JPS5945907A - Method and apparatus for forming metallic oxide film - Google Patents

Method and apparatus for forming metallic oxide film

Info

Publication number
JPS5945907A
JPS5945907A JP57153852A JP15385282A JPS5945907A JP S5945907 A JPS5945907 A JP S5945907A JP 57153852 A JP57153852 A JP 57153852A JP 15385282 A JP15385282 A JP 15385282A JP S5945907 A JPS5945907 A JP S5945907A
Authority
JP
Japan
Prior art keywords
gas
plasma
chamber
plasma generation
generation chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57153852A
Other languages
Japanese (ja)
Inventor
Iwao Watanabe
巌 渡辺
Hideo Yoshihara
秀雄 吉原
Seitaro Matsuo
松尾 誠太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57153852A priority Critical patent/JPS5945907A/en
Publication of JPS5945907A publication Critical patent/JPS5945907A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/20Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state
    • C01B13/22Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state of halides or oxyhalides
    • C01B13/28Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state of halides or oxyhalides using a plasma or an electric discharge

Abstract

PURPOSE:To form a dense metallic oxide film rapidly at a low temperature, by supplying the plasma stream of O2 gas generated in the plasma generation chamber to the specimen chamber introduced with the gas of metallic halide compound, etc., thereby activating the gas with the plasma. CONSTITUTION:O2 gas or a mixture of O2 and an inert gas is introduced into the plasma generation chamber 1 through the inlet pipe 8, and converted to the plasma by the electron cyclotron resonance caused by the magnetic field generated by the magnetic coil 6 and the micro-wave radiation 5, and the produced plasma stream is introduced into the specimen chamber 2. Separately, the (organic) metal halide in the raw material vessel 23 is evaporated by heating with the heater 25, and the vapor is introduced into the gas reservior 21 through the control valve 22 and the inlet pipe 24. When the pressure of the vapor has reached a required level, the valve 27 is opened to introduce the vapor into the specimen chamber 2. The vapor is activated with the plasma stream, and a metallic oxide film is deposited to the surface of the specimen 13 on the specimen table 3.

Description

【発明の詳細な説明】 本発明は、02ガスまたは02とArの混合ガスのいず
れかをプラズマ化し、そのプラズマを金属のハロゲン化
物のガスまたは有様金属ガスの活性化に利用し、金属酸
化物膜を高速度で形成する金属酸化物膜の形成装置およ
び形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention converts either 02 gas or a mixed gas of 02 and Ar into plasma, and utilizes the plasma to activate a metal halide gas or a metal gas. The present invention relates to a metal oxide film forming apparatus and method for forming a metal oxide film at high speed.

従来の金属酸化物膜の形成方法として、反応性蒸着法や
反応性スパッタリング法などがある。これらの方法にお
いては、酸化物の分解により形成膜のイ)つ学組成が金
属過多になるのを防止するために酸化物膜の形成全酸素
プラズマ雰囲気中で行すう必要がある。しかし、これら
の装置においては、プラズマ中の活性酸緊密度が低いが
ら高速度で膜形成する場合に形成膜の化学組成が金ES
過多になる傾向かある。また300〜II0017mi
nの高速度で膜形成を行なうには、反応性蒸着法では高
融点全組、酸fヒ物を蒸発させるために数KWの加熱電
力が必要であり、反応性スパッタリング法では概して金
属酸化物の被スパツタリング速度が遅いのテ数KWのR
F 電力の投入が必要である。また、これら方法におい
て緻猟で良質な膜を得るには、膜形成を行なう基板を加
熱等により高温状態に保持する必要がある。
Conventional methods for forming metal oxide films include reactive vapor deposition and reactive sputtering. In these methods, it is necessary to form the oxide film in an all-oxygen plasma atmosphere in order to prevent the chemical composition of the formed film from becoming excessively metal due to the decomposition of the oxide. However, in these devices, when a film is formed at high speed even though the active acid concentration in the plasma is low, the chemical composition of the formed film is gold ES.
There is a tendency for it to become excessive. Also 300~II0017mi
In order to form a film at a high rate of n, the reactive vapor deposition method requires several kilowatts of heating power to evaporate all the high melting points, acids, and arsenics, and the reactive sputtering method generally requires metal oxides. R of Te number KW where sputtering speed is slow
F It is necessary to input electric power. Furthermore, in order to obtain a high-quality film by fine graining using these methods, it is necessary to maintain the substrate on which the film is formed at a high temperature by heating or the like.

このように、従来の反応性蒸着法や反応性スパッタリン
グ法などで金属酸化物膜を高速度で形成する場合には、 /)形成膜の化学組成が金属過多になる傾向がある。
As described above, when a metal oxide film is formed at high speed using conventional reactive vapor deposition methods, reactive sputtering methods, etc., the chemical composition of the formed film tends to be excessively metal-rich.

、2)数KWの大′11L力が必要で、bる。, 2) A large force of several KW is required.

という欠点がある。さらに加えて、緻密良質な股を得よ
うとする場合に膜形成下地基板をりご温に保持する必要
があるという欠点がある。
There is a drawback. In addition, there is a drawback that the film-forming base substrate must be kept at room temperature in order to obtain a dense and high-quality crotch.

そこで本発明の目的は、上述の欠点を除去して、低温で
緻密な金属酸化物の膜を高速度で形成する膜形成装置を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a film forming apparatus that eliminates the above-mentioned drawbacks and forms a dense metal oxide film at high speed at low temperatures.

本発明の他の目的は、上述の欠点を除去して、低温で緻
密な金属酸化物の膜を高速度で形成する膜形成方法を提
供することにある。
Another object of the present invention is to provide a film forming method that eliminates the above-mentioned drawbacks and forms a dense metal oxide film at high speed at low temperatures.

かかる目的を達成するために、本発明膜形成装置ハ、磁
界とマイクロ波による電子サイクロトロン共鳴を用いて
プラズマを生成させるプラズマ生成室と、試料室と、プ
ラズマ生成室で発生したプラズマを磁界勾配によって試
料室に引き出す手段とを有する金J=lf2化物膜の形
成装置において、プラズマ生成室にガス導入系を設け、
試料室に加熱機構を有するガス導入糸を設ける。
In order to achieve such an object, the film forming apparatus of the present invention includes a plasma generation chamber that generates plasma using electron cyclotron resonance using a magnetic field and microwaves, a sample chamber, and a plasma generated in the plasma generation chamber using a magnetic field gradient. In an apparatus for forming a gold J=lf2 compound film having a means for drawing it into a sample chamber, a gas introduction system is provided in the plasma generation chamber,
A gas introduction thread with a heating mechanism is provided in the sample chamber.

本発明膜形成方法は、磁界とマイクロ波による1子−I
J−イクロトロン共鳴を用いてプラズマを生成させるプ
ラズマ生成室と、試料室と、プラズマ生成室で発生した
プラズマを磁界勾配によって試料室に引き出す手段とを
有する装置を用いて金Fj4@化膜を形成するにあたり
、プラズマ生成室に酸麦ガスあるいはr波素とAr等の
不活性ガスを混合したガスのいずれかを導入し、そのガ
スのプラズマを生成して試料室にプラズマ流として引き
出し、試料室に金属のハロゲン化物のガスあるいは有機
金属ガスのいずれかを導入し、そのガスをプラズマ生成
室から引き出したプラズマ流で活性化させて金kA岐化
物を形成す°る。
The film forming method of the present invention uses a magnetic field and microwaves to
A gold Fj4@-oxide film is formed using a device that includes a plasma generation chamber that generates plasma using J-icrotron resonance, a sample chamber, and means for drawing out the plasma generated in the plasma generation chamber into the sample chamber using a magnetic field gradient. To do this, either acidic gas or a mixture of R-wave element and an inert gas such as Ar is introduced into the plasma generation chamber, and a plasma of that gas is generated and drawn out as a plasma stream into the sample chamber. Either a metal halide gas or an organometallic gas is introduced into the chamber, and the gas is activated by a plasma flow drawn from a plasma generation chamber to form a gold kA compound.

以下に図面を参照−して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は本発明の装置本体の概略構成例を示し、第、2
図は金属のハロゲン化物のガスまたは有機金J・ノjガ
スの供革1)部の詳細例を示す。
FIG. 1 shows a schematic configuration example of the main body of the device of the present invention.
The figure shows a detailed example of part 1) of supplying metal halide gas or organic gold gas.

第1図において、lはプラズマ生成室、コは膜形成のた
めの試料室、3は試料室内に配置した試料台、グはプラ
ズマ生成室/に例えば2.4’jG[Izのマイクロ波
jを導入するための導波管、乙はブラズ°マ生成室lに
磁界を発生させて、プラズマ生成室/で発生したプラズ
マを磁界勾配によって試料室コに心くための磁気コイル
である。7はプラズマ生成室/に02または02とAr
等の不活性ガスの混合ガからプラズマ生成室/にマイク
rI波を3、メ人するだめの石英板である。/θは金属
のハロゲン化物のガスまたは有機金14ガスを試料室λ
に尊大するために囲りに加熱ヒータ//を設けた尋人管
、/2は油拡散ポンプと油回転ポンプからなる排気糸(
図示仕す)への接続部、/3は試料台l上の試料である
In Fig. 1, l is a plasma generation chamber, c is a sample chamber for film formation, 3 is a sample stage placed in the sample chamber, and g is a plasma generation chamber/for example, a microwave of 2.4'jG [Iz The waveguide B is a magnetic coil that generates a magnetic field in the plasma generation chamber 1 and directs the plasma generated in the plasma generation chamber 1 to the sample chamber 1 by means of a magnetic field gradient. 7 is plasma generation chamber/02 or 02 and Ar
A quartz plate is used to introduce microwave rI waves into the plasma generation chamber from a mixture of inert gases such as quartz plates. /θ is metal halide gas or organic gold 14 gas in the sample chamber λ
A heater // is installed around the hyunjin tube to make it more arrogant, and /2 is an exhaust line consisting of an oil diffusion pump and an oil rotary pump (
The connection part to (shown in the figure), /3 is the sample on the sample stage l.

第1 I、!J示の本発明膜形成装置1!において、具
体的には、磁気コイル乙によって発生した磁界とマイク
ロ波5とによる電子ザイクロトロン共1ijjを用いて
、02ガスまたは02とAr等の不活性ガスの混合カス
を導入管7を通じて尋人し、プラズマ生成室l内にかか
るガスのプラズマを生成する。1ム気コイル乙によって
形成された磁界では、プラズマ生成室lの上部で感光強
度がJI2も強く、磁界勾配が存在する。この磁界勾配
によって上述のプラズマを試料室2に引き出す。
1st I,! Invention film forming apparatus 1 shown in J! Specifically, using an electronic cyclotron using a magnetic field generated by a magnetic coil B and a microwave 5, 02 gas or a mixture of 02 and an inert gas such as Ar is introduced through an introduction pipe 7. Then, a plasma of the gas is generated in the plasma generation chamber l. In the magnetic field formed by the 1mm coil B, the photosensitive intensity is as strong as JI2 in the upper part of the plasma generation chamber l, and a magnetic field gradient exists. The above-mentioned plasma is drawn into the sample chamber 2 by this magnetic field gradient.

−力、金に;Glハロゲン<1−物のガスまたは有機金
1弓のガスの形で2!メ入管/θを通じて試料室2に導
入する。このように、磁界とマイクロ波によるrtt 
子リイクロトロン共鳴を用いてプラズマを生成すること
によって、プラズマの活性度が高く、シがも/θ−’T
orr台のガス圧でプラズマを安定に維持できる。この
ようにして、プラズマ生成室/に活性度の高いプラズマ
を安定に生成できるので、これを試料室2に引き出すこ
とによって金属のハロゲン化物のガスまたは有機金属ガ
スの分解に有効に利用できる。このため、基板加熱なし
で、緻密で良Itltな金に4酸化物を形成できる。ざ
らに、プラズマの生成が/θ″”Torr台でも生成可
能なため、蒸気圧が/θ−’Torr□j’3の含金属
ガスも原料ガスとして使用できる。
- Power to gold; Gl halogen < 1 - 2 in the form of gas or organic gold 1 - gas! The sample is introduced into the sample chamber 2 through the main inlet tube /θ. In this way, rtt by magnetic field and microwave
By generating plasma using secondary reicrotron resonance, the activity of the plasma is high, and the
Plasma can be stably maintained at a gas pressure on the order of orr. In this way, highly active plasma can be stably generated in the plasma generation chamber/, and by drawing it out into the sample chamber 2, it can be effectively utilized for decomposing metal halide gas or organometallic gas. Therefore, a tetraoxide can be formed on dense and good Itlt gold without heating the substrate. In general, since plasma can be generated even at /θ'''' Torr level, a metal-containing gas with a vapor pressure of /θ-'Torr□j'3 can also be used as the raw material gas.

第、2図は金(・4のハロゲン化物のガスまたは有機金
A・13ガスをλ・J入管/θを介して試料室コに導く
ためのガス供給部の詳細例を示し、ここで27は金属の
ハロゲン化!1グのガスまたは有機金属を安定に供給す
るためのガス溜、nはガス溜ガのガス圧をrJi整する
ために原料容器力からガス溜ガへの導入管21に配置し
た謂整弁、Bは原料容器力の加熱用ヒータ、26はガス
溜のガス圧をモニタするための圧力ゲージ、刀は試料室
コにガスを導入するために導入管/θに配置αした開閉
弁、lはガス溜λ/内のガスを排気するために排気管〃
に配置した開閉弁、3θは油回転ポンプ等の排気系(図
示せず)への接rり0部である。
Figure 2 shows a detailed example of a gas supply section for guiding gold (.4 halide gas or organic gold A.13 gas to the sample chamber through the λ/J entry pipe/θ; is a gas reservoir for stably supplying metal halogenation gas or organic metal; n is a gas reservoir for stably supplying gas or organic metal; A so-called regulator is placed, B is a heater for heating the raw material container, 26 is a pressure gauge for monitoring the gas pressure in the gas reservoir, and a sword is placed on the introduction pipe/θ to introduce gas into the sample chamber α. l is an exhaust pipe to exhaust the gas in the gas reservoir λ/
The opening/closing valve located at 3θ is the 0 part connected to an exhaust system (not shown) such as an oil rotary pump.

このような第2図示のガス供給部において、具体的には
、原料容器n中の原料を原料加熱用ヒータJで加熱して
気化させる。ガス溜lの圧力が所定の圧力になるように
原料容器力の温度とK1.ff 整弁nを調整する。こ
の時の圧力を圧力ゲージ26でモニタしながら開閉弁l
を開ぎ、囲りに加熱ヒータl/を設けた導入管/θを通
じて金14を含むガスを試料室λに安定に供給する。
In such a gas supply section shown in the second diagram, specifically, the raw material in the raw material container n is heated and vaporized by the raw material heating heater J. The temperature of the raw material container force and K1. ff Adjust valve control n. While monitoring the pressure at this time with the pressure gauge 26,
The gas containing gold 14 is stably supplied to the sample chamber λ through the inlet pipe /θ surrounded by a heater l/θ.

以上に述べた本発明装置を用いて、02ガスおよびAr
ガスをプラズマ生成室lに4人してプラズマを生成し、
試料室λにNbCl5カスを尋人し、試料台3上の試料
13上に膜を形成したところ、活性化された02とNb
Cl5ガスは反応じ、Nb2O6とC1hガスが生成さ
れたが、C12ガスは/θ−’Torr台のガス圧であ
るためすみやかに排気され、膜中への取り込みはなかっ
た。
Using the apparatus of the present invention described above, 02 gas and Ar
Four people put gas into the plasma generation chamber l and generate plasma.
When NbCl5 scum was poured into the sample chamber λ and a film was formed on the sample 13 on the sample stage 3, activated 02 and Nb
The Cl5 gas reacted to generate Nb2O6 and C1h gas, but the C12 gas was quickly exhausted because its gas pressure was on the order of /θ-'Torr, and was not taken into the film.

次に、2.1波管lからの投入マイクロ波パワーと・金
属酸化物膜としてのNb酸化物膜の形成速度との関係を
第3図に示す。これは、NbCl5ガスを導入する導入
管/θの口径をI1m+[l1y5、NbCl5ガス溜
2/内の圧力を約(11,/Torr、 02ガスを/
θSCCM、 Arガスを/θSCCMだけ尋人管7よ
り真空容器/内に流入させた条件でNb酸化物膜を形成
した場合である。真空容器l内の真空良心」約7X10
−’Torrであった。第3図かられかるように、マイ
クロ波投入パワーによって、Nb酸化物膜の形成速度を
制御することができる。
Next, FIG. 3 shows the relationship between the input microwave power from the 2.1 wave tube 1 and the formation rate of the Nb oxide film as the metal oxide film. This means that the diameter of the introduction pipe /θ that introduces NbCl5 gas is I1m+[l1y5, the pressure in NbCl5 gas reservoir 2/ is approximately (11,/Torr, and the 02 gas is /
This is the case where the Nb oxide film was formed under conditions in which θSCCM and Ar gas were allowed to flow into the vacuum vessel from the passenger tube 7 by /θSCCM. Vacuum Conscience in Vacuum Container l Approximately 7X10
-'Torr. As can be seen from FIG. 3, the formation rate of the Nb oxide film can be controlled by the microwave input power.

第1図は、NbCl5.酸素+Ar流入量および投入マ
イクロ波?ll、力を変化させたときに得られたNbv
化物膜の形成i1度と屈4〕1率との関係を示す。ここ
で、Jio折率は、He−Neレーザー(t321r 
A )を用いたエリプソメーターにより測定した。Nb
Cl5ガス溜ノlの圧カニ 0./ 〜0.jTorr
 % (ft、素:/〜3θSCCM、 Ar :O〜
3θSCCM、投入マイクロ波電カニ 100〜300
 Wの範囲で種々に条件を変化させた。得られた膜のh
B折率の値は、池々のマイクロ波tiL力、すなわちt
′力影形成速度対して、コ、l−2,3の間にあり、反
応性マグネトロンスパッタリング装置1’jにより低1
J41iでtW成した膜と同様であった。
FIG. 1 shows NbCl5. Oxygen + Ar inflow amount and input microwave? ll, Nbv obtained when changing the force
The relationship between the formation i1 degree of a compound film and the curvature 4]1 index is shown. Here, the Jio refractive index is the He-Ne laser (t321r
Measured using an ellipsometer using A). Nb
Pressure crab for Cl5 gas reservoir 0. / ~0. jTorr
% (ft, element:/~3θSCCM, Ar:O~
3θSCCM, input microwave electric crab 100-300
Conditions were varied within the range of W. h of the obtained film
The value of the B refractive index is the microwave tiL power of Ikezu, that is, t
'For the force shadow formation rate, it is between 1-2 and 3, and the reactive magnetron sputtering device 1'j is lower than 1'.
It was similar to the film formed by tW using J41i.

その他、金属酸化物膜として、TaC15による酸化タ
ンタル膜やAlIC7l 5によるアルミナを本発明に
より形成したことについてもは(,11同様の結果が得
られた。Al(CHx)aによるアルミナの形成におい
ては、原料を室温で導入できるという利点がある。
In addition, similar results were obtained when a tantalum oxide film using TaC15 and alumina using AlIC7l5 were formed as metal oxide films according to the present invention (, 11).In the formation of alumina using Al(CHx)a, , which has the advantage that raw materials can be introduced at room temperature.

なお、MoF6によるM。OSの形成では、Nbと比較
して、酸素刊を多くし、また投入マイクロ波VIL力を
大きくする必要がある。
In addition, M due to MoF6. In the formation of OS, it is necessary to increase the amount of oxygen and increase the input microwave VIL power compared to Nb.

以上説ψ」したように、本うh明によれば、活性度の高
い02プラズマと金属を詮んたガスを用いているので以
下のような効果を介挿することができる。
As explained above, according to the present invention, since highly active 02 plasma and metal-containing gas are used, the following effects can be introduced.

(1)  ll00 A/1nin以上の高速度で良質
な余属醒化膜が200〜300W程度の低マイクロ波電
力により低温試料上に得られる。
(1) A high-quality amorphous film can be obtained on a low-temperature sample at a high speed of 1100 A/1 nin or more using a low microwave power of about 200 to 300 W.

C2)  不純物ガスを添加することにより均一な不純
物濃度をもった金属酸化物膜を形成できる。
C2) A metal oxide film with a uniform impurity concentration can be formed by adding an impurity gas.

そのため、膜面垂直方向の屈折率分布を容易に制御でき
る。
Therefore, the refractive index distribution in the direction perpendicular to the film surface can be easily controlled.

(、?)  投入マイクロ波パワー、含金属ガス等によ
り膜形成速度を容易に制御できる。
(,?) The film formation rate can be easily controlled by input microwave power, metal-containing gas, etc.

(II)  複数金属酸化物の混合体膜の形成が容易で
ある。
(II) It is easy to form a mixture film of multiple metal oxides.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明金属酸化物膜の形成装置本体の概略構成
を示す線図、第2図は金属のハロゲン化物のガスまたは
有機金属ガスの供給部の詳細例を示す線図、第3図は本
発明の実施例で得られたNb酸化膜の形成速度と投入マ
イクロ波電力との関係を示すグラフ、第7図は本発明の
実施例において、NbCA!s+酸素、Arの流量や投
入マイク四肢電力等の条件を変えて形成した膜の形成速
度と屈折率との関係を示すグラフである。 !・・・プラズマ生成室、 コ・・・試料室、 3・・・試料台、 グ・・・マイクロ波導波什、 3・・・2゜II!r Gl(zのマイクロ波、乙・・
・プラズマ生成室lに磁界を発生させるための磁気コイ
ル7・・・ガス専入口、 g・・・プラズマ生成室冷却用冷却水導入管、t′・・
・冷却水排出管、 り・・・マイクロ波蝙入撒、 /θ・・・金員を含んだガスを導入する加熱された導入
管、//・・・加熱ヒーター、 /2・・・排気系への接続部、 13・・・試料台3上の試料、 I・・・ガス溜、 n・・・ガス圧調整弁、 n・・・原料容器、 21・・・導入管、 B・・・原料容器加熱用ヒータ、 3・・・ガス圧力ゲージ、 l・・・開閉弁、 I・・・fjM閉弁、 〃・・・排気管、 30・・・排気系への接続部。 特許出願人 日本電信′tJi話公社 第2図 第3図 第4図 8莫形成速度(lVfrI旧)
FIG. 1 is a diagram showing a schematic configuration of the main body of the metal oxide film forming apparatus of the present invention, FIG. 2 is a diagram showing a detailed example of a supply section for metal halide gas or organometallic gas, and FIG. 7 is a graph showing the relationship between the formation rate of the Nb oxide film and the input microwave power obtained in the example of the present invention, and FIG. 7 is a graph showing the relationship between the NbCA! 3 is a graph showing the relationship between the refractive index and the formation rate of films formed by changing conditions such as the flow rate of s+oxygen and Ar, and the input microphone limb power. ! ...Plasma generation chamber, C...Sample chamber, 3...Sample stage, G...Microwave waveguide, 3...2゜II! r Gl (z microwave, Otsu...
・Magnetic coil 7 for generating a magnetic field in the plasma generation chamber l...Gas exclusive inlet, g...Cooling water introduction pipe for cooling the plasma generation chamber, t'...
・Cooling water discharge pipe, Ri...Microwave injection, /θ...Heated introduction pipe that introduces gas containing metal, //...Heating heater, /2...Exhaust Connection to the system, 13... Sample on sample stage 3, I... Gas reservoir, n... Gas pressure adjustment valve, n... Raw material container, 21... Introducing pipe, B... - Heater for heating raw material container, 3... Gas pressure gauge, l... Open/close valve, I... fjM closing valve, 〃... Exhaust pipe, 30... Connection to exhaust system. Patent applicant: Nippon Telegraph Corporation Figure 2 Figure 3 Figure 4 Figure 8 Molecular formation rate (former lVfrI)

Claims (1)

【特許請求の範囲】 /)磁界とマイクロ波による電子サイクロトロン共鳴を
用いてプラズマを生成させるプラズマ生成室と、試料室
と、前記プラズマ生成室で発生したプラズマを磁界勾配
によって試料室に引き出す手段とを有する金属酸化物膜
の形成装置において、前記プラズマ生成室にガス導入糸
を設け、前記試料室に加熱機構を有するガス導入系を設
けたことを特徴とする金属酸化物膜の形成装置。 、2)  i界とマイクロ波による′電子サイクロトロ
ン共鳴を用いてプラズマを生成させるプラズマ生成室と
、試料室と、前記プラズマ生成室で発生したプラズマを
磁界勾配によって試料室に引き出す手段とを有する装置
を用いて金属酸化膜を形成するにあたって、前記プラズ
マ生成室に酸紫ガスあるいは酸素と不活性ガスを混合し
たガスのいずれかを導入し、該ガスのプラズマを生成し
て前記試料室ニフラズマ流として引き出し、前記試オ・
1室に金属のハロゲン化物のガスあるいは有機金縞ガス
のいずれかを導入し、当該ガスを前記プラズマ生成室か
ら引き出した前記プラズマ流で活性化させて金属酸化物
を形成することを特徴とする金属酸化物膜の形成方法。
[Claims] /) A plasma generation chamber that generates plasma using electron cyclotron resonance using a magnetic field and microwaves, a sample chamber, and means for drawing the plasma generated in the plasma generation chamber into the sample chamber using a magnetic field gradient. An apparatus for forming a metal oxide film, characterized in that the plasma generation chamber is provided with a gas introduction thread, and the sample chamber is provided with a gas introduction system having a heating mechanism. , 2) An apparatus comprising a plasma generation chamber that generates plasma using 'electron cyclotron resonance using i-field and microwaves, a sample chamber, and means for drawing out the plasma generated in the plasma generation chamber to the sample chamber using a magnetic field gradient. When forming a metal oxide film using the plasma generation chamber, either an acid purple gas or a gas mixed with oxygen and an inert gas is introduced into the plasma generation chamber, and a plasma of the gas is generated as a niflasma flow in the sample chamber. Drawer, the trial o.
Either a metal halide gas or an organic gold streak gas is introduced into one chamber, and the gas is activated by the plasma flow drawn out from the plasma generation chamber to form a metal oxide. Method for forming metal oxide film.
JP57153852A 1982-09-06 1982-09-06 Method and apparatus for forming metallic oxide film Pending JPS5945907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57153852A JPS5945907A (en) 1982-09-06 1982-09-06 Method and apparatus for forming metallic oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57153852A JPS5945907A (en) 1982-09-06 1982-09-06 Method and apparatus for forming metallic oxide film

Publications (1)

Publication Number Publication Date
JPS5945907A true JPS5945907A (en) 1984-03-15

Family

ID=15571507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57153852A Pending JPS5945907A (en) 1982-09-06 1982-09-06 Method and apparatus for forming metallic oxide film

Country Status (1)

Country Link
JP (1) JPS5945907A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289873A (en) * 1985-10-14 1987-04-24 Semiconductor Energy Lab Co Ltd Formation of transparent conductive film
JPS6289876A (en) * 1985-10-14 1987-04-24 Semiconductor Energy Lab Co Ltd Formation of thin film
JPH04350167A (en) * 1991-05-28 1992-12-04 Fujitsu Ltd Production of high dielectric thin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289873A (en) * 1985-10-14 1987-04-24 Semiconductor Energy Lab Co Ltd Formation of transparent conductive film
JPS6289876A (en) * 1985-10-14 1987-04-24 Semiconductor Energy Lab Co Ltd Formation of thin film
JPH0474433B2 (en) * 1985-10-14 1992-11-26
JPH04350167A (en) * 1991-05-28 1992-12-04 Fujitsu Ltd Production of high dielectric thin film

Similar Documents

Publication Publication Date Title
US4401054A (en) Plasma deposition apparatus
JPH11279757A (en) Method and device for forming thin film of composite metal compound
JPS61222534A (en) Method and apparatus for surface treatment
JPS5945907A (en) Method and apparatus for forming metallic oxide film
JPS6164124A (en) Thin film manufacturing equipment
US5510088A (en) Low temperature plasma film deposition using dielectric chamber as source material
JPS6270578A (en) Coating method for inside surface of pipe
GB2078699A (en) Coating of metallic substrates
JPS616199A (en) Process and apparatus for synthesizing diamond in gaseous phase
JPS5935092A (en) Vapor-phase synthesis of diamond
JPS58161764A (en) Vacuum deposition process of boron
JPH01104763A (en) Production of thin metal compound film
JPS61247696A (en) Device for vapor phase synthesis of diamond
JP3648777B2 (en) Microwave plasma CVD equipment
JPS593098A (en) Synthesizing method of diamond
JPS6312377B2 (en)
JPS58118119A (en) Reactive ion plating apparatus
JPS62213118A (en) Formation of thin film and device therefor
JPS62199771A (en) Formation of deposited film
JP2759568B2 (en) Manufacturing method of optical functional element
JPS62174383A (en) Thin film deposition device
JPS63241183A (en) Treatment of object
JPS6299463A (en) Deposited film formation
JPS5943988B2 (en) Ultrafine particle membrane manufacturing method and manufacturing device
JPS63107899A (en) Formation of thin film