JPH0393669A - Production of aluminum nitride and cycloalazane and its polymer to be used therefor - Google Patents

Production of aluminum nitride and cycloalazane and its polymer to be used therefor

Info

Publication number
JPH0393669A
JPH0393669A JP1227818A JP22781889A JPH0393669A JP H0393669 A JPH0393669 A JP H0393669A JP 1227818 A JP1227818 A JP 1227818A JP 22781889 A JP22781889 A JP 22781889A JP H0393669 A JPH0393669 A JP H0393669A
Authority
JP
Japan
Prior art keywords
trimer
cyclic
aluminum nitride
substituents
cycloalazane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1227818A
Other languages
Japanese (ja)
Inventor
Naruyuki Kajiwara
鳴雪 梶原
Kazuo Inoue
井上 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP1227818A priority Critical patent/JPH0393669A/en
Publication of JPH0393669A publication Critical patent/JPH0393669A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Inorganic Fibers (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To easily obtain at a low cost high-purity AlN in a fibrous or filmy form by producing a cycloalazane from, as raw materials, a trialkylamine and an aluminum trihalide and by polymerizing the cycloalazane produced and by baking the resultant polymer. CONSTITUTION:Firstly, an adduct is prepared by reaction between a trialkylamine (e.g. triethylamine) and an aluminum trihalide (e.g. AlCl3). Second, the adduct is reacted with a disilazane compound (e.g. hexamethyl disilazane) or a titanium-based nitrogen compound. Third, the resulting condensate is heated into a cyclic trimer, which is then reacted with an amine compound to replace the halogen by the amine to form a cyclic amino trimer. Thence, the cyclic trimer and/or cyclic amino trimer is heated into a polycycloalazane, which is then formed into a form of desired shape such as fiber or film followed by carrying out baking, thus obtaining the objective aluminum nitride.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は窒化アルミニウム系のセラミックス繊維、フイ
ルム、基板などが製造できる窒化アルミニウムの製造方
法およびその前駆物質であるシクロアラザンとその重合
体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing aluminum nitride, which can produce aluminum nitride-based ceramic fibers, films, substrates, etc., and its precursor, cycloalazane, and its polymer.

[従来の技術] 従来、放熱基板の素材としてはアルミナが使用されてい
る。しかし基板上の集積度が高まるにしたがってさらに
放熱性の良い素材が求められている。その高放熱性の素
材として窒化アルミニウムが注目されている。そしてそ
の素材用の高純度窒化アルミニウム粉末の製造方法も知
られている。
[Prior Art] Conventionally, alumina has been used as a material for a heat dissipation board. However, as the degree of integration on substrates increases, materials with even better heat dissipation are required. Aluminum nitride is attracting attention as a material with high heat dissipation. A method for producing high-purity aluminum nitride powder for use as the material is also known.

しかし窒化アルミニウム粉末は、難焼結性であるので酸
化イットリウムなどの焼結助剤を配合しないと焼結でき
ない。そのため得られる窒化アルミニウム焼結体では、
熱伝導率が窒化アルミニウムそれ自体よりも低下する。
However, since aluminum nitride powder is difficult to sinter, it cannot be sintered unless it is mixed with a sintering aid such as yttrium oxide. Therefore, in the aluminum nitride sintered body obtained,
Thermal conductivity is lower than aluminum nitride itself.

この焼結助剤の添加による熱伝導率の低下を防ぐ方法と
して、窒化アルミニウムの繊維と樹脂とによる複合材料
を素材に用いた基板の作製が試みられている。そのため
には高純度の窒化アルミニウムRMの製造法を確立する
必要がある。
As a method for preventing the reduction in thermal conductivity due to the addition of the sintering aid, attempts have been made to fabricate a substrate using a composite material made of aluminum nitride fibers and resin. For this purpose, it is necessary to establish a method for producing high-purity aluminum nitride RM.

窒化アルミニウム繊維の製造法としては、たとえば、ア
ルミナ繊維に加熱分解した後の残炭素量が多い重合体を
含浸させ、次いでこの重合体含浸アルミナ繊維をアンモ
ニアガスの存在下で1600℃の温度に加熱してアルミ
ナ繊維とする方法が提案ざれている。またアルキルアル
ミニウムとアンモニアとを反応させて、アルミニウムー
窒素結合を骨格とする熱可塑性の重合体を形成し、この
重合体を溶融紡糸し、窒素またはアンモニアの存在下で
焼成する方法も知られている。
As a method for producing aluminum nitride fibers, for example, alumina fibers are impregnated with a polymer that has a large amount of residual carbon after thermal decomposition, and then the polymer-impregnated alumina fibers are heated to a temperature of 1600°C in the presence of ammonia gas. A method has been proposed in which alumina fibers are made from alumina fibers. Another known method is to react aluminum alkyl with ammonia to form a thermoplastic polymer with an aluminum-nitrogen bond as a backbone, melt-spun this polymer, and sinter it in the presence of nitrogen or ammonia. There is.

[発明が解決しようとする課題] 前記の窒化アルミニウムm維の製造法では高温が必要で
あり、またアルキルアルミニウムによる方法では高活性
の物質を扱う反応のため工程での危険性が高い問題を有
する。
[Problems to be Solved by the Invention] The above method for producing aluminum nitride m-fibers requires high temperatures, and the method using alkyl aluminum has the problem of high risk in the process due to the reaction involving highly active substances. .

本発明では安価な物質を利用して容易に形成でき、かつ
容易に成形できその成形体を低い温度で焼成して窒化ア
ルミニウム焼成体を得ること、およびそれを製造する中
間体のシクロアラザンとその重合体を得ることにある。
The present invention provides an aluminum nitride sintered body that can be easily formed and molded using inexpensive materials, and the molded body is fired at a low temperature to obtain an aluminum nitride sintered body. The purpose is to obtain polymers.

[課題を解決するための手段] 本発明の窒化アルミニウムの製造方法は、トリアルキル
アミンとトリハロゲン化アルミニウムとを反応させて付
加物を形成する第1工程と、該付加物とジシラザン系化
合物またはチタン系窒素化合物を反応させて縮合物を形
成する第2工程と、該縮合物を加熱して一般式■の環状
三量体を形成する第3工程と、該環状三量体く一般式■
)をアミン系化合物と反応させてハロゲンをアくンで置
換して一般式工の環状アミノ三量体く一般式工〉を形成
する第4工程と、該環状三量体く一般式■)と該環状ア
ミノ三量体(一般式工)とを混合して加熱するか、該環
状アミノ三量体く一般式工〉を加熱するか、該環状三最
体(一般式■)を加熱してポリシクロアラザン(一般式
■〉を形成する重合工程と、該ポリシクロアラザンを焼
成して窒化アルミニウムとする焼成工程と、からなるこ
とを特徴とする。
[Means for Solving the Problems] The method for producing aluminum nitride of the present invention includes a first step of reacting a trialkylamine and an aluminum trihalide to form an adduct, and a step of reacting the adduct with a disilazane-based compound or a second step of reacting a titanium-based nitrogen compound to form a condensate; a third step of heating the condensate to form a cyclic trimer of general formula (2);
) is reacted with an amine compound to replace the halogen with amine to form a cyclic amino trimer of the general formula (General formula); and the cyclic trimer of the general formula Mix and heat the cyclic amino trimer (general formula), heat the cyclic amino trimer (general formula), or heat the cyclic trimer (general formula). The method is characterized by comprising a polymerization step of forming polycycloalazane (general formula (1)), and a firing step of firing the polycycloalazane to form aluminum nitride.

一般式I、■、■は次の式で表される。(ただし一般式
■、■のRI R2は水素、または炭素数8以下のアル
キル基をR1はR1またはR2のいずれか一方を表す、
Yは3個の置換基を代表して表し、それぞれが炭素数8
以下のアルキル基またはフエニル基であって、置換基は
同一であっても異なっていてもよい、Mはsi,Ti,
sn,Geなどの4価の金属元素を表す)。
General formulas I, ■, and ■ are represented by the following formulas. (However, in the general formulas ■ and ■, RI R2 is hydrogen or an alkyl group having 8 or less carbon atoms, and R1 represents either R1 or R2.
Y represents three substituents, each having 8 carbon atoms.
The following alkyl groups or phenyl groups, the substituents may be the same or different, M is si, Ti,
(Represents a tetravalent metal element such as sn, Ge, etc.)

NRI R2 竃 ■ MY [I] MY [II] 重合体は一般式■、 または重合体の幹は一般式 1vで表される。NRI R2 stove ■ MY [I] MY [II] The polymer has the general formula ■, or the polymer trunk has the general formula It is expressed in 1v.

ただしnは重合度である。However, n is the degree of polymerization.

[111 l [IV] 本発明の一般式■、■で表される環状三量体のシクロア
ラザンは、トリアルキルアミンとトリハロゲン化アルミ
ニウムとを反応させて付加物を形成する第1工程と、該
付加物とジシラザン系化合物またはチタン系窒素化合物
などの活性部保護剤と反応させて縮合物を形成する第2
工程と、該縮合物を加熱して環状三量体を形成する第3
工程、とにより■式の環状三量体が形成される。次いで
この■式の環状三量体をアミン系化合物と反応させてハ
ロゲンをアミンで置換する第4工程で■式の環状アミノ
三量体が形成ざれる。
[111 l [IV] The cyclic trimeric cycloalazane represented by the general formulas (1) and (2) of the present invention is produced by a first step of reacting a trialkylamine and an aluminum trihalide to form an adduct; A second step in which the adduct is reacted with an active part protecting agent such as a disilazane compound or a titanium nitrogen compound to form a condensate.
a third step of heating the condensate to form a cyclic trimer;
A cyclic trimer of the formula (1) is formed by the steps. Next, in the fourth step, this cyclic trimer of formula (1) is reacted with an amine compound to replace the halogen with an amine, thereby forming a cyclic amino trimer of formula (2).

重合工程では、■式の環状アミノ三量体と■式の環状三
量体を混合して加熱するか、■式の環状アミノ三最体、
■式の環状三屋体をそれぞれ単独で加熱することにより
一般式■に示す熱可塑性の重合体が形成される。また一
般式IVに示す幹をもつ重合体が生或する。この重合体
はそのまま焼成すれば窒化アルミニウムとなる。
In the polymerization step, the cyclic amino trimer of the formula ■ and the cyclic trimer of the formula ■ are mixed and heated, or the cyclic amino trimer of the formula ■,
A thermoplastic polymer represented by the general formula (2) is formed by heating each of the cyclic three-dimensional bodies of the formula (2) individually. Polymers having a backbone represented by the general formula IV are also produced. If this polymer is fired as it is, it will become aluminum nitride.

この一般式■の重合体は、重合度がほぼ10程度で、熱
可塑性を示し200℃前後の温度で成形可能である。
The polymer of general formula (1) has a degree of polymerization of about 10, exhibits thermoplasticity, and can be molded at a temperature of about 200°C.

焼戒工程では、この重合体を比較的低い温度で焼結し、
繊維、フィルム、シートなどの形状をもつ窒化アルミニ
ウムの焼結体とすることができる。
In the sintering process, this polymer is sintered at a relatively low temperature,
It can be a sintered body of aluminum nitride in the form of fibers, films, sheets, etc.

この場合、重合体の熱可塑性を利用して戒形した後で焼
成をおこなうことが好ましい。
In this case, it is preferable to perform sintering after shaping the polymer by taking advantage of its thermoplasticity.

焼成工程では、この重合体を1000℃以下のの低い温
度で焼成することが好ましい。
In the firing step, this polymer is preferably fired at a low temperature of 1000°C or less.

このシクロアラザンの製造に用いるトリアルキルアミン
は、炭素数が2〜8のアルキル基をもつアルキルアミン
で、トリエチルアミン、トリプロビルアミン、トリブチ
ルアミン、トリヘキシルアミン、トリオクチルアミンな
どが利用できる。またハロゲン化アルミニウムとしては
、塩化アルミニウム、臭化アルミニウム、弗化アルミニ
ウム、ヨウ化アルミニウムなどが利用できる。
The trialkylamine used in the production of cycloalazane is an alkylamine having an alkyl group having 2 to 8 carbon atoms, such as triethylamine, triprobylamine, tributylamine, trihexylamine, and trioctylamine. Further, as the aluminum halide, aluminum chloride, aluminum bromide, aluminum fluoride, aluminum iodide, etc. can be used.

第1工程では、トリアルキルアミンとハロゲン化アルミ
ニウムとを付加反応させるとアミンとアルミニウムとが
1:個の割合で付加した生成物が得られる。たとえば、
ハロゲン化炭素水素系の溶媒中でトリエチルアミンと塩
化アルミニウムとの付加反応をおこなうとトリエチルア
ミンと塩化アルミニウム付加生戒物が結晶として析出し
てくる。
In the first step, a trialkylamine and an aluminum halide are subjected to an addition reaction to obtain a product in which amine and aluminum are added at a ratio of 1:1. for example,
When an addition reaction between triethylamine and aluminum chloride is carried out in a halogenated hydrocarbon solvent, triethylamine and aluminum chloride adducts precipitate out as crystals.

そのため生戒物は容易に単離でき高純度の付加物(R”
R2N−X3AI、式中Xはハロゲンを表す〉が得られ
る。
Therefore, raw materials can be easily isolated and highly purified adducts (R”
R2N-X3AI, where X represents halogen, is obtained.

第2工程では、付加物にジシラザラン系化合物、たとえ
ばヘキサアルキルジシラザンを反応させるとハロゲンの
1個がジシラザラン系化合物で置換された縮合物が形成
ざれる。この際トリアルキルアミンが副生戒物の塩化水
素の受容体となり塩酸塩として析出して分離でき、縮合
物[X2 A I N(SiY)2]は高純度で単離す
ることができる。
In the second step, when the adduct is reacted with a disilazalane compound such as hexaalkyldisilazane, a condensate in which one of the halogens is substituted with the disilazalane compound is formed. At this time, the trialkylamine becomes a receptor for the by-product hydrogen chloride and can be precipitated and separated as a hydrochloride, and the condensate [X2 A I N (SiY)2] can be isolated with high purity.

なおこの分離を容易にするために縮合物を溶解する溶媒
を用いることが好ましい。
Note that in order to facilitate this separation, it is preferable to use a solvent that dissolves the condensate.

ここで用いるジシラザン系化合物としては、たとえばへ
キサメチルジシラザン、ヘキサフエニルジシラザラン、
ヘキサエチルジシラザンなどが使用できる。その他活性
部を保護でき4価の金属元素をもつチタン系窒素化合物
などが使用できる。
Examples of the disilazane compounds used here include hexamethyldisilazane, hexaphenyldisilazane,
Hexaethyldisilazane and the like can be used. Other materials that can be used include titanium-based nitrogen compounds that can protect the active region and have a tetravalent metal element.

第3工程では、第2工程で得られた縮合物を加熱して、
環状三鰻体[X3 (N3A+3>(SiY)3]とす
る工程である。この反応は、縮合物を加熱するか、縮合
物を溶媒中で加熱してもよい。
In the third step, the condensate obtained in the second step is heated,
This is a step to form a cyclic three-eel body [X3 (N3A+3>(SiY)3]).In this reaction, the condensate may be heated or the condensate may be heated in a solvent.

第4工程では環状三母体をアミン系化合物でハロゲンを
置換してアミン化物とする。この反応は、環状三量体を
溶媒に溶解しアミン系化合物を添加することで得られる
In the fourth step, the halogen of the cyclic trimester is replaced with an amine compound to form an aminated product. This reaction is obtained by dissolving the cyclic trimer in a solvent and adding an amine compound.

ここでいうアミン系化合物は、アンモニア、メチルアミ
ン、ジメチルアミン、エチルアミン、ジエチルアミン、
プロビルアミン、ジプロピルアミン、プチルアミン、ジ
ブチルアミン、などである。
The amine compounds mentioned here include ammonia, methylamine, dimethylamine, ethylamine, diethylamine,
These include probylamine, dipropylamine, butylamine, dibutylamine, etc.

また溶媒としては、テトラヒド口フラン、ジメチルホル
ムアミド、ジメチスルホキシド等が使用できる。
Further, as the solvent, tetrahydrofuran, dimethylformamide, dimethysulfoxide, etc. can be used.

[実施例] 以下実施例により具体的に説明する。[Example] This will be explained in detail below using examples.

以下の工程で一般式■で表される重合体を製造した。A polymer represented by the general formula (2) was produced in the following steps.

(第1工程〉1モルの塩化.アルミニウムを300一の
四塩化炭素に溶解し−70℃に冷却して1モルのトリエ
チルアミンを攪拌しながら滴下すると塩化アルミニウム
とトリエチルアミンの付加物が沈澱してくる。滴下終了
後充分攪拌し、生或した沈澱を濾別する。この沈澱をエ
タノールで再結晶して融点が122℃の付加物(Et3
N−AICI3>の結晶が得られた。なお、この結晶は
122℃で溶融と同時に分解した。
(1st step) Dissolve 1 mol of aluminum chloride in 300 ml of carbon tetrachloride, cool to -70°C, and add 1 mol of triethylamine dropwise with stirring to precipitate an adduct of aluminum chloride and triethylamine. After the addition is complete, stir thoroughly and filter out the precipitate that forms. This precipitate is recrystallized from ethanol to obtain an adduct (Et3) with a melting point of 122°C.
Crystals of N-AICI3> were obtained. Note that this crystal was simultaneously melted and decomposed at 122°C.

(第2工程)1モルの上記の付加物をジクロルエタンに
溶解して室温で滑拌しながら1モルのヘキサメチノレジ
シラザラン([MeaSil2N口)を滴下し、滴下終
了後3時間還流すると付加物とへキサメチルジシラザラ
ンとが置換反応してトリエチルアミンの塩酸塩が析出し
てくる。塩酸塩を濾別しジクロルエタンを溜去すると、
縮合物が得られる。この縮合物はCI2AIN(SiM
eg)2の構造を有し、融点は122℃であった。しか
しこの縮合物はこの温度で同時に分解した。またこの縮
合物の構造は元素分析、口−NMR,1Rスペクトルで
確認した。
(Second step) 1 mol of the above adduct is dissolved in dichloroethane, 1 mol of hexamethinoresisilazalane ([MeaSil2N port) is added dropwise with stirring at room temperature, and refluxed for 3 hours after the completion of the dropwise addition. The adduct and hexamethyldisilazalane undergo a substitution reaction to precipitate triethylamine hydrochloride. When the hydrochloride is filtered off and dichloroethane is distilled off,
A condensate is obtained. This condensate is CI2AIN (SiM
It had a structure of eg)2 and a melting point of 122°C. However, this condensate simultaneously decomposed at this temperature. The structure of this condensate was confirmed by elemental analysis, NMR, and 1R spectrum.

(第3工程〉得られた上記の縮合物を窒素気流下で15
0℃に加熱すると下式に示す環状三量体が得られた。こ
の三母体が下式を有することは口−NMR,1Rスペク
トルで確認した。
(Third step) The obtained above condensate was heated under a nitrogen stream for 15
When heated to 0°C, a cyclic trimer shown in the following formula was obtained. It was confirmed by NMR and 1R spectrum that this trimester has the following formula.

以下余白 SiMe3 (第4工程〉上記の環状三量体をテトラヒド口フランに
溶解してアンモニアガスを吹込み反応させると塩素がア
ミンで置換された次式で示す環状アミノ三担体が得られ
た。この環状アミノ三量体は下式の構造を有することを
日一NMR,1Rスペクトルで確認した。
The following margin is SiMe3 (4th step) The above cyclic trimer was dissolved in tetrahydrofuran and ammonia gas was blown into the solution to cause a reaction, thereby obtaining a cyclic amino trimer having the following formula in which chlorine was replaced with amine. It was confirmed by daily NMR and 1R spectra that this cyclic amino trimer had the structure of the following formula.

N日2 1 (重合工程〉第3工程で得た環状三量体と第4工程で得
た環状アミノ三量体を等モル量混合し、1OO℃以上に
加熱すると脱塩化水素反応による縮重合反応により下式
に示すポリシクロアラザンの重合体が生或した。
N days 2 1 (Polymerization step) When the cyclic trimer obtained in the 3rd step and the cyclic amino trimer obtained in the 4th step are mixed in equimolar amounts and heated to 100°C or higher, condensation polymerization occurs due to dehydrochlorination reaction. The reaction produced a polycycloalazane polymer shown in the following formula.

このポリシクロアラザンは、重合度nをGPC法で確認
した。このポリシクロアラザンは、主として直鎖状に延
びほとんど三次元化していないため、通常の熱可塑性樹
脂と同様に戊形が可能である。また焼結により珪素や炭
化水素が除かれ窒化アルミニウムの焼結体が低温で形成
できる。
The degree of polymerization n of this polycycloalazane was confirmed by GPC method. Since this polycycloalazane mainly extends in a linear chain and is hardly three-dimensional, it can be shaped like a normal thermoplastic resin. Moreover, silicon and hydrocarbons are removed by sintering, and a sintered body of aluminum nitride can be formed at a low temperature.

得られたポリシクロアラザンは150〜200℃の温度
で溶融紡糸すると繊維状に形成できた。
The obtained polycycloalazane could be formed into a fiber by melt spinning at a temperature of 150 to 200°C.

〈焼成工程〉この繊維は400〜800℃の温度で窒素
ガスまたはアンモニアガス中で焼結すると窒化アルミニ
ウム繊維か生成できた。また同様にしてフイルム状また
はシート状に成形することができ、その戊形体を焼成す
ることにより窒化アルミニウムのセラミックスシ一ト状
物が容易に得られた。
<Sintering process> When this fiber was sintered in nitrogen gas or ammonia gas at a temperature of 400 to 800°C, aluminum nitride fibers could be produced. In addition, it could be formed into a film or sheet in the same manner, and a ceramic sheet of aluminum nitride could be easily obtained by firing the hollow body.

[効果] 本発明においては、トリアルキルアミンとトリハロゲン
化アルミニウムを原料とし容易に得られるシクロアラザ
ンは、熱可塑性で低い温度で或形可能なポリシクロアラ
ザンの重合体を形成する。
[Effect] In the present invention, cycloalazane, which is easily obtained using trialkylamine and aluminum trihalide as raw materials, forms a polycycloalazane polymer that is thermoplastic and can be shaped at low temperatures.

この重合体は焼成によりセラミックスの窒化アルミニウ
ムの焼成体を形成できる。
This polymer can be fired to form a ceramic aluminum nitride fired body.

したがってこのシクロアラザン類は窒化アルミニウム焼
結体の前駆物質として容易に作製でき、有用である。ま
たこの重合体は、熱可塑性重合体′として或形が容易で
繊維、フイルム、シート状に成形可能な重合度を有しそ
の形状を保持して焼成体を形戊できる。また重合体の一
部が三次元化したとしても重合体の幹がアルミニウムと
窒素との結合で形成ざれているので、低い温度での焼成
により高純度の窒化アルミニウムが生或できる。
Therefore, these cycloalazane compounds can be easily produced and are useful as precursors for aluminum nitride sintered bodies. In addition, this polymer has a degree of polymerization that allows it to be easily shaped into a fiber, film, or sheet as a thermoplastic polymer, and can be formed into a fired product while maintaining its shape. Further, even if a part of the polymer becomes three-dimensional, since the polymer backbone is formed by a combination of aluminum and nitrogen, highly pure aluminum nitride can be produced by firing at a low temperature.

この重合体の成形物は、1000℃以下の低い温度の焼
成により高純度の窒化アルミニウムの焼成体が生戒でき
る。
A molded product of this polymer can be fired at a low temperature of 1000° C. or lower to produce a fired product of high purity aluminum nitride.

ざらにこの窒化アルミニウムの製造方法は、安価な材料
で簡単な反応工程で容易に製造することができる。
This method for producing aluminum nitride can be easily produced using inexpensive materials and simple reaction steps.

Claims (4)

【特許請求の範囲】[Claims] (1)トリアルキルアミンとトリハロゲン化アルミニウ
ムとを反応させて付加物を形成する第1工程と、該付加
物とジシラザン系化合物またはチタン系窒素化合物を反
応させて縮合物を形成する第2工程と、該縮合物を加熱
して環状三量体を形成する第3工程と、該環状三量体を
アミン系化合物と反応させてハロゲンをアミンで置換し
て環状アミノ三量体を形成する第4工程と、該環状三量
体と該環状アミノ三量体とを混合して加熱するか、該環
状アミノ三量体を加熱するか、該環状三量体を加熱して
ポリシクロアラザンを形成する重合工程と、該ポリシク
ロアラザンを焼成して窒化アルミニウムとする焼成工程
と、からなることを特徴とする窒化アルミニウムの製造
方法。
(1) A first step of reacting a trialkylamine and aluminum trihalide to form an adduct, and a second step of reacting the adduct with a disilazane compound or a titanium nitrogen compound to form a condensate. a third step of heating the condensate to form a cyclic trimer; and a third step of reacting the cyclic trimer with an amine compound to replace the halogen with an amine to form a cyclic amino trimer. 4 steps, mixing and heating the cyclic trimer and the cyclic amino trimer, heating the cyclic amino trimer, or heating the cyclic trimer to form polycycloalazane. 1. A method for producing aluminum nitride, comprising: a polymerization step, and a firing step, in which the polycycloalazane is fired to form aluminum nitride.
(2)次の一般式で表されるシクロアラザン(ただしR
^1R^2は水素、または炭素数8以下のアルキル基を
表す、Yは3個の置換基を代表して表し、それぞれが炭
素数8以下のアルキル基またはフェニル基であって、置
換基は同一であっても異なつていてもよい、MはSi、
Ti、Sn、Geなどの4価の金属元素を表す)。 ▲数式、化学式、表等があります▼
(2) Cycloalazane (where R
^1R^2 represents hydrogen or an alkyl group having 8 or less carbon atoms, Y represents 3 substituents, each of which is an alkyl group or phenyl group having 8 or less carbon atoms, and the substituents are May be the same or different, M is Si,
(Represents a tetravalent metal element such as Ti, Sn, Ge, etc.) ▲Contains mathematical formulas, chemical formulas, tables, etc.▼
(3)次の一般式で表されるシクロアラザン(ただしY
は3個の置換基を代表して表し、それぞれが炭素数8以
下のアルキル基またはフェニル基であって、置換基は同
一であっても異なつていてもよい、MはSi、Ti、S
n、Geなどの4価の金属元素を表す)。 ▲数式、化学式、表等があります▼
(3) Cycloalazane (where Y
represents three substituents, each of which is an alkyl group or phenyl group having 8 or less carbon atoms, and the substituents may be the same or different; M is Si, Ti, S
represents a tetravalent metal element such as n, Ge, etc.). ▲Contains mathematical formulas, chemical formulas, tables, etc.▼
(4)ポリシクロアラザンは、次の一般式で表される(
ただしnは重合度を表す。R^1R^2は水素、または
炭素数8以下のアルキル基をR^3はR^1またはR^
2のいずれか一方を表す、Yは3個の置換基を代表して
表し、それぞれが炭素数8以下のアルキル基またはフエ
ニル基であって、置換基は同一であつても異なつていて
もよい。MはSi、Ti、Sn、Geなどの4価の金属
元 ▲数式、化学式、表等があります▼ 素を表す)。 (4)重合体の幹が次の一般式で表される重合体。
(4) Polycycloalazane is represented by the following general formula (
However, n represents the degree of polymerization. R^1R^2 is hydrogen or an alkyl group having 8 or less carbon atoms R^3 is R^1 or R^
2, Y represents three substituents, each of which is an alkyl group or phenyl group having 8 or less carbon atoms, and the substituents may be the same or different. good. M is a tetravalent metal element such as Si, Ti, Sn, Ge, etc. ▲ Numerical formula, chemical formula, table, etc. ▼ Represents element). (4) A polymer whose polymer backbone is represented by the following general formula.
JP1227818A 1989-09-02 1989-09-02 Production of aluminum nitride and cycloalazane and its polymer to be used therefor Pending JPH0393669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1227818A JPH0393669A (en) 1989-09-02 1989-09-02 Production of aluminum nitride and cycloalazane and its polymer to be used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1227818A JPH0393669A (en) 1989-09-02 1989-09-02 Production of aluminum nitride and cycloalazane and its polymer to be used therefor

Publications (1)

Publication Number Publication Date
JPH0393669A true JPH0393669A (en) 1991-04-18

Family

ID=16866857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1227818A Pending JPH0393669A (en) 1989-09-02 1989-09-02 Production of aluminum nitride and cycloalazane and its polymer to be used therefor

Country Status (1)

Country Link
JP (1) JPH0393669A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601407A1 (en) * 1992-12-08 1994-06-15 Bayer Ag Silicon-aluminium nitride ceramics, their precursors, their preparation, and their application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601407A1 (en) * 1992-12-08 1994-06-15 Bayer Ag Silicon-aluminium nitride ceramics, their precursors, their preparation, and their application

Similar Documents

Publication Publication Date Title
US5087593A (en) Preparation of titanium nitride from organometallic precursors
JPH0463833A (en) Modified polysilazane and preparation thereof
JPS6381122A (en) Production of novel polytitanosilazane
KR100909215B1 (en) Method of preparing polysilazane compound and polysilazane solution with reducing ammonia substitution of si-h bond
JPH01129033A (en) Polymer based on boron and nitrogen especially usable in production of ceramic product and article based on boron nitride and production thereof
JP2011516676A (en) Method for salt-free polymerization of silicon-boron-carbon-nitrogen ceramic and precursor compound, RnHal3-nSi-X-BRmHal2-m
JP5150032B2 (en) High temperature stable silicon boron carbide nitride ceramics comprising silylalkylborazines, their preparation and their use
EP0342673B1 (en) Process for producing a shaped boron nitride product
JP5215521B2 (en) Method for producing compound having structural feature Si-N-B
JPH0393669A (en) Production of aluminum nitride and cycloalazane and its polymer to be used therefor
JPH01111775A (en) Novel composition based on boron nitride
JPH01129034A (en) Polymer based on boron and nitrogen, its production and use thereof in ceramic product based on boron nitride and production thereof
US5350719A (en) Preparation of titanium nitride-containing refractory material composites
JPH01153730A (en) Organic silazane polymer and production of ceramic using said polymer
US6242626B1 (en) Boron-containing carbosilanes, boron-containing oligo or polycarbosilazanes and silicon borocarbonitride ceramics
JPH02155931A (en) Polymer based on boron and nitrogen, preparation thereof, and use thereof as boron nitride precursor
US4946809A (en) Precursor for A1NBN ceramic and method of use
JPH06279587A (en) Silicon nitride-aluminum ceramic and its precursor, their production, and their use
JPH02212361A (en) Polysilazane ceramic precursor composition and ceramic obtained by thermal decomposition thereof
JPS62108719A (en) Preparation of silicon nitride
Fan et al. Transamination Reactivity of Ti (NMe 2) 4 and Zr (NMe 2) 4 with 1, 3, 4, 5, 6-Pentamethyl-2-aminoborazine and Aryl Amines. Model Chemistry for the Formation of Metalloborazine Preceramic Polymers and MN/BN (M= Ti, Zr) Ceramic Composites
JPS59207812A (en) Production of silicon nitride
KR101306812B1 (en) Novel tungsten silylamide compounds, preparation method thereof and process for the formation of thin films using the same
JPH0711001A (en) Boron-containing organosilazane polymer and its production
JPH0649767B2 (en) Organometallic ceramic precursors based on boron, nitrogen and silicon