欠陥
がある。 次に、第3図の高周波誘導加熱方式によるときは,高周
波誘導加熱コイルhが、iij記カーボン製のサセプタ
eと基板Pのみを加熱し,反応管aを加熱しないから、
上記抵抗加熱方式の如き弊害は生じないが、当該基板P
の温度を辷昇させるのに大変な時間を要し、その生産性
が低下してしまうだけでなく、高価なJA置を要求させ
るといった短所を右している. また、第4図の赤外線加熱方式による従来装置によると
きは,前記の高周波加熱の場合,その基板Pを設鵞温度
800℃まで昇温するのに5〜1o分を要するのに′k
41,、約1分以内程彦ですむこと、そして装置が安価
に入手できる長所がある6しかし、第4図によって理解
されるように,サセプタeの直下であり、赤外線ランプ
」の直上である反応管aの該当内壁部分1が、赤外線ラ
ンブjによって加熱されるから、この結果当該内壁部分
1の面に、1171記の如く原料ガスGによる分解物G
”が付着されてしまうこととなる. このため,徐々に赤外線がサセプタeに到達し轄〈なり
、基板Pにt1する加熱能が次第に低下し、遂には所望
通りの加熱が,できなくなってしなうのであって、実課
上,前記の如〈設定温度800℃で、父相吠長を開始す
ると1時間程度で50゜C位の温度降下を来すことが確
認された。 《発明が1?DLようとする課題》 ,(?l明は、上記の従来事情に鑑み検討されたもので
、上記瓦外線加熱方式による気相成長装置にあって、新
規に透光〆画板を、反応管の適所に横一i′ることによ
って1 当.核反応管内に原t4ザス通路と、別途反.
応箭に供給されるキャリアガスにつき これを流通させ
るキャリアガス通路とを並設するようになし、 これに
より、赤外線ランプの直上にあって,反応管の内壁に付
着ざれる原料ガスの分解物発生を絶滅させ,基板の加熱
温度が他律的に降下してしまうといったことのないよう
にし、邑該温度につき再現性のよい昇温、維持そして降
温の各制御を高精度に行い得るようになし、望ましい基
板L仇の超伝導薄膜を気相成長を効率よくなし得るよう
にするのが、その目的である。 《課題を解決するためのf=段》 本願は上記の目的を達成するため、石英等による透光反
応管内の所定空所にあって配設されたサセプタ上に,基
板をaMしてE記透光反応管外に配1刈の赤外線ランプ
により、J−.記基板を加熱し、占該透光反応管内に原
料ガスを供給すると共に同上透光反応管の排気1コから
、これを抽出するようにしたものにおいて、{:記サセ
プタは、透光反応管の前記原幻ガズの供給「!より下位
に横11クシた石英等による透光区画板上に載設するこ
とにより、当該透光反応管内に、4.記透光区函板の4
−側に形或され、原料ガスが基板を経て前記積気[]に
全る原料ガス通路と、当該透光区画板の下側に形成され
、透光反応管へ供給されたキャリアガスが、{二記サセ
プタと赤外線ランプとの間を経て、前記排気口に至るキ
ャリアガス通路とを並設するようにしたことを特徴とす
る基板に対する超伝導薄膜の気相成長装置を提供しよう
とするものである. 《作   用》 本発明に係る気相成長装着によるときは、原料ガスは供
給口から透光反I5管内の上位に形成された原料ガス通
路を通って、サセプタ上の基板を通過した後2排気口か
ら外部へ流出して行くこととなり、従って、赤外線ラン
プによって加熱された前記基板上に超伝導?!4膜が形
成されていくこととなる, これと同時に、透光反応管の下位に供給されるキャリア
ガスは、透光区画板のF面と透光反応管の底壁との間に
形成のキャ1)アガス通路を通り、この際、サセプタの
r位でめる透光区画板と、赤外線ランプの直ヒである透
光反応管内壁との間を通過して、排気口から外部へ放出
されることとなる. 従って,当該キャリアガス通路には,原料ガスの通過や
,進入がなく、当該原料ガスは、全部基板側を通過する
こととなり、この結果基板Lの成膜が良好に続行され、
サセプタの直下である透光区画板にも、その下位である
反I5管の内壁にも、原料ガスによる分解物の付着は生
じない。 《実 施 例》 本発明につき第1図の実施例によってこれを詳記すれば
、従来例と同じ〈石英等による透光反応管1の一側端に
は、原料ガスGの供給口2が開口されており,当該原料
ガスGとしては、前掲Bi(Cs Hi ) 3、Sr
(DPM)zの外に、既知の如〈Ca(DPM)z  
(2.2,Ei,6,テトラメチ)Lt−3.5 −ヘ
ブタンジオンカルシウム) . Cu(DPM) 2 
 (2,2,6,Et,テトラメチル−3.5−へブタ
ンジオン鋼)および02が用いられる. 一方,透光反応v1の他側端寄りにおける底壁には,排
気[】3が設けられ、ここから透光反応管1内の気相を
抽気するようにしてある.これまた,従来例と同じ〈,
透光反応管1の他側端から、内側横向専に突出させた石
英等による支持林4の先端には、SiCコートのカーボ
ン製サセプタ5が設けられ、これが透光反応竹l内の中
央部に配置されている. そして、このサセプタ5上に基板Pが置かれることとな
るが、これには(+00)単結晶MgOを用いることが
でき、前記原料ガスG中には,そのキャリアガスとして
He.N2とかAtが用いられ、これにより、基板Lに
引,Sr,Ca,Cu系酸化物超伝導薄膜を形成するこ
ととなり,これまた従ボjの通り,上記サセプタ5の直
下にし2て透光反応管lの外側近情には赤外線ランブ6
が配設されており、因中6aIオ当該ランブ6の反射筒
を示している.本発明では、ここで透光反I5管!の供
蛤口2側にあって,当該供給H1 2よりも下位に、石
英等による透光F画板7を横設tるのであり、この瞭当
該区゛画板7は、前記排気「13の近傍にあって終焉し
ていると共に、この透光区画板7Lに前記のサセプタ5
がR煮されるようにし、かつ当該透光区画板7よりも下
位にあって、透光反応管lの供給口2を開設した側には
、キャリアガス供給08が設けられている. 上記のように透光区画板7を横設することによって、透
光反応管1内は、原料ガスGが供給「】2から供給され
,これが透光区画板7に載首されたサセプタ5上の基板
Pを通過して排気口3に達する原料ガス通路9と、その
下側に並設され、キャリアガスCOが、キャリアガス供
給口8がら流入し,これが、サセプタ5の載置された透
光区画板7の下面と、赤外線ランブ6の直上である透光
反応管!の底面との間を通過し、同じ〈排気『13に至
るキャリアガス通路10とに区分されることとなる. そこで、これを使用するにIf、サセプタ5上に(10
0)単結晶MgOによる基板Pを着き、これを赤外線ラ
ンブ6によって,基板温度が800”0となるように加
j!+すると共に,原料ガスGを4j4.給し、方キャ
リアガス供給08からは、原料ガスGの搬送ガスと同じ
キャリアガスとしてArを用い、これ!8:供給すると
杖に、排気Cl Cからの抽気によって、透光反I5管
1内を7torrの減圧状態として気枦1曵長を行う。 これにより、原料ガスGは、原料ガス通路9を浦って排
気1】3から流出され、加熱されている基板Pに超伝導
薄膜が形吠されていくこととなるか、このにもちろん、
サセプタ5は透光区画板7卜にあるので、サセプタ5直
rにおける透光区画板7のt而は、原料ガスGに触れず
、従って、ここに原料カスの分解物が付着することはな
い.一方、このサセプタ5の的下における透光区画MV
7のF面と,その直ド、すなわち赤外線ランブ6の直1
−における透光反応管lの当該部分1゛とには、加熱,
条件下にあるものの、原料ガスは通過もせf、また進入
もしてくることな〈,キャリアガスCGが、キャリアガ
ス通路10を介して流れているだ汁であるから、当然原
料ガスによる分解物の付γiは発生しない。 −[.記のようにして、実際に1時間の気相成長を行っ
た結果,サセプタ5の温度変化はみられず、このとき得
られた超伝導薄膜の超伝導臨界温度は70Kを示した. 《発明の効果》 本願は,以上のようにしで構或されるものであるから、
原料ガスを効率よく基板の存する原料ガス通路へのみ供
給でき、これにより良好な超伝導薄膜の形成を生産性よ
〈行うことができるだけでなく、透光区画板には、サセ
プタ載置の上面にも、そしてキャリアガスの流れるf面
にも、さらには透光反応管における赤外線直L部分にも
.原料ガスの分解物が付着することなく、このことによ
り、赤外線ランプによる基板の加熱効果を、不木意に阻
害するものではなくなることとなるから,茫板の加熱を
再現性よく、所定の温度に絖持したり,降温、}I温さ
せるといった制御を、高精度に行うことができ、これに
より良好な品質の超伝導薄膜を効率よく生産することが
できる.
[An additional 8f stage is constructed by installing an infrared lamp J inside a reflective tube i. Here, ■-. In a conventional vapor phase lengthening device using a resistance heating method, when the substrate P is heated by the electric heater g, the anti-l5 tube a itself is naturally heated as well. As a result, Bi (Cg H5) 3 is present in the carrier gas.
(Tri 7...: IL/Bismuth), Sr(D
PM) zCa(DPM) 2 (2,2.6.6-tetramethyl-3.5-heptanedione strontium) etc. using i Higashimoto 4 force G B! .. Vapor phase modification of Sr-based oxide superconducting thin films. When R is applied to the substrate PJ2, the raw material gas G described in I will be decomposed by the heating caused by the inner wall surface of the reaction, and as a result, the gas G will decompose before it reaches the substrate P. Some of the gas decomposes, which not only prevents good film formation on the thin plate, but also causes decomposition products G' of the gas G to form on the inner wall of the reaction tube.
As shown by the mark, there is a defect in which the substrate P is adhered, making it difficult to heat the substrate P sufficiently by the electric heater g. Next, when using the high frequency induction heating method shown in FIG. 3, the high frequency induction heating coil h heats only the carbon susceptor e and the substrate P described in iii, and does not heat the reaction tube a.
Although the disadvantages of the above-mentioned resistance heating method do not occur,
It takes a lot of time to raise the temperature, which not only reduces productivity but also requires expensive JA equipment. Furthermore, when using the conventional apparatus using the infrared heating method shown in FIG.
41. It has the advantage that it takes about 1 minute or less and the device can be obtained at low cost.6 However, as understood from Figure 4, it is directly below the susceptor e and directly above the infrared lamp. Since the corresponding inner wall portion 1 of the reaction tube a is heated by the infrared lamp j, as a result, decomposition products G caused by the raw material gas G are deposited on the surface of the inner wall portion 1 as described in 1171.
As a result, the infrared rays gradually reach the susceptor e, and the heating ability to t1 the substrate P gradually decreases, until the desired heating is no longer possible. However, in actual practice, it was confirmed that when the temperature setting was set at 800°C and the father-to-back process was started, the temperature would drop by about 50°C in about an hour. Problems to be solved for DL》 , (?l Akira was studied in view of the above-mentioned conventional circumstances.In the vapor phase growth apparatus using the above-mentioned tile external beam heating method, a new translucent screen plate was added to the reaction tube. By placing it horizontally in the appropriate place, 1. The original t4 sass passage in the nuclear reaction tube and a separate reactor.
A carrier gas passage for circulating the carrier gas supplied to the reaction tube is installed in parallel with the carrier gas passage, which generates decomposition products of the raw material gas that are located directly above the infrared lamp and adhere to the inner wall of the reaction tube. It is possible to eliminate the heating temperature of the substrate from heteronomously dropping, and to perform high-precision control of temperature increase, maintenance, and temperature reduction with good reproducibility. The purpose is to enable efficient vapor phase growth of a superconducting thin film on a desirable substrate L. <<F=stage for solving the problem>> In order to achieve the above-mentioned object, the present application uses a method in which a substrate is placed on a susceptor made of quartz or the like in a predetermined space in a light-transmitting reaction tube, and then E-recorded. J-. In the susceptor, the substrate is heated, a raw material gas is supplied into the light-transmitting reaction tube, and the raw material gas is extracted from one exhaust gas of the light-transmitting reaction tube. By placing it on a light-transmitting partition plate made of quartz, etc., which is horizontally 11 combs below the original gas supply "!," 4 of the light-transmitting partition box plate described in 4.
A source gas passage formed on the - side, through which the source gas passes through the substrate and enters the bulk gas [], and a carrier gas formed on the lower side of the transparent partition plate, through which the carrier gas is supplied to the transparent reaction tube. {An object of the present invention is to provide a vapor phase growth apparatus for a superconducting thin film on a substrate, characterized in that a carrier gas passage leading to the exhaust port is arranged in parallel between the susceptor and the infrared lamp. It is. <<Function>> When using the vapor phase growth device according to the present invention, the raw material gas passes from the supply port through the raw material gas passage formed in the upper part of the transparent I5 tube, and after passing through the substrate on the susceptor, 2 exhausts. The superconductor will flow out from the mouth and therefore on the substrate heated by the infrared lamp? ! At the same time, the carrier gas supplied to the lower part of the light-transmitting reaction tube will form a film between the F side of the light-transmitting partition plate and the bottom wall of the light-transmitting reaction tube. 1) Pass through the gas passage, and at this time, pass between the transparent partition plate installed at the r position of the susceptor and the inner wall of the transparent reaction tube, which is the direct line of the infrared lamp, and be released to the outside from the exhaust port. It will be done. Therefore, the raw material gas does not pass through or enter the carrier gas passage, and all of the raw material gas passes through the substrate side. As a result, the film formation on the substrate L continues smoothly.
Decomposition products caused by the raw material gas do not adhere to either the light-transmitting partition plate directly below the susceptor or the inner wall of the anti-I5 pipe below it. <<Embodiment>> The present invention will be described in detail with reference to the embodiment shown in FIG. The raw material gas G includes the aforementioned Bi(Cs Hi ) 3, Sr
In addition to (DPM)z, there is the known 〈Ca(DPM)z
(2.2,Ei,6,tetramethy)Lt-3.5-hebutanedione calcium). Cu(DPM) 2
(2,2,6,Et, tetramethyl-3,5-hebutanedione steel) and 02 are used. On the other hand, an exhaust [ ] 3 is provided on the bottom wall near the other end of the translucent reaction v1, from which the gas phase inside the translucent reaction tube 1 is extracted. This is also the same as the conventional example〈,
A SiC-coated carbon susceptor 5 is provided at the tip of a supporting forest 4 made of quartz or the like that protrudes inwardly and laterally from the other end of the translucent reaction tube 1, and this susceptor 5 is attached to the center of the translucent reaction tube 1. It is located in The substrate P will be placed on the susceptor 5, for which (+00) single crystal MgO can be used, and the raw material gas G may contain He. N2 or At is used to form a superconducting thin film of Sr, Ca, Cu-based oxides on the substrate L, and as shown in sub-j, this is placed directly under the susceptor 5 and transparent. There is an infrared lamp 6 near the outside of the reaction tube l.
6aIo indicates the reflector tube of the lamp 6. In the present invention, here is a translucent anti-I5 tube! A translucent F dividing plate 7 made of quartz or the like is installed horizontally on the side of the supply port 2 and below the supply H1 2. The above-mentioned susceptor 5 is attached to this transparent partition plate 7L.
A carrier gas supply 08 is provided on the side where the supply port 2 of the light-transmitting reaction tube 1 is opened, and is lower than the light-transmitting partition plate 7. By arranging the light-transmitting partition plate 7 horizontally as described above, the raw material gas G is supplied from the supply `` ] 2 into the light-transmitting reaction tube 1, and this is fed onto the susceptor 5 mounted on the light-transmitting partition plate 7. The raw material gas passage 9 passing through the substrate P and reaching the exhaust port 3 is arranged below the raw material gas passage 9, and the carrier gas CO flows in through the carrier gas supply port 8, and this flows into the transparent material gas passage 9 on which the susceptor 5 is placed. It passes between the lower surface of the light dividing plate 7 and the bottom surface of the light-transmitting reaction tube directly above the infrared lamp 6, and is divided into a carrier gas path 10 that reaches the same exhaust gas 13. , If you use this, on susceptor 5 (10
0) A substrate P made of single-crystal MgO is placed, and it is heated by an infrared lamp 6 so that the substrate temperature becomes 800"0, and at the same time, a raw material gas G is supplied 4j4. from a carrier gas supply 08. Ar is used as the same carrier gas as the carrier gas of the raw material gas G, and when this!8: is supplied, the inside of the transparent reverse I5 tube 1 is reduced to 7 torr by air extraction from the exhaust gas Cl. As a result, the raw material gas G flows through the raw material gas passage 9 and flows out from the exhaust gas 1]3, and a superconducting thin film is formed on the heated substrate P. Of course, this
Since the susceptor 5 is located in the direction of the transparent partition plate 7, the part of the transparent partition plate 7 in the direction of the susceptor 5 does not come into contact with the raw material gas G, and therefore, decomposition products of the raw material scum do not adhere here. .. On the other hand, the transparent section MV under the target of this susceptor 5
7's F plane and its straight side, that is, the straight line 1 of infrared lamp 6.
- The relevant part 1' of the light-transmitting reaction tube l in - is heated,
Although under these conditions, the raw material gas does not pass through or enter. Since the carrier gas CG is juice flowing through the carrier gas passage 10, it is natural that the decomposition products of the raw material gas Additional γi does not occur. −[. As a result of actually performing vapor phase growth for one hour as described above, no temperature change was observed in the susceptor 5, and the superconducting critical temperature of the superconducting thin film obtained at this time was 70K. <<Effect of the invention>> Since the present application is constructed as described above,
The raw material gas can be efficiently supplied only to the raw material gas passage where the substrate exists, which not only makes it possible to form a good superconducting thin film with high productivity. Also, to the f-plane where the carrier gas flows, and even to the infrared direct L part of the translucent reaction tube. The decomposition products of the raw material gas do not adhere to the substrate, and as a result, the heating effect of the substrate by the infrared lamp is not unintentionally inhibited. It is possible to control the heating, cooling, and heating with high precision, making it possible to efficiently produce superconducting thin films of good quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)(口)は、本発明に係る超伝導薄膜の気相
威長装置を示す一実施例の夫々縦断毘面略】Tよーと縦
断側面略示図,第2図,第3図、第4図は径来の同上気
相成長装置を示す各異種例の縦断11面絡不図である. 1・・・・・・透光反応管 2・・・・・・原料ガスの供給口 3・・・・・・排気口 5・・・・・・サセブ々 6・・・・・・赤性線ラ:/ブ 7・・・・・・透光ド画板 8・・・・・・キャリアガス供給【1 9・・・・・・.[q料ガス通路 10・・・・・・キャリアガス通路 G・・・・・・fvχ料つス CG・・・臂・・キャリアガス P・・・・・・基板 第3図
FIGS. 1(a) and 1(b) are longitudinal cross-sectional side views (omitted) of an embodiment of a superconducting thin film vapor phase lengthening apparatus according to the present invention; Figures 3 and 4 are longitudinal cross-sectional views of 11 planes of different examples of the same vapor phase growth apparatus as above. 1... Transparent reaction tube 2... Raw material gas supply port 3... Exhaust port 5... Sustainers 6... Red Line A:/B7... Translucent drawing board 8... Carrier gas supply [1 9... [q Material gas passage 10...Carrier gas passage G...fvχ Material gas CG...Arm: Carrier gas P...Substrate Fig. 3

Claims (1)

【特許請求の範囲】[Claims]  石英等による透光反応管内の所定空所にあって配設さ
れたサセプタ上に、基板を載置して上記透光反応管外に
配設の赤外線ランプにより、上記基板を加熱し、当該透
光反応管内に原料ガスを供給すると共に、同上透光反応
管の排気口から、これを抽出するようにしたものにおい
て、上記サセプタは、透光反応管の前記原料ガスの供給
口より下位に横設した石英等による透光区画板上に載設
することにより、当該透光反応管内に、上記透光区画板
の上側に形成され、原料ガスが基板を経て前記排気口に
至る原料ガス通路と、当該透光区画板の下側に形成され
、透光反応管へ供給されたキャリアガスが、上記サセプ
タと赤外線ランプとの間を経て、前記排気口に至るキャ
リアガス通路とを並設するようにしたことを特徴とする
基板に対する超伝導薄膜の気相成長装置。
A substrate is placed on a susceptor placed in a predetermined space inside a translucent reaction tube made of quartz or the like, and the substrate is heated by an infrared lamp disposed outside the translucent reaction tube. In the light-transmitting reaction tube, the susceptor is arranged laterally below the source gas supply port of the light-transmitting reaction tube. By placing the material on a light-transmitting partition plate made of quartz or the like, a material gas passage is formed in the light-transmitting reaction tube above the light-transmitting partition plate, and the material gas passes through the substrate to the exhaust port. , a carrier gas passage formed on the lower side of the light-transmitting partition plate, through which the carrier gas supplied to the light-transmitting reaction tube passes between the susceptor and the infrared lamp, and reaches the exhaust port is arranged in parallel. A vapor phase growth apparatus for superconducting thin films on a substrate, characterized in that:
JP1233346A 1989-09-08 1989-09-08 Vapor growth device for superconducting thin film on substrate Pending JPH0397870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1233346A JPH0397870A (en) 1989-09-08 1989-09-08 Vapor growth device for superconducting thin film on substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1233346A JPH0397870A (en) 1989-09-08 1989-09-08 Vapor growth device for superconducting thin film on substrate

Publications (1)

Publication Number Publication Date
JPH0397870A true JPH0397870A (en) 1991-04-23

Family

ID=16953709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1233346A Pending JPH0397870A (en) 1989-09-08 1989-09-08 Vapor growth device for superconducting thin film on substrate

Country Status (1)

Country Link
JP (1) JPH0397870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439877A (en) * 1990-12-07 1995-08-08 E. I. Du Pont De Nemours And Company Process for depositing high temperature superconducting oxide thin films
JP2010146969A (en) * 2008-12-22 2010-07-01 Panasonic Electric Works Co Ltd Extension cord

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439877A (en) * 1990-12-07 1995-08-08 E. I. Du Pont De Nemours And Company Process for depositing high temperature superconducting oxide thin films
JP2010146969A (en) * 2008-12-22 2010-07-01 Panasonic Electric Works Co Ltd Extension cord

Similar Documents

Publication Publication Date Title
CN100409402C (en) System and method of fast ambient switching for rapid thermal processing
EP0164928A2 (en) Vertical hot wall CVD reactor
JPH0397870A (en) Vapor growth device for superconducting thin film on substrate
JPS5936927A (en) Vapor phase growth apparatus for semiconductor
JP2526852Y2 (en) Apparatus for vapor phase growth of oxide superconducting thin film
JPH0521867Y2 (en)
JPS6050168A (en) Production of thin solid film by photo cvd method
JPS6027692A (en) Chemical reaction device for vapor-phase epitaxial growth capable of carrying out in-process monitoring
JPS56161832A (en) Gaseous phase treatment device
JPS60253212A (en) Vapor growth device
JPH0529232A (en) Normal pressure vapor deposition device
JPS6372111A (en) Method for controlling temperature of semiconductor substrate
JPH06216045A (en) Vapor growth device
JPS5945907A (en) Method and apparatus for forming metallic oxide film
JPH0626182B2 (en) Infrared heating device
JPS639742B2 (en)
JPH04284623A (en) Apparatus and method for growing semiconductor crystal layer
JPH04367238A (en) Vapor epitaxial growth apparatus
JPS59121827A (en) High-frequency heating device for fabricating film
JPS63304618A (en) Semiconductor wafer and manufacture thereof
JPS61117824A (en) Vapor phase reaction container
JPS6369975A (en) Film growth device in vapor phase
JPH04221076A (en) Oxide thin film growing apparatus
JPH05343328A (en) Cvd apparatus
JPS61132594A (en) Vapor-phase reaction apparatus