JPH0396273A - Complementary-type mis semiconductor device - Google Patents

Complementary-type mis semiconductor device

Info

Publication number
JPH0396273A
JPH0396273A JP1233483A JP23348389A JPH0396273A JP H0396273 A JPH0396273 A JP H0396273A JP 1233483 A JP1233483 A JP 1233483A JP 23348389 A JP23348389 A JP 23348389A JP H0396273 A JPH0396273 A JP H0396273A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
diffused layer
impurity diffused
input
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1233483A
Other languages
Japanese (ja)
Inventor
Kazuhito Misu
三須 一仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1233483A priority Critical patent/JPH0396273A/en
Publication of JPH0396273A publication Critical patent/JPH0396273A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To suppress a latch-up phenomenon to a large extent by setting the breakdown voltage of the junction between a first impurity diffused layer constituting an input protecting resistor which is connected to an input terminal and a semiconductor substrate at a value higher than the conduction starting voltage of an input protecting element constituted so as to include the impurity diffused layer and a second impurity diffused layer. CONSTITUTION:A P-channel type MIS semiconductor element and an N-channel type MIS semiconductor are formed on one-conductivity type semiconductor substrate 1. The P-channel end N-channel MIS semiconductor elements are connected to an input terminal P through a first impurity diffused layer 3e which is formed in the surface region of the semiconductor substrate l. The first impurity layer 3e and a second impurity diffused layer 3d, which is connected to the ground potential, form an input protecting element together in this complementary type MIS transistor device. In this device, the breakdown voltage between first impurity diffused layer 3d and the semiconductor substrate 1 is set at a value so that the value is higher than the conduction starting voltage of the input protecting element. For example, the length of the gate of a gate electrode 5c of an nMOS Qin in the input protecting circuit is made short, and the conduction starting voltage of the transistor is set at the low value.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、相補型M I S ( Metal Ins
ulator Sem!conductor )半導体
装置に係り、特に、ラッチアップ耐性を高めた相補型M
IS半導体装置に関する. [従来の技術] 相補型MIS半導体装置においては、本質的にpnpn
構造の寄生サイリスタが存在しているので、これによる
ラッチアップ現象が発生しやすくそのためその動作範囲
が制限されている.従来、このラッチアップ現象を抑制
するためにレイアウト上様々な提案がなされているが、
この種半導体装置においては高集積化、小型化の要請が
強いので、ラッチアップ対策としてチップサイズを大き
くするものはその採用が困難である.すなわち、素子の
微細化が進むにつれて、チップ上の面積をあまり占めな
い範囲でのラッチアップ対策が非常に重要となってきて
いる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to complementary MIS (Metal Ins.
ulator Sem! conductor) related to semiconductor devices, especially complementary type M with improved latch-up resistance
Regarding IS semiconductor devices. [Prior Art] In complementary MIS semiconductor devices, essentially pnpn
Due to the presence of parasitic thyristors in the structure, latch-up phenomena are likely to occur due to this, which limits its operating range. In the past, various layout proposals have been made to suppress this latch-up phenomenon.
Since there is a strong demand for high integration and miniaturization in this type of semiconductor device, it is difficult to adopt a device that increases the chip size as a countermeasure against latch-up. That is, as elements become increasingly finer, measures against latch-up within a range that does not occupy much area on a chip are becoming extremely important.

従来の相補型MIS半導体装置について、その平面図で
ある第3図(a)およびその断面図である第3図(b)
を参照して説明する.第3図(a)、(b)に示される
ように、p型半導体基板1上には、n+型ソース領域3
C、ドレイン領域3bおよびゲート電極5bを有するn
チャネルMOSトランジスタ(以下、nMOsと記す)
Qnが形或されており、また、p型半導体基板1の表面
領域内に形成されたnウェル領域2内には、p1型ソー
ス領域4a、ドレイン領域4bおよびゲート電極5aを
有するpチャネルMOS}ランジスタ(以下、pMOS
と記す)Qpが形成されている.両MOS}ランジスタ
Qp.Qnは、インバータ回路を楕戒するように金属配
線により接続される.すなわち、金属配線6aによって
pMOsQpのソース領域4aとn+型拡散領域3aと
が電源電圧Vccに接続され、金属配M6bによってp
MOsQPのドレイン領域4bとnMOsQnのドレイ
ン領域3bとが接続され、金属配線6CによってnMO
sQnのソース領域3Cは接地電位GNDに接続され、
金属配線6dによってpMOSQpのゲート電極5aと
nMOsQnのゲート電極5bとはn+型ドレイン領域
3eに接続されている。また、入力端子であるパッド用
金属配線6eとインバータ回路を構成するMOS}ラン
ジスタQp,Qnとの間に、n+型ドレイン領域3e内
に形成された入力抵抗Rinと、n+型ドレイン領域3
e.n+型ンース領域3dおよび金属配線6cによって
接地電位に接続されたゲート電極5c’を有するnMO
sQinとで楕戒される入力保護回路が設置されている
Regarding a conventional complementary MIS semiconductor device, FIG. 3(a) is a plan view thereof, and FIG. 3(b) is a sectional view thereof.
This will be explained with reference to. As shown in FIGS. 3(a) and 3(b), an n+ type source region 3 is formed on the p-type semiconductor substrate 1.
C, n having a drain region 3b and a gate electrode 5b
Channel MOS transistor (hereinafter referred to as nMOS)
In addition, in the n-well region 2 formed in the surface region of the p-type semiconductor substrate 1, there is a p-channel MOS having a p1-type source region 4a, a drain region 4b, and a gate electrode 5a. transistor (hereinafter referred to as pMOS)
) Qp is formed. both MOS} transistor Qp. Qn is connected by metal wiring so as to overlap the inverter circuit. That is, the source region 4a and the n+ type diffusion region 3a of the pMOSQp are connected to the power supply voltage Vcc by the metal wiring 6a, and the pMOSQp is connected to the power supply voltage Vcc by the metal wiring M6b.
The drain region 4b of MOsQP and the drain region 3b of nMOsQn are connected, and the nMO
The source region 3C of sQn is connected to the ground potential GND,
The gate electrode 5a of the pMOSQp and the gate electrode 5b of the nMOSQn are connected to the n+ type drain region 3e by a metal wiring 6d. In addition, an input resistor Rin formed in the n+ type drain region 3e and an input resistor Rin formed in the n+ type drain region 3e between the pad metal wiring 6e which is the input terminal and the MOS transistors Qp and Qn forming the inverter circuit.
e. nMO having an n+ type source region 3d and a gate electrode 5c' connected to the ground potential by a metal wiring 6c.
An input protection circuit that is protected by sQin is installed.

斯かる相補型MIS半導体装置においては、第3図(b
)に等価回路で示す回路が形威されており、ラッチアッ
プは、電源電圧Vcoにつながるnウェル領域2内のp
+型ソース領域4aと電源電圧V。。にn+型拡散領域
3aを介してつながるnウェル領域2とp型半導体基板
1とからn4威されるpnpバイボーラトランジスタT
 r 1と、nウェル領域2とp型半導体基板1と接地
電位GNDにつながるn1型ソース領域3cとから横戒
されるnpnバイボーラトランジスタTr2とが何らか
のトリガーを受けて導通状態になったときに発生する. [発明が解決しようとする課題] 上述した従来の相補型MIS半導体装置は、入力端子に
静電気等の外部ノイズが印加された場合に簡単にラッチ
アップ状態に陥いるという欠点があった.そのメカニズ
ムを以下に示す.第3図(b)に示すように、入力端子
に外部からノイズが印加されると、すなわちパッド用金
属配線6eにノイズが印加されると、まずn1型ドレイ
ン領域3eにノイズが加わる.この際に、n1型ドレイ
ン領域3e−p型半導体基板l間の降服電圧BVJに比
べ、nMOsQinのドレイン領域3e−ソース領域3
d間の導通開始電圧BVosが高い場合、n+型ドレイ
ン領域3eに印加されたノイズレベルが降服電圧BVj
を超えると、n“型ドレイン領域3eからp型半導体基
板1へ電流が流れる. これを第4図に示す等価回路を用いて説明すると、前述
のように入力端子Pに高い外部ノイズが印加されると、
ドレイン領域3e一半導体基板1間で形威されるダイオ
ードDが逆方向に導通状態となり、電流Ijが流れる.
その結果、p型半導体基板lの抵抗R subの存在に
より節点■の電位が上昇し、トランジスタTr2が導通
して、このトランジスタ内を電流I2が流れる。このた
めnウェル領域2の抵抗Rwellの端子の節点■の電
位が下降し、トランジスタTriが導通し、電流■1が
流れる.その結果、トランジスタTriとTr2からな
るループに正帰還がかかり、トランジスタTriとT 
r 2とで構成されるサイリスタが導通し(ラッチアッ
プ現象が起こり)、電源一接地端子間に大電流が流れ、
最悪の場合デバイスが破壊する. [課題を解決するための千段] 本発明による相補型MIS半導体装置は、入力端子に接
続された入力保護抵抗を構戒する第1の不純物拡散層と
、該第lの不純物拡散層およびこれと近接して形成され
接地電位に接続される第2の不純物拡散層を含んで構戒
される入力保護素子とを有するものであって、前記第1
の不純物拡散層と半導体基板との間の接合の降服電圧は
、前記入力保護素子の導通開始電圧より高く設定されて
いる. [実施例] 次に、本発明の実施例について図面を参照して説明する
. 第1図は、本発明の一実施例を示す断面図であって、同
図において、第3図の従来例と同一の部分には同一の参
照番号が付されているので重複した説明は省略する.こ
の実施例の第3図に示される従来例と相違する点は、本
実施例においては、入力保護回路におけるnMOsQi
nのゲート電極5Cのゲート長が従来例のそれより短か
くなされており、そして、このトランジスタの導通開始
電圧BVosが、n+型ドレイン領域3e−p型半導体
基板間の降服電圧BVJより低く設定されている点であ
る. 次に、本発明の動作原理について第2図を参照して説明
する.まず、入力端子Pに外部ノイズが印加されると、
n+型ドレイン領域3e一半導体基板間の降服電圧BV
j (例えば20V)より、n M O S Q in
の導通開始電圧BVos(例えば15V)の方が低く設
定されているために、nMOsQinの方が先に導通し
て、このトランジスタ内を電流I。Sが流れる.したが
って、第5図に示した場合のように、基板電流Ijが流
れることはなくなり、トランジスタTr2は導通するこ
とはなくラッチアップ現象は生じない.また、入力電圧
がさらに上昇して降服電圧BVJを超えても、nMOS
Qinのサイズを適当な大きさにすることにより、Qi
nの導通抵抗Rl)S、ドレイン領域3eとp型半導体
基板1との接合の導通抵抗RJ,p型半導体基板抵抗R
 subとの関係を、 R as< R J + R sub の条件を満足するようにすれば、 Ios>IJ となり、外部ノイズによるp型半導体基板1への電流I
Jを小さく抑えることができる.したがって、この場合
にもラッチアップ境象のトリガーとなるp型半導体基板
への電流Ijが小さいため、ラッチアップ現象は大きく
抑制される.なお、上記実施例では、nMOsQinの
ゲート長を短くすることによりこのトランジスタの導通
開始電圧BVosを接合降服電圧BVJより低く設定し
ていたが,これに替えて、n“型ドレイン領域3eの不
純物濃度を下げることにより、上記条件を達成できるよ
うにしてもよい.いずれにしても、本発明によれば、ラ
ッチアップ防止のために格別なスペースを消費すること
なく確実にその目的を達成することができる. [発明の効果] 以上説明したように、本発明による相補型MIS半導体
装置は、入力端子に接続された、第1の不純物拡散層で
構成された入力保護抵抗と、前記第1の不純物拡散層お
よび接地電位に接続された第2の不純物拡散層を含む入
力保護素子とを備えるものであって、前記入力保護素子
の導通開始電圧は、前記第1の不純物拡散層と半導体基
板との間の降服電圧より低く設定したものであるので、
本発明によれば、入力端子に印加される外部ノイズを入
力保護素子により接地電位へ引き落すことができる.し
たがって、本発明によれば、第1の不純物拡散層の接合
降服による基板電流を生じさせないかあるいはこれを僅
少なものとすることができるので、寄生トランジスタを
導通させないようにすることができ、ラッチアップ現象
を大きく抑制することができる.そして、このような効
果はチップ面積の拡大を伴うことなくもたらされるもの
であるので、本発明は半導体装置の高集積化に寄与する
ところ大である.
In such a complementary MIS semiconductor device, as shown in FIG.
) is shown as an equivalent circuit, and the latch-up occurs in the p well region 2 connected to the power supply voltage Vco.
+ type source region 4a and power supply voltage V. . A pnp bibolar transistor T is connected to an n-well region 2 and a p-type semiconductor substrate 1 through an n+-type diffusion region 3a.
When r1, the npn bibolar transistor Tr2, which is connected to the n-well region 2, the p-type semiconductor substrate 1, and the n1-type source region 3c connected to the ground potential GND, receive some trigger and become conductive. Occur. [Problems to be Solved by the Invention] The conventional complementary MIS semiconductor device described above has the disadvantage that it easily falls into a latch-up state when external noise such as static electricity is applied to the input terminal. The mechanism is shown below. As shown in FIG. 3(b), when noise is applied from the outside to the input terminal, that is, when noise is applied to the pad metal wiring 6e, the noise is first applied to the n1 type drain region 3e. At this time, compared to the breakdown voltage BVJ between n1 type drain region 3e and p type semiconductor substrate l, the drain region 3e and source region 3 of nMOsQin
When the conduction start voltage BVos between d and d is high, the noise level applied to the n+ type drain region 3e becomes the breakdown voltage BVj
, a current flows from the n" type drain region 3e to the p type semiconductor substrate 1. To explain this using the equivalent circuit shown in FIG. 4, as mentioned above, high external noise is applied to the input terminal P. Then,
The diode D formed between the drain region 3e and the semiconductor substrate 1 becomes conductive in the opposite direction, and a current Ij flows.
As a result, the potential at the node (2) increases due to the presence of the resistor R sub of the p-type semiconductor substrate l, the transistor Tr2 becomes conductive, and a current I2 flows through this transistor. Therefore, the potential at the node (2) at the terminal of the resistor Rwell in the n-well region 2 drops, the transistor Tri becomes conductive, and the current (1) flows. As a result, positive feedback is applied to the loop consisting of transistors Tri and Tr2, and transistors Tri and T
The thyristor consisting of r2 conducts (a latch-up phenomenon occurs), and a large current flows between the power supply and ground terminals,
In the worst case, the device will be destroyed. [A Thousand Steps to Solve the Problems] A complementary MIS semiconductor device according to the present invention includes a first impurity diffusion layer that prevents an input protection resistor connected to an input terminal, the first impurity diffusion layer, and the second impurity diffusion layer. and an input protection element including a second impurity diffusion layer formed adjacent to the first impurity diffusion layer and connected to the ground potential, the input protection element comprising:
The breakdown voltage of the junction between the impurity diffusion layer and the semiconductor substrate is set higher than the conduction start voltage of the input protection element. [Example] Next, an example of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing one embodiment of the present invention. In the same figure, the same parts as in the conventional example shown in FIG. do. This embodiment is different from the conventional example shown in FIG.
The gate length of the n gate electrode 5C is made shorter than that of the conventional example, and the conduction start voltage BVos of this transistor is set lower than the breakdown voltage BVJ between the n+ type drain region 3e and the p type semiconductor substrate. This is the point. Next, the operating principle of the present invention will be explained with reference to FIG. First, when external noise is applied to the input terminal P,
Breakdown voltage BV between n+ type drain region 3e and semiconductor substrate
j (for example, 20V), n M O S Q in
Since the conduction start voltage BVos (for example, 15V) is set lower, the nMOSQin becomes conductive first, and a current I flows through this transistor. S flows. Therefore, as in the case shown in FIG. 5, the substrate current Ij no longer flows, the transistor Tr2 does not become conductive, and no latch-up phenomenon occurs. Also, even if the input voltage increases further and exceeds the breakdown voltage BVJ, the nMOS
By setting the size of Qin to an appropriate size, Qi
n conduction resistance Rl)S, conduction resistance RJ of the junction between drain region 3e and p-type semiconductor substrate 1, p-type semiconductor substrate resistance R
If the relationship with sub is made to satisfy the condition Ras<R J + R sub, Ios>IJ, and the current I to the p-type semiconductor substrate 1 due to external noise is
J can be kept small. Therefore, in this case as well, since the current Ij flowing to the p-type semiconductor substrate, which triggers the latch-up phenomenon, is small, the latch-up phenomenon is largely suppressed. In the above embodiment, the conduction start voltage BVos of this transistor was set lower than the junction breakdown voltage BVJ by shortening the gate length of the nMOSQin, but instead of this, the impurity concentration of the n" type drain region 3e is The above conditions may be achieved by lowering the latch-up.In any case, according to the present invention, the purpose can be reliably achieved without consuming special space for latch-up prevention. [Effects of the Invention] As explained above, the complementary MIS semiconductor device according to the present invention includes an input protection resistor configured of a first impurity diffusion layer connected to an input terminal, and a first impurity diffusion layer connected to an input terminal. and an input protection element including a diffusion layer and a second impurity diffusion layer connected to a ground potential, wherein the conduction start voltage of the input protection element is equal to the voltage between the first impurity diffusion layer and the semiconductor substrate. It is set lower than the breakdown voltage between
According to the present invention, external noise applied to the input terminal can be reduced to ground potential by the input protection element. Therefore, according to the present invention, the substrate current due to junction breakdown of the first impurity diffusion layer is not generated or can be made small, so that the parasitic transistor can be prevented from conducting, and the latch The up phenomenon can be greatly suppressed. Since such effects are achieved without increasing the chip area, the present invention greatly contributes to higher integration of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す断面図、第2図は、
その等価回路図、第3図(a)は、従来例を示す平面図
、第3図(b)は、その断面図、第4図は、その等価回
路図である. 1・・・ρ型半導体基板、  2・・・nウエル領域、
3a・・・n+型拡散領域、  3b、3e・・・n+
型ドレイン領域、   3C、3d・・・n+型ソース
領域、  4a・・・p+型ソース領域、  4b・・
・p1型トレイン領域、     5a、5b、5C、
5c=−・ゲート電極、  6a,6b、6C、6d、
6e・・・金属配線、  D・・・領域3e一基板1間
の寄生ダイオード、  Qin・・・入力保護素子であ
るnチャネルMOS}ランジスタ、  Qn・・・イン
バータを楕戒するnチャネルMOSトランジスタ、  
Qp・・・インバータを構成するpチャネルMOSトラ
ンジスタ、  Trl・・・寄生pnpバイボーラトラ
ンジスタ、  T r 2・・・寄生npnバイボーラ
トランジスタ、  Rwell・・・nウエル領域抵抗
、  R sub・・・p型半導体基板抵抗、Rj・・
・n+型ドレイン領域3e−p型半導体基板1間接合の
逆方向導通抵抗.
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG. 2 is a sectional view showing an embodiment of the present invention.
3(a) is a plan view showing a conventional example, FIG. 3(b) is a sectional view thereof, and FIG. 4 is an equivalent circuit diagram thereof. 1... ρ-type semiconductor substrate, 2... n-well region,
3a...n+ type diffusion region, 3b, 3e...n+
type drain region, 3C, 3d...n+ type source region, 4a...p+ type source region, 4b...
・p1 type train region, 5a, 5b, 5C,
5c=-・gate electrode, 6a, 6b, 6C, 6d,
6e...metal wiring, D...parasitic diode between region 3e and substrate 1, Qin...n-channel MOS transistor which is an input protection element, Qn...n-channel MOS transistor that protects the inverter,
Qp...p channel MOS transistor constituting the inverter, Trl...parasitic pnp bibolar transistor, Tr2...parasitic npn bibolar transistor, Rwell...n well region resistance, Rsub...p type semiconductor substrate resistance, Rj...
・Reverse conduction resistance of the junction between the n+ type drain region 3e and the p type semiconductor substrate 1.

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基板上にpチャネル型MIS半導体素
子とnチャネル型MIS半導体素子とが形成され、前記
pチャネルおよびnチャネルMIS半導体素子が前記半
導体基板の表面領域に形成された第1の不純物拡散層を
介して入力端子に接続され、前記第1の不純物層は接地
電位に接続された第2の不純物拡散層とともに入力保護
素子を構成している相補型MIS半導体装置において、
前記第1の不純物拡散層と前記半導体基板との間の降服
電圧は、前記入力保護素子の導通開始電圧より高いこと
を特徴とする相補型MIS半導体装置。
A p-channel MIS semiconductor element and an n-channel MIS semiconductor element are formed on a semiconductor substrate of one conductivity type, and the p-channel and n-channel MIS semiconductor elements include a first impurity formed in a surface region of the semiconductor substrate. In a complementary MIS semiconductor device connected to an input terminal via a diffusion layer, the first impurity layer constitutes an input protection element together with a second impurity diffusion layer connected to a ground potential,
A complementary MIS semiconductor device, wherein a breakdown voltage between the first impurity diffusion layer and the semiconductor substrate is higher than a conduction start voltage of the input protection element.
JP1233483A 1989-09-08 1989-09-08 Complementary-type mis semiconductor device Pending JPH0396273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1233483A JPH0396273A (en) 1989-09-08 1989-09-08 Complementary-type mis semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1233483A JPH0396273A (en) 1989-09-08 1989-09-08 Complementary-type mis semiconductor device

Publications (1)

Publication Number Publication Date
JPH0396273A true JPH0396273A (en) 1991-04-22

Family

ID=16955717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1233483A Pending JPH0396273A (en) 1989-09-08 1989-09-08 Complementary-type mis semiconductor device

Country Status (1)

Country Link
JP (1) JPH0396273A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771179A (en) * 1980-10-22 1982-05-01 Hitachi Ltd Input protective circuit device
JPS61296773A (en) * 1985-06-26 1986-12-27 Toshiba Corp Input protective circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771179A (en) * 1980-10-22 1982-05-01 Hitachi Ltd Input protective circuit device
JPS61296773A (en) * 1985-06-26 1986-12-27 Toshiba Corp Input protective circuit

Similar Documents

Publication Publication Date Title
US7106562B2 (en) Protection circuit section for semiconductor circuit system
US6469354B1 (en) Semiconductor device having a protective circuit
US6919604B2 (en) Silicon controlled rectifier structure with guard ring controlled circuit
JPH08288404A (en) Cmos on-chip esd protective circuit protected perfectly in which there is not latch-up
JP2959528B2 (en) Protection circuit
US20060125054A1 (en) Electrostatic discharge protection circuit using zener triggered silicon controlled rectifier
US20070120196A1 (en) Prevention of latch-up among p-type semiconductor devices
US6670678B2 (en) Semiconductor device having ESD protective transistor
JP2007012864A (en) Electrostatic discharge protection circuit
JP2005072566A (en) Semiconductor device
US5561312A (en) Protection device for a CMOS integrated circuit apparatus
US5148250A (en) Bipolar transistor as protective element for integrated circuits
JP3559075B2 (en) Polarity reversal protection device for integrated electronic circuits in CMOS technology
JPH1084098A (en) Esd protection of high-density dram using triple well tehchnology
JP2005268379A (en) Low-capacitance esd protective circuit
US6894320B2 (en) Input protection circuit
KR100435807B1 (en) Semiconductor controlled rectifier for use in electrostatic discharge protecting circuit
US6833590B2 (en) Semiconductor device
KR20020015199A (en) Electrostatic discharge protection device in a semiconductor device
US6084272A (en) Electrostatic discharge protective circuit for semiconductor device
US6583475B2 (en) Semiconductor device
JPH06104721A (en) Semiconductor integrated circuit
JPH0396273A (en) Complementary-type mis semiconductor device
JPH05315552A (en) Semiconductor protective device
JPS6239045A (en) Input protecting circuit for semiconductor integrated circuit