JPH0397216A - Projection aligner - Google Patents

Projection aligner

Info

Publication number
JPH0397216A
JPH0397216A JP1232811A JP23281189A JPH0397216A JP H0397216 A JPH0397216 A JP H0397216A JP 1232811 A JP1232811 A JP 1232811A JP 23281189 A JP23281189 A JP 23281189A JP H0397216 A JPH0397216 A JP H0397216A
Authority
JP
Japan
Prior art keywords
wafer stage
air
wafer
projection exposure
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1232811A
Other languages
Japanese (ja)
Inventor
Makoto Kurihara
誠 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1232811A priority Critical patent/JPH0397216A/en
Publication of JPH0397216A publication Critical patent/JPH0397216A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70916Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To realize a reducing projection aligner wherein an optical axis is stabilized; high-precision position and length measurement is possible, and microminiaturization and massproduction are properly made by separating and shielding a length measuring part and a wafer stage part from the circumferential atmosphere of the other part positions, and installing a jetting outlet and sucking inlet on the inner upper pat and the inner lower part, respectively. CONSTITUTION:The peripheral part between an upper base 3 and a lower base 4 is separated from the air flow blown out from a clean chamber 1 with a shielding plate 5. An air jetting outlet 8 is installed at the lower part of the upper base 3. An air sucking inlet 9 is installed at the upper part of the lower base 4. The air blown out from the air jetting outlet 8 is subjected to down-flow, sucked by the sucking inlet 9, made to pass an air circulating route 11 of the clean chamber 1, sent by a blower 13, cleaned by a filter 12, and circulated. As a result, the generation of turbulence caused by the movement of a wafer stage is restrained, and an optical axis path is stably maintained. As to the turbulence caused by the down-flow in the inside the vertical distance is reduced, and the sucking force is increased, thereby being minimized. Hence foreign matter such as oil mist generated from the wafer stage can be discharged.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は縮小投影露光装置に係わり,特定な個所に設け
られた空気のダウンブロー構造に関し,最適な位置測長
を可能とし、微細塵埃を除去し、高微細化,高スループ
ット,及び、量産化に好適な縮小投影露光装置に関する
. 〔従来の技術〕 周知のごとく、縮小投影露光装置における高微細化,高
スループット,及び、量産化は超LSI生産に不可欠で
あり,この要求は強くなる一方である。従来の縮小投影
露光装置は、クリーンチャンパ内に設置し、内部に気流
を作り、温度の定常化を行ない,ウェハステージの位置
測長用レーザの光軸光路などの安定化を図っている.し
かしこの方式は縮小投影露光装置の骨格構造物などの障
害物、及び,ウェハステージの動作などにより、空気の
乱流発生は避られす、そのため位置測長用レーザの光軸
光路にゆらぎが生じ,高精度位置決め測長に支障がある
。また、特開昭61−160934号公報に記載のよう
に、光学系を気密室に収納し,内部での外乱要因を定常
化させることにより,光学系性能の安定化を行っている
例はあるが、気密室へのレテイクル、及びウェハの搬出
人などの実装上問題があり現実的ではない.〔発明が解
決しようとするi[) 上記従来技術では、高微細化,高スループット,及び,
量産化が進む中,半導体製造装置群の一つ、縮小投影露
光装置も性能向上が図られているが,装置構或の中でも
特に高精度な位置決めを要求されているウェハステージ
の位置測長の周辺環境はクリーンチャンパにより吹出す
空気の流れにより測長レーザの光軸光路の定定化を図っ
ているのが現状である.この方法は、縮小投影露光装置
本体の構造物,骨格,ウェハステージなどにより空気の
乱流が発生しており、光軸光路にゆらぎが生じるなど,
空気の整流対策が成されておらず、測定精度に問題があ
った. 本発明は,レーザ測長部位,ウェハステージと他の部位
とを分離,遮へいし、その内部上方に設けた吹出し口と
、下方に設けた吸入口とにより空気の流れをつくり、乱
流を押え、オイルミストなどの異物付着防止,周辺温度
分布の均一化により、光軸光路を安定化させることを目
的としており、光軸光路を安定化させることにより,高
精度な位置測長が可能になり、また、ウェハへの異物付
着を少なくすることにより、高微細化,高スループット
,量産化に好適な縮小投影露光装置を提供するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a reduction projection exposure apparatus, and relates to an air down-blow structure provided at a specific location, which enables optimal position measurement and eliminates fine dust. This paper relates to a reduction projection exposure apparatus suitable for high-definition, high-throughput, and mass production. [Prior Art] As is well known, high miniaturization, high throughput, and mass production in reduction projection exposure apparatuses are essential for the production of VLSIs, and these demands are becoming stronger. Conventional reduction projection exposure equipment is installed inside a clean chamber to create an airflow inside, stabilize the temperature, and stabilize the optical path of the laser for position measurement of the wafer stage. However, this method prevents air turbulence from occurring due to obstacles such as the skeleton structure of the reduction projection exposure device and the movement of the wafer stage, which causes fluctuations in the optical axis optical path of the position measuring laser. , there is a problem with high-precision positioning and length measurement. Furthermore, as described in JP-A-61-160934, there is an example of stabilizing the performance of the optical system by storing the optical system in an airtight chamber and stabilizing the internal disturbance factors. However, this is not practical due to implementation problems such as reticle to the airtight chamber and personnel to carry out the wafer. [What the invention seeks to solve[] The above-mentioned conventional technology has high miniaturization, high throughput, and
As mass production progresses, the performance of reduction projection exposure equipment, one of the semiconductor manufacturing equipment groups, is being improved. Currently, the surrounding environment uses air flow blown out by a clean chamberer to stabilize the optical axis optical path of the length-measuring laser. In this method, air turbulence is generated due to the structure, skeleton, wafer stage, etc. of the reduction projection exposure apparatus, causing fluctuations in the optical axis optical path, etc.
Measures were not taken to rectify the air, causing problems with measurement accuracy. The present invention separates and shields the laser length measurement part, wafer stage, and other parts, and creates an air flow using an air outlet provided above and an intake port provided below, thereby suppressing turbulent flow. The purpose is to stabilize the optical axis optical path by preventing the adhesion of foreign substances such as oil mist and making the surrounding temperature distribution uniform. By stabilizing the optical axis optical path, highly accurate position measurement becomes possible. In addition, the present invention provides a reduction projection exposure apparatus suitable for high miniaturization, high throughput, and mass production by reducing the adhesion of foreign matter to wafers.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するためには、クリーンチャンバにより
吹出される空気の流れは主に縮小レンズ,ウェハステー
ジの安定化を主体とし,本目的対象部位であるウェハス
テージ,及び、位置測長機器は、他の部位と分離,遮へ
いし、さらに内部上方に設けた吹出口と,下方に設けた
吸込口により空気の流れをダウンブローにして、乱流発
生を押え、周辺温度分布を均一にし、測長距離の変化に
おいても光軸光路周辺を安定させることにより達成する
ものである.さらに、ダウンフローによりウェハステー
ジから発生するオイルミストなどの異物を排出すること
により周辺を清浄化し,ウェハヘの異物付着を防止した
ものである. 〔作用〕 分離,遮へいされた内部上方に設けられた吹出口からは
、クリーンチャンバから直接送り込まれた清浄な空気が
吹出され,内部下方に設けられた吸込口に吸引されるこ
とにより内部にはダウンフローの安定した空気の流れが
保たれている。その作用によりウェハステージの移動に
よる乱流発生を押え、また、ウェハステージ自体が気流
の障害物となることも少なく,光軸光路を安定して保つ
ことができる。また,内部のダウンフローによる乱流は
,上下の距離を短かくし、吸引力を強くすることで最小
にすることができ,ウェハステージから発生するオイル
ミストなどの異物の排出が可能となる. 〔実施例〕 以下、本発明の一実施例を第1図により説明する.クリ
ーンチャンバ1(サイドフロ一式を例にとる)内に設置
されている縮小投影露光装置2において、上ペース3と
下ベース4の間の周囲(但し、ウェハの搬出入口は除く
)を遮へい板5により,クリーンチャンバ1内より吹出
される気流と分離する。上ベース3と下ベース4との間
には、主にウェハステージ6とレーザ測長機器7が設置
されており,上ベース3の下方に空気吹出口8と下ベー
ス上方に吸入口9とにより一定の空気のダウンフローを
つくり,レーザ測長光軸光路10を安定化するものであ
る。
In order to achieve the above objective, the air flow blown out by the clean chamber is mainly used to stabilize the reduction lens and the wafer stage, and the wafer stage and position measurement equipment, which are the target parts of this purpose, are It is separated from other parts and shielded, and the air flow is made into a down blow by the air outlet installed above and the suction port installed below, suppressing the generation of turbulence, making the surrounding temperature distribution uniform, and measuring length. This is achieved by stabilizing the area around the optical axis even when the distance changes. Furthermore, the downflow cleans the surrounding area by discharging foreign matter such as oil mist generated from the wafer stage, thereby preventing foreign matter from adhering to the wafer. [Operation] Clean air sent directly from the clean chamber is blown out from the air outlet provided at the upper part of the separated and shielded interior, and is sucked into the suction port provided at the lower part of the interior. A stable downflow air flow is maintained. This action suppresses the occurrence of turbulent flow due to the movement of the wafer stage, and the wafer stage itself is less likely to become an obstacle to the airflow, making it possible to maintain a stable optical axis optical path. In addition, turbulence caused by internal downflow can be minimized by shortening the vertical distance and increasing the suction force, making it possible to remove foreign substances such as oil mist generated from the wafer stage. [Example] An example of the present invention will be described below with reference to FIG. In a reduction projection exposure apparatus 2 installed in a clean chamber 1 (taking a side flow set as an example), the area between the upper pace 3 and the lower base 4 (excluding the wafer loading/unloading entrance) is covered with a shielding plate 5. , separated from the airflow blown out from inside the clean chamber 1. A wafer stage 6 and a laser length measurement device 7 are mainly installed between the upper base 3 and the lower base 4, and an air outlet 8 is provided below the upper base 3 and an air intake port 9 is provided above the lower base. This creates a constant downflow of air and stabilizes the laser length measurement optical axis optical path 10.

また、遮へい板5の内部は、精密温度センサーにより一
定に保たれており、ダウンフローにより温度分布が均一
になっている。
Furthermore, the inside of the shielding plate 5 is kept constant by a precision temperature sensor, and the temperature distribution is made uniform by the downflow.

次に、遮へい板5の内部の空気の流れを説明する.空気
吹出口8より吹出される空気はダウンフローされ、吸入
口9で吸入され、クリーンチャンバ1の空気循環経路1
1を通り、送風機13により送風されフィルタ12によ
り清浄化されて循環される。なお,第2図に空気循環経
路を示す。
Next, the flow of air inside the shielding plate 5 will be explained. The air blown out from the air outlet 8 flows down, is sucked in at the inlet 9, and then flows through the air circulation path 1 of the clean chamber 1.
1, is blown by a blower 13, is cleaned by a filter 12, and is circulated. The air circulation route is shown in Figure 2.

〔発明の効果〕〔Effect of the invention〕

本発明によれば,縮小投影露光装置の位置測長レーザ光
軸光路のゆらぎがなくなるため,測長性能が向上し、高
微細化,高スループット化に効果がある。
According to the present invention, since there is no fluctuation in the optical axis optical path of the position measuring laser of the reduction projection exposure apparatus, the length measuring performance is improved, and it is effective in achieving higher resolution and higher throughput.

また,ダウンフロ一方式のためオイルミストなどの異物
が舞い上ることなく排出されるのでウェハへの異物付着
がなくなり、高効率量産化に効果がある。
In addition, because it is a down-flow type, foreign matter such as oil mist is discharged without flying up, eliminating the possibility of foreign matter adhering to the wafer, which is effective for high-efficiency mass production.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本実施例の正面図、第2図に空気循環経路を示
す図である。 1・・・クリーンチャ〉バ、2・・・縮小投影露光装置
、3・・・上ベース、4・・・下ベース、5・・・遮へ
い板、6・・・ウェハステージ、7・・・レーザ測長機
器、8・・・空気吹出口、9・・・吸入口,10・・・
レーザ測長光軸光路、工1・・・空気循環経路、12・
・・フィルタ,13・・・送風機。
FIG. 1 is a front view of this embodiment, and FIG. 2 is a diagram showing an air circulation path. DESCRIPTION OF SYMBOLS 1... Clean chamber bar, 2... Reduction projection exposure device, 3... Upper base, 4... Lower base, 5... Shield plate, 6... Wafer stage, 7... Laser length measurement device, 8... air outlet, 9... suction port, 10...
Laser length measurement optical axis optical path, work 1... air circulation path, 12.
...Filter, 13...Blower.

Claims (1)

【特許請求の範囲】[Claims] 1、ウェハ等を載置してステップ送りするウェハステー
ジと、このウェハステージを駆動するウェハステージ制
御部と、ウェハステージ上方に配置された縮小レンズと
、この縮小レンズ上方に配置されたレテイクルと、この
レテイクル上の回路パターンを前記ウェハ上に転写する
露光の光源と、装置全体を制御する全体制御部とを具備
する投影露光装置において、ウェハと縮小レンズの位置
を最適位置に調整し、露光する為の位置決め測長手段と
して、測長レーザビームを干渉計を経てウェハステージ
上の反射ミラーに向けて発信し、また、受信する本体部
からなる投影露光装置において、レーザ測長部とウェハ
ステージ部を他の部位の周囲雰囲気から分離遮へいし、
且つ、その内部上方に設けた吹出口と、下方に設けた吸
引口とにより、空気流をダウンフローとする事を特徴と
する投影露光装置。
1. A wafer stage on which a wafer or the like is placed and fed in steps, a wafer stage control unit that drives this wafer stage, a reduction lens placed above the wafer stage, and a reticle placed above this reduction lens; In a projection exposure apparatus that is equipped with an exposure light source that transfers the circuit pattern on this reticle onto the wafer and an overall control unit that controls the entire apparatus, the positions of the wafer and the reduction lens are adjusted to optimal positions and exposed. In a projection exposure apparatus consisting of a main body that transmits and receives a length-measuring laser beam through an interferometer toward a reflecting mirror on a wafer stage, the laser length-measuring section and the wafer stage section are used as positioning and length measuring means for Separate and shield the area from the surrounding atmosphere of other parts,
A projection exposure apparatus characterized in that the airflow is made into a downflow by an air outlet provided above and a suction port provided below.
JP1232811A 1989-09-11 1989-09-11 Projection aligner Pending JPH0397216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1232811A JPH0397216A (en) 1989-09-11 1989-09-11 Projection aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1232811A JPH0397216A (en) 1989-09-11 1989-09-11 Projection aligner

Publications (1)

Publication Number Publication Date
JPH0397216A true JPH0397216A (en) 1991-04-23

Family

ID=16945141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1232811A Pending JPH0397216A (en) 1989-09-11 1989-09-11 Projection aligner

Country Status (1)

Country Link
JP (1) JPH0397216A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5875031A (en) * 1994-09-13 1999-02-23 Nikon Corporation Distance measuring device based on laser interference with a baffle structure member
EP1333329A1 (en) * 2002-02-01 2003-08-06 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US6847430B2 (en) 2002-02-01 2005-01-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006287160A (en) * 2005-04-05 2006-10-19 Nikon Corp Exposure device and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5875031A (en) * 1994-09-13 1999-02-23 Nikon Corporation Distance measuring device based on laser interference with a baffle structure member
EP1333329A1 (en) * 2002-02-01 2003-08-06 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US6847430B2 (en) 2002-02-01 2005-01-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006287160A (en) * 2005-04-05 2006-10-19 Nikon Corp Exposure device and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP3913976B2 (en) Cleaning gas system for lithographic projection equipment
KR100443452B1 (en) Scanning type exposure apparatus
US6853443B2 (en) Exposure apparatus, substrate processing system, and device manufacturing method
TWI514087B (en) A method of manufacturing an exposure apparatus and an element
US7692764B2 (en) Exposure apparatus, operation decision method, substrate processing system, maintenance management method, and device manufacturing method
KR100781105B1 (en) Exposure apparatus, surface position adjustment apparatus, mask, and method of manufacturing a device
EP0886184B1 (en) Lithography system with vacuum assisted debris removal system
JPH08167549A (en) Exposure device
JP2005129674A (en) Scanning aligner and method of manufacturing device
WO2005036621A1 (en) Substrate carrying apparatus, substrate carrying method, exposure apparatus, exposure method, and method for producing device
US6191843B1 (en) Exposure device, method of making and using same, and objects exposed by the exposure device
JP2003151892A (en) Semiconductor manufacturing apparatus
KR20020036952A (en) Exposure system, method of manufacturing device, and method of environmental control of exposure system
JP2006245400A (en) Optical device and manufacturing method for device
JPH0766114A (en) Cleaner for aligner
JPH0397216A (en) Projection aligner
JPH10149975A (en) Aligner and manufacture of device
JP2001160531A (en) Stage system
JPS6022319A (en) Semiconductor exposure apparatus
JP3552363B2 (en) Scanning exposure equipment
JPH10112430A (en) Scan stage device and scan-type aligner
JP2001015422A (en) Projection exposing method, projection aligner and manufacture of device using the same
JP2001250759A (en) Aligner
JPH05291115A (en) X-ray equipment, x-ray aligner and manufacture of semiconductor device
JP3031790B2 (en) Semiconductor manufacturing equipment