JPS62108719A - Preparation of silicon nitride - Google Patents

Preparation of silicon nitride

Info

Publication number
JPS62108719A
JPS62108719A JP60251590A JP25159085A JPS62108719A JP S62108719 A JPS62108719 A JP S62108719A JP 60251590 A JP60251590 A JP 60251590A JP 25159085 A JP25159085 A JP 25159085A JP S62108719 A JPS62108719 A JP S62108719A
Authority
JP
Japan
Prior art keywords
silicon nitride
dichlorosilane
polymer
heat treatment
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60251590A
Other languages
Japanese (ja)
Inventor
Kyoji Saeki
佐伯 恭二
Masanori Hirano
正典 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP60251590A priority Critical patent/JPS62108719A/en
Publication of JPS62108719A publication Critical patent/JPS62108719A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Silicon Polymers (AREA)

Abstract

PURPOSE:To obtain silicon nitride having high sinterability by heat-treating org. silazane polymer having Si, N, and C as skeletal components as precursor for silicon nitride. CONSTITUTION:Monosubstituted dichlorosilane expressed by the formula I (R is alkyl, aryl) is mixed with disubstituted dichlorosilane expressed by the formula II. Then, the mixture is allowed to react with alkylenediamine expressed by the formula III to obtain org. silazne polymer contg. Sin, N, and C as skeletal components. Further, the org. silazne polymer is decomposed by heat-treating in nonoxidizing atmosphere as precursor of silicon nitride to obtain aimed silicon nitride. The substituents of the above-described dichlorosilane may be CH3 or C6H5. Further, the proportion of disubstituted dichlorosilane to monosubstituted dichlorosilane may be 90mol%.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ジクロロシラン化合物とアルキレンジアミン
化合物の反応で得られた有機シラザン高分子体を窒化ケ
イ素の前駆体として、これと熱処理分解する窒化ケイ素
の製造方法に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention uses an organic silazane polymer obtained by the reaction of a dichlorosilane compound and an alkylene diamine compound as a precursor of silicon nitride, and performs nitridation by heat treatment and decomposition with the precursor of silicon nitride. This invention relates to a method for producing silicon.

[従来の技i(1] 窒化クイ素または窒fヒケイ素の焼v3体は、周知の通
り、(;を末の窯業製品に比べて、■機械的強度及び硬
度か非常に大きく、高温強度ら大きい、■熱衝撃に強く
耐火度も大きい、■熱伝導度が比較的大きい、■熱!a
j張率が非常に小さい、■化学的に安定で耐食性が大き
い、■電気絶縁性が大きい、などの性質を具備している
。このため、その用途は広く、金属精錬、窯業、機械工
業用などの高級耐火物、耐火材料、対掌粍材料、電気絶
縁材料などに使用されている。近年、特に極めて広範囲
の温度域に亙って高強度、耐熱性機械的衝撃性が要求さ
れるガスタービンのような高温材料への用途が注目され
ている。
[Conventional technique (1)] As is well known, the sintered body of silicon nitride or silicon nitride has extremely high mechanical strength and hardness, and high temperature strength compared to ceramic products with ■High thermal shock resistance and high fire resistance ■Relatively high thermal conductivity ■Heat!a
It has properties such as extremely low elongation, chemical stability and high corrosion resistance, and high electrical insulation. For this reason, it has a wide range of applications, and is used in high-grade refractories, fireproof materials, ceramic materials, electrical insulation materials, etc. for metal smelting, ceramics, and machinery industries. In recent years, attention has been paid to applications in high-temperature materials such as gas turbines, which require high strength, heat resistance, and mechanical impact resistance over an extremely wide temperature range.

一般に、窒化ケイ素焼結体を高温高応力材料として実用
に供する場合には、高温時におけるこれらの材料の物理
的、化学的安定性が厳しく要求される。このような性質
、特に熱的、機械的特性は、焼結体製造の原料として用
いる窒化ケイ素の純度、結晶型、粒子径、粒子形状、さ
らに窒化ゲイ素を得る際の出発原[)の種類にまで大き
く影響される。
Generally, when silicon nitride sintered bodies are used as high-temperature, high-stress materials, physical and chemical stability of these materials at high temperatures is strictly required. These properties, especially thermal and mechanical properties, depend on the purity, crystal type, particle size, and particle shape of the silicon nitride used as the raw material for producing the sintered body, as well as the type of starting material used to obtain the silicon nitride. is greatly affected.

これまで窒化ケイ素粉末の製造方法としては1)シリカ
粉末を還元して活性なシリコン含有蒸気を生成し、これ
と窒素とを反応せしめるいわゆるシリカ還元法 ii)金属珪素粉末を成形後、窒素またはアンモニア気
流下で加熱しつつ窒素ガス圧を制御して1500℃以下
の温度で珪素粉末を直接窒化する方法 iii )ハロゲン化珪素とアンモニアとの高温気相反
応で得る方法。
Until now, the methods for producing silicon nitride powder have been 1) the so-called silica reduction method in which silica powder is reduced to generate active silicon-containing vapor, and this is reacted with nitrogen; ii) after molding metal silicon powder, nitrogen or ammonia A method in which silicon powder is directly nitrided at a temperature of 1500° C. or lower by heating under an air flow and controlling the nitrogen gas pressure. iii) A method in which silicon powder is obtained by a high-temperature gas phase reaction between silicon halide and ammonia.

iv )シリコンイミドの熱分解による方法。iv) Method by thermal decomposition of silicon imide.

が知られている。It has been known.

また、有機高分子体からの窒化ケイ素の粉末の製造方法
としては、アルキルジクロロシランとアルキレンジアミ
ンとの反応により、長鎖高分子構造を有する有機シラザ
ン高分子体を合成することは知られているが、これら有
機シラザン高分子体を窒化ケイ素の前駆体として、窒化
ケイ素を得る方法は未だ試みられていない。
Furthermore, as a method for producing silicon nitride powder from an organic polymer, it is known that an organic silazane polymer having a long chain polymer structure is synthesized by reacting an alkyldichlorosilane with an alkylene diamine. However, a method for obtaining silicon nitride using these organosilazane polymers as a silicon nitride precursor has not yet been attempted.

[発明が解決しようとする問題点] 窒化ケイ素粉末の製造方法として、上記1)のシリカ還
元法は、原料として充分精製されたシリカ粉末及び黒鉛
粉末を用いる必要があるばかりでなく、得られる生成物
はα型窒化ケイ素、β型窒化ケイ素、酸窒化ケイ素及び
炭化珪素などの混合系であり、そのうえ生成物は多量の
酸素を含有している。
[Problems to be Solved by the Invention] As a method for producing silicon nitride powder, the silica reduction method described in 1) above not only requires the use of sufficiently purified silica powder and graphite powder as raw materials, but also The product is a mixed system of α-type silicon nitride, β-type silicon nitride, silicon oxynitride, and silicon carbide, and the product also contains a large amount of oxygen.

11)の直接窒化法にて得られる窒化ケイ素は、β型窒
化ケイ素を多く含み、またramな粉末を得るのには長
時間の粉砕を必要とし、従って粉砕過程での不純物の混
入が避けられず、高密度、高強度の窒化ケイ素焼結体の
製造原料としては不適当である。
The silicon nitride obtained by the direct nitriding method in 11) contains a large amount of β-type silicon nitride, and requires long pulverization to obtain a ram powder, so that contamination with impurities during the pulverization process can be avoided. First, it is unsuitable as a raw material for producing high-density, high-strength silicon nitride sintered bodies.

111)の高温気相反応による方法は、比較的高純度の
α型窒化ケイ素が得られるが、窒化ケイ素の薄膜の製造
に限られ、焼結よう原料粉末製造には適さない。
Although the high-temperature gas phase reaction method described in No. 111) yields α-type silicon nitride of relatively high purity, it is limited to the production of silicon nitride thin films and is not suitable for the production of raw material powder for sintering.

iv )のシリコンイミドの熱分解法は、高純度のα型
窒化ケイ素が容易に得られるが、その粒子形状に関して
は、従来針状または柱状晶が大部分である。そのためこ
れを焼結用原料として用いた場合、非常に低い成形体密
度しか得られず、高密度焼結体が得られないという欠点
があった。
In the thermal decomposition method of silicon imide (iv), highly pure α-type silicon nitride can be easily obtained, but the particle shape thereof has conventionally been mostly acicular or columnar. Therefore, when this is used as a raw material for sintering, only a very low compact density can be obtained, and a high-density sintered compact cannot be obtained.

また、(Ceramic  Bull、、62.8.9
04 (1983)、)には、置換基を持たない無機シ
ラザンを前駆体とした窒化ケイ素の製法が示されている
が、この方法では窒化ケイ素リッチな生成物が得られる
ものの、その生成物は水に対する安定性に欠ける。さら
にこの文献には、有機シラザンの熱処理により窒化ケイ
素の得られることが示されているが、有機置換基を持つ
有機シラザンからの熱処理生成物は窒化ケイ素の他に多
量の炭化フイ素や炭素の混在がみられ、窒化ケイ素を高
収率で得た例はあまりない。
Also, (Ceramic Bull, 62.8.9
04 (1983), ) describes a method for producing silicon nitride using an inorganic silazane without substituents as a precursor, but although this method yields a silicon nitride-rich product, the product is Lacks stability in water. Furthermore, this document shows that silicon nitride can be obtained by heat treatment of organic silazane, but the heat treatment product from organic silazane with organic substituents contains a large amount of fluoride carbide and carbon in addition to silicon nitride. There are few examples of silicon nitride being obtained in high yield.

アルキルジクロロシランとアルキレンジアミンとの反応
により、有機シラザン高分子体を合成し、これを熱処理
分解することにより窒化ゲイ素を製造する方法は、一種
属のシラン1ヒ合物とアルキレンジアミンとから安定な
有機シラザンを合成するに止どまり、産業的な応用を試
みられた例はない。
The method of producing silicon nitride by synthesizing an organic silazane polymer through the reaction of an alkyldichlorosilane and an alkylene diamine and decomposing it by heat treatment is a stable method for producing silicon nitride from a type of silane compound and an alkylene diamine. This method has only been used to synthesize organic silazane, and there have been no attempts to apply it industrially.

本発明は有機シラザン高分子体から窒化ケイ素を製造す
るに当たっての、前記のごとき問題点を解決すべくなさ
れたものであって、熱軟化性を呈し、かつ有機溶剤に対
して溶解性の高い有機シラザン高分子体を窒化ケイ素前
駆体として、焼結性の優れた窒化ゲイ素の製造方法を提
供することを目的とする。
The present invention was made in order to solve the above-mentioned problems in producing silicon nitride from an organic silazane polymer. The present invention aims to provide a method for producing silicon nitride with excellent sinterability using a silazane polymer as a silicon nitride precursor.

[問題点を解決するための手段] 本発明の窒化ケイ素の製造方法は、一置換ジクロロシラ
ンと二置換ジクロロシラン(ただし置換基はアルキル基
またはアリール基)を混合し、該混合物と一般弐〇 2
 N (CH2)口N H、にて表されるアルキレンジ
アミンとを反応させて、ゲイ素と窒素と炭素を骨格成分
とする有機シラザン高分子体を得、該有機シラザン高分
子体を窒化ケイ素の前駆体として、非酸化性雰囲気下に
て熱処理分解することを要旨とする。
[Means for Solving the Problems] The method for producing silicon nitride of the present invention involves mixing a monosubstituted dichlorosilane and a disubstituted dichlorosilane (however, the substituent is an alkyl group or an aryl group), and mixing the mixture with a general 2
N (CH2) is reacted with an alkylene diamine represented by N H to obtain an organic silazane polymer having silicon, nitrogen, and carbon as skeleton components, and the organic silazane polymer is reacted with silicon nitride. The main idea is to decompose the precursor by heat treatment in a non-oxidizing atmosphere.

本発明のジクロロシランのW ttk基は、CI−1、
またはC,I−(、とすることができる。また、一置換
ジクロロシランに対する二置換ジクロロシランの混合割
合は、モル比で90%までとすることができる。さらに
、1置換ジクロロシランと二置換ジクロロシランとの混
合物と反応する一般式H、N (CHz)nN H2に
て表されるアルキレンジアミンには、nが2または3の
ものを使用することができる。
The W ttk group of the dichlorosilane of the present invention is CI-1,
or C,I-(,.In addition, the mixing ratio of disubstituted dichlorosilane to monosubstituted dichlorosilane can be up to 90% in molar ratio.Furthermore, monosubstituted dichlorosilane and disubstituted As the alkylene diamine represented by the general formula H,N (CHz)nN H2 that reacts with the mixture with dichlorosilane, those in which n is 2 or 3 can be used.

そして、窒化ケイ素前駆体としての有機シラザン高分子
体の熱処理分解温度を1100〜1900℃とすること
ができる。
The heat treatment decomposition temperature of the organic silazane polymer as the silicon nitride precursor can be set at 1100 to 1900°C.

既に述べたように、アルキルジクロロシランとアルキレ
ンジアミンとの反応により、短分子環状構造物でなく、
長鎖高分子構造を有する有機シラザン高分子体の合成は
、従来から知られているが、一種類のシラン化合物とア
ルキレンジアミンとから安定な有機シラザン高分子体を
合成するに止どまり、産業的な応用を試みられた例はな
い。そこで、本発明の発明者らはこの有機シラザン高分
子体を窒化ケイ素前駆体として窒化ケイ素を製造するこ
と試みた。
As already mentioned, the reaction between alkyldichlorosilane and alkylenediamine produces not a short molecular cyclic structure, but
Synthesis of organosilazane polymers having a long-chain polymer structure has been known for a long time, but only a stable organosilazane polymer can be synthesized from one type of silane compound and alkylene diamine, and it is not suitable for industrial use. There are no examples of such applications being attempted. Therefore, the inventors of the present invention attempted to produce silicon nitride using this organic silazane polymer as a silicon nitride precursor.

先ず、一種類のシラン化合物とアルキレン−ジアミンど
の反応によって得られる有機シラザン高分子体に就いて
、窒化ケイ素の製造を試みたところ、次のような欠点が
あることが判明した。それは、モノアルキルジクロロシ
ランとアルキレンジアミンとの反応により得られた有機
シラザン高分子体は、非酸化性雰囲気下で1500℃に
て熱処理を施すと、高収率でα型窒化ケイ素が得られる
ものの、合成された有機シラザン高分子体は熱軟化性を
呈しない固体であり、有機溶剤に対して溶解性が低いた
め、高密度の焼結体を得ることは不可能である。一方ジ
アルキルジクロロシランとアルキレンジアミンとの反応
により得られる有機シラザン高分子体は、高粘稠性流動
体であってベンゼンやヘキサンに代表される無極性溶剤
に可溶であり、成形物への含浸強化や粉末成形物製造時
のバインダー等の有機物としての用途範囲は可能である
が、非酸化性雰囲気下の熱処理によっては無機生成物を
得ることができず、窒化ケイ素前駆体とはなり得ない。
First, an attempt was made to produce silicon nitride from an organic silazane polymer obtained by the reaction of one type of silane compound with an alkylene diamine, but it was found that the following drawbacks were found. This is because the organic silazane polymer obtained by the reaction of monoalkyldichlorosilane and alkylene diamine can be heat-treated at 1500°C in a non-oxidizing atmosphere to obtain α-type silicon nitride in high yield. The synthesized organosilazane polymer is a solid that does not exhibit thermal softening properties and has low solubility in organic solvents, making it impossible to obtain a high-density sintered body. On the other hand, organic silazane polymers obtained by the reaction of dialkyldichlorosilane and alkylene diamine are highly viscous fluids that are soluble in nonpolar solvents such as benzene and hexane, and can be impregnated into molded products. Although it is possible to use it as an organic substance such as a binder for strengthening or manufacturing powder molded products, it is not possible to obtain an inorganic product by heat treatment in a non-oxidizing atmosphere, and it cannot be used as a silicon nitride precursor. .

そこで、本発明者らは、上記有機シラザン高分子体の長
所のみを生かすことを考え、鋭意研究の結果本発明を完
成するに至ったものであって、モノアルキル基とジアル
キル基を同時に有する共重合体を合成することにより、
熱軟化性を呈し、有機溶剤に可溶で、かつ窒素やアルゴ
ン等の不活性ガス下や真空下にて熱処理を施すことによ
り、窒化ケイ素を生成する樹脂状固体を得るに至った。
Therefore, the present inventors considered making use of only the advantages of the above-mentioned organosilazane polymer, and as a result of intensive research, they completed the present invention. By synthesizing polymers,
A resin-like solid that exhibits heat softening properties, is soluble in organic solvents, and produces silicon nitride by heat treatment under an inert gas such as nitrogen or argon or under vacuum has been obtained.

すなわち、本発明における有機シラザン高分子体は、基
本骨格にシリコンと窒素を有し、また側鎖に有機基を有
するので、室温においては一般有機高分子と同様の性質
を持ち、また適当な熱処理を施すことにより、窒化ケイ
素前駆体となるものである。
In other words, the organosilazane polymer in the present invention has silicon and nitrogen in its basic skeleton and organic groups in its side chains, so it has properties similar to general organic polymers at room temperature, and can be treated with appropriate heat treatment. By applying this, it becomes a silicon nitride precursor.

次に、本発明の窒化ケイ素の製造方法にってい詳しく説
明すると次の通りである。
Next, the method for producing silicon nitride of the present invention will be explained in detail as follows.

一般式R,S i(H)CI2にて表される一置換ジク
ロロシランと、一般式R2S iCLにて表される二置
換ジクロロシランとを適宜のモル比で組み合わせて混合
物とする。この混合物と一般式H2N (CH2)ll
NH2にて表される過剰のアルキレンジアミンとを反応
させるが、反応は酸素及び水分の完全に除去された窒素
またはアルゴン雰囲気下、トルエンまたはキシレン中で
、110〜150℃のもとで、脱塩化水素縮合重合であ
る3次に、この反応における副生成物であるアミン塩化
物をP別した後、この生成物のトルエンまたはキシレン
溶液にアンモニアガスを導入し、重合体末端部に残存す
る塩素基を完全にアミン化する。次いで生成物溶液と副
生成物である塩化アンモニウムを枦別し、液体アンモニ
アで生成物から塩化アンモニウムを完全に洗浄除去し、
最後に溶剤を完全に除去して有機シラザン高分子体を単
離する。
A monosubstituted dichlorosilane represented by the general formula R,S i(H)CI2 and a disubstituted dichlorosilane represented by the general formula R2S iCL are combined at an appropriate molar ratio to form a mixture. This mixture and the general formula H2N (CH2)ll
The reaction is carried out with an excess of alkylene diamine represented by NH2, and the reaction is carried out in toluene or xylene at 110 to 150°C under a nitrogen or argon atmosphere from which oxygen and moisture have been completely removed. In the third step, which is hydrogen condensation polymerization, after P is removed from the amine chloride, which is a byproduct of this reaction, ammonia gas is introduced into a toluene or xylene solution of this product to remove the chlorine groups remaining at the end of the polymer. completely aminated. Next, the product solution and the by-product ammonium chloride are separated, and ammonium chloride is completely washed away from the product with liquid ammonia.
Finally, the solvent is completely removed to isolate the organic silazane polymer.

次に上記方法で得られた有機シラザン高分子体を非酸化
性雰囲気、例えば窒素やアルゴンのような不活性ガスま
たは真空下にて熱処理を施すことによって無機化生成物
を得る。
Next, the organic silazane polymer obtained by the above method is heat-treated in a non-oxidizing atmosphere, for example, an inert gas such as nitrogen or argon, or under vacuum to obtain a mineralized product.

熱処理は、5〜b 00〜1900℃の温度で熱処理分解することが好まし
い。熱処理温度が1100℃以下では、熱分解減耗率が
大きく、1100℃以上において熱分解減耗率が一定と
なるからである。熱処理生成物は、熱処理温度1500
℃以下ではX線回折ピークにて無定形を呈し、熱処理温
度が1500〜1600℃においては90%以上のα型
窒化ケイ素と少量のβ型窒化ケイ素の存在が確認される
The heat treatment is preferably carried out at a temperature of 5 to 00 to 1900°C. This is because when the heat treatment temperature is 1100°C or lower, the thermal decomposition rate is large, and at 1100°C or higher, the thermal decomposition rate is constant. The heat treatment product has a heat treatment temperature of 1500
C. or lower, the X-ray diffraction peak shows an amorphous shape, and at a heat treatment temperature of 1500 to 1600.degree. C., the presence of 90% or more of alpha-type silicon nitride and a small amount of beta-type silicon nitride is confirmed.

さらに高温下で熱処理を施すことによりβ型窒化ケイ素
の比率が大きくなり、1700℃以上にて熱処理したも
のはβ型窒化ケイ素のみの生成が確認され、どんな場合
でも炭素及び炭化ケイ素の存在を示すX線回折のピーク
が見出だされない。しかし、熱処理温度が1900℃を
越えると、生成した窒化ゲイ素が昇華し、窒化ケイ素の
消耗が激しくなるので、熱処理温度の上限を1900℃
とした。
Furthermore, heat treatment at high temperatures increases the ratio of β-type silicon nitride, and when heat treated at 1700°C or higher, only β-type silicon nitride is confirmed to be produced, indicating the presence of carbon and silicon carbide in any case. No X-ray diffraction peak was found. However, if the heat treatment temperature exceeds 1900°C, the generated silicon nitride will sublimate and the silicon nitride will be rapidly consumed, so the upper limit of the heat treatment temperature should be set at 1900°C.
And so.

本発明においては、一置換ジクロロシランと二置換ジク
ロロシランの適宜モル比の組み合わせにより、得られる
有機シラザン共重合体の性質を、−m有機高分子的性質
と無機化生成窒化ケイ素量を適宜選択することができる
特徴を引き出すことができる。すなわち、−i fAジ
クロロシランの多い領域から得られる有機シラザン高分
子体は、窒化ケイ素粉末の高収率前駆体としての特徴を
有し、また一置換ジクロロシランと二置換ジクロロシラ
ンの混合組成が当モル近傍では、上記窒化ケイ素前駆体
としての性質に加え、一般有機高分子と同様に溶剤可溶
かつ熱軟化性を呈する樹脂状固体が得られるという特徴
を有している。
In the present invention, the properties of the resulting organosilazane copolymer are appropriately selected by combining the molar ratio of monosubstituted dichlorosilane and disubstituted dichlorosilane, and -m organic polymer properties and the amount of silicon nitride produced by mineralization. It is possible to bring out the characteristics that are possible. In other words, the organic silazane polymer obtained from the -ifA dichlorosilane-rich region has characteristics as a high-yield precursor of silicon nitride powder, and the mixed composition of monosubstituted dichlorosilane and disubstituted dichlorosilane is In the vicinity of this molar range, in addition to the above-mentioned properties as a silicon nitride precursor, it has the characteristic of obtaining a resinous solid that is soluble in solvents and exhibits heat softening properties like general organic polymers.

本発明においては、一置換ジクロロシランに対して、モ
ル比で90%までの二置換ジクロロシランを混きするこ
とができる。二置換ジクロロシランの混合モル比が90
%以上になると、熱分解生成物である窒化ケイ素の収率
が悪くなり、本発明の目的を達成することができない。
In the present invention, disubstituted dichlorosilane can be mixed in a molar ratio of up to 90% with respect to monosubstituted dichlorosilane. The mixing molar ratio of disubstituted dichlorosilane is 90
% or more, the yield of silicon nitride, which is a thermal decomposition product, becomes poor and the object of the present invention cannot be achieved.

[実施例] 本発明の実施例について、以下に説明し、本発明の効果
を明らかにする。
[Example] Examples of the present invention will be described below to clarify the effects of the present invention.

モノメチルジクロロシランとジメチルジクロロシランを
種々のモル比で混合し、各々の混合物にエチレンジアミ
ンを反応させて、有機シラザン高分子体を合成した。得
られた有機シラザン高分子体の性状及びキシレンに完全
溶解する温度を測定した。また、得られた有機シラザン
高分子体を窒素雰囲気下1400℃にて1時間熱処理を
施した後、生成された窒化ゲイ素置を測定した。有機シ
ラザン高分子体の性状、キシレンに完全溶解する温度及
び熱処理分解窒化ゲイ素置を第1表に示す。
Monomethyldichlorosilane and dimethyldichlorosilane were mixed at various molar ratios, and each mixture was reacted with ethylenediamine to synthesize an organic silazane polymer. The properties of the obtained organosilazane polymer and the temperature at which it completely dissolves in xylene were measured. Further, the obtained organic silazane polymer was heat-treated at 1400° C. for 1 hour in a nitrogen atmosphere, and then the formed silicon nitride was measured. Table 1 shows the properties of the organic silazane polymer, the temperature at which it completely dissolves in xylene, and the heat treatment and decomposition nitriding device.

第1表において、モノメチルジクロロシランを全く含ま
ないジメチルジクロロシランのみの比較例である試料N
o、1は、得られた有機シラザン高分子体は粘着性を有
する流動体で、室温においてキシレンに完全溶解するが
、熱処理によっては僅かに0.8%しか窒化ケイ素を生
成しない、試料No、2は、モノメチルジクロロシラン
とジメチルジクロロシランとのモル比が10/90のも
のであるが、合成された高分子体は粘着性を有する流動
体で、室温においてキシレンに完全溶解し、熱処理によ
ってかなりの量の窒化ゲイ素を生成する。
In Table 1, sample N is a comparative example containing only dimethyldichlorosilane and does not contain any monomethyldichlorosilane.
o, 1, the obtained organosilazane polymer is a sticky fluid and completely dissolves in xylene at room temperature, but only 0.8% of silicon nitride is produced depending on heat treatment. Sample No. No. 2 has a molar ratio of monomethyldichlorosilane and dimethyldichlorosilane of 10/90, but the synthesized polymer is a sticky fluid that completely dissolves in xylene at room temperature, and is considerably dissolved by heat treatment. of silicon nitride.

しかし、その量は4.8%であって、モノメチルジクロ
ロシランの配合量がこれ以下では、本発明の目的が達成
出来ないことが分かる。
However, the amount is 4.8%, and it can be seen that the object of the present invention cannot be achieved if the amount of monomethyldichlorosilane is less than this.

モノメチルジクロロシランの配合率を順次増やした試料
No、3〜5では、得られた有機シラザン高分子体は、
熱軟化性固体となるが、室温においてキシレンに完全溶
解し、熱分解生成窒化ケイ素の量も漸次増加し50%近
くになる。モノメチルジクロロシランとジメチルジクロ
ロシランのモル比が75/25である試料NO66では
、生成物は熱軟化性固体で完全溶解する温度はやや上が
るもののキシレンに可溶であって、窒化ケイ素生成量も
50%を越える。しかし、ジメチルジクロロシランを全
く含まない比較例である試料No、7では、得られる有
機シラザン高分子体は、熱軟化性を有しない固体となり
、キシレンに不溶となる。
In samples Nos. 3 to 5 in which the blending ratio of monomethyldichlorosilane was sequentially increased, the obtained organic silazane polymers were as follows:
Although it becomes a heat-softening solid, it completely dissolves in xylene at room temperature, and the amount of silicon nitride produced by thermal decomposition gradually increases to nearly 50%. In sample No. 66, in which the molar ratio of monomethyldichlorosilane and dimethyldichlorosilane is 75/25, the product is a heat-softening solid and is soluble in xylene, although the temperature at which it completely dissolves rises slightly, and the amount of silicon nitride produced is 50%. exceeds %. However, in sample No. 7, which is a comparative example containing no dimethyldichlorosilane, the obtained organic silazane polymer becomes a solid that does not have heat softening properties and is insoluble in xylene.

なお、本実施例においては、ジクロロシランのEta基
が、メチル基であるものについて示したが、置換基がフ
ェニル基のものについても、同様の結果がえられること
が確認された。また、混合物と反応するアルキレンジア
ミンとして、エチレンジアミンを使用したが、プロピレ
ンジアミンを使用しても、全く同様の結果を示すことが
確認された。
In this example, the Eta group of the dichlorosilane is a methyl group, but it was confirmed that similar results can be obtained when the substituent is a phenyl group. Further, although ethylenediamine was used as the alkylenediamine to react with the mixture, it was confirmed that even if propylenediamine was used, exactly the same results would be obtained.

[発明の効果] 本発明は以上説明したように、アルキレンジアミンとの
反応により合成される有機シラザン高分子体が、熱処理
分解て熱軟化性を呈しない固体であり、有機溶剤に対し
て溶解性はないが窒化ケイ素を生成する一置換ジクロロ
シランと、アルキレンジアミンとの反応により合成され
る有機シラザン高分子体が、有機溶剤に可溶な熱軟化性
固体ではあるが、熱処理分解では窒化ケイ素を生成しな
い二置換ジクロロシランとを、適宜混合してアルキレン
ジアミンとの反応により、基本骨格にシリコンと窒素及
び炭素を有し、側鎖にモノアルキル基とジアルキル基を
同時に有する共重合体を合成するものである。従って、
本発明の窒化ゲイ素製造方法によるときは、熱軟化性を
呈し、かつ有機溶剤に可溶性を有する有機シラザン高分
子体を得ることができ、この有機シラザン高分子体を窒
化ケイ素前駆体として、非酸化性雰囲気下で熱処理分解
を施すことにより、高純度の窒化ケイ素を得ることがで
きる0本発明方法によるときは、−1ll換ジクロロシ
ランと二置換ジクロロシランとの適宜のモル比の組み合
わせにより、得られる有機シラザン高分子体の性質は、
一般有機高分子的性質と無機化生成窒化ゲイ素置を適宜
に選択することができる。また、本発明方法によって合
成される有機シラザン高分子体は、窒化ケイ素粉末製造
の際の窒化ケイ素前駆体としてのみならず、窒化ケイ素
焼結体製造の際の有機バインダーあるいは焼結助剤とし
ても有用なものである。
[Effects of the Invention] As explained above, the present invention is such that the organic silazane polymer synthesized by reaction with alkylene diamine is a solid that does not exhibit thermal softening property when decomposed by heat treatment, and is soluble in organic solvents. Organic silazane polymers synthesized by the reaction of monosubstituted dichlorosilane, which produces silicon nitride, and alkylene diamine are heat-softening solids that are soluble in organic solvents; A copolymer having silicon, nitrogen, and carbon in the basic skeleton and simultaneously having a monoalkyl group and a dialkyl group in the side chain is synthesized by appropriately mixing the unformed disubstituted dichlorosilane and reacting with alkylene diamine. It is something. Therefore,
When using the method for producing silicon nitride of the present invention, it is possible to obtain an organic silazane polymer exhibiting heat softening properties and being soluble in organic solvents, and using this organic silazane polymer as a silicon nitride precursor, a non-silicon nitride precursor can be obtained. High purity silicon nitride can be obtained by heat treatment and decomposition in an oxidizing atmosphere. When using the method of the present invention, by combining -1ll-substituted dichlorosilane and disubstituted dichlorosilane in an appropriate molar ratio, The properties of the organic silazane polymer obtained are as follows:
The general organic polymer properties and the inorganic nitride composition can be selected as appropriate. Furthermore, the organosilazane polymer synthesized by the method of the present invention can be used not only as a silicon nitride precursor in the production of silicon nitride powder, but also as an organic binder or sintering aid in the production of silicon nitride sintered bodies. It is useful.

Claims (5)

【特許請求の範囲】[Claims] (1)一般式 ▲数式、化学式、表等があります▼ にて表される一置換ジクロロシラン(式中、Rはアルキ
ル基またはアリール基を表す。)と 一般式 ▲数式、化学式、表等があります▼ にて表される二置換ジクロロシラン(式中、Rはアルキ
ル基またはアリール基を表す。)とを混合し、該混合物
と一般式H_2N(CH_2)_nNH_2にて表され
るアルキレンジアミンとを反応させて、ケイ素と窒素と
炭素を骨格成分とする有機シラザン高分子体を得、該有
機シラザン高分子体を窒化ケイ素の前駆体として、非酸
化性雰囲気下にて熱処理分解することを特徴とする窒化
ケイ素の製造方法。
(1) Monosubstituted dichlorosilane represented by the general formula ▲ Numerical formulas, chemical formulas, tables, etc. (in the formula, R represents an alkyl group or aryl group) and the general formula ▲ Numerical formulas, chemical formulas, tables, etc. There is a disubstituted dichlorosilane represented by The method is characterized by reacting to obtain an organosilazane polymer having silicon, nitrogen, and carbon as skeleton components, and decomposing the organosilazane polymer by heat treatment in a non-oxidizing atmosphere as a precursor of silicon nitride. A method for producing silicon nitride.
(2)置換基のRがCH_3またはC_6H_5である
特許請求の範囲第1項記載の窒化ケイ素の製造方法。
(2) The method for producing silicon nitride according to claim 1, wherein R of the substituent is CH_3 or C_6H_5.
(3)一置換ジクロロシランに対する二置換ジクロロシ
ランの混合モル比が90%以下である特許請求の範囲第
1項または第2項記載の窒化ケイ素の製造方法。
(3) The method for producing silicon nitride according to claim 1 or 2, wherein the mixing molar ratio of disubstituted dichlorosilane to monosubstituted dichlorosilane is 90% or less.
(4)一般式H_2N(CH_2)_nNH_2にて表
されるアルキレンジアミンのnが2または3である特許
請求の範囲第1項、第2項または第3項記載の窒化ケイ
素の製造方法。
(4) The method for producing silicon nitride according to claim 1, 2 or 3, wherein n of the alkylene diamine represented by the general formula H_2N(CH_2)_nNH_2 is 2 or 3.
(5)熱処理分解温度が1100〜1900℃である特
許請求の範囲第1項、第2項、第3項または第4項記載
の窒化ケイ素の製造方法。
(5) The method for producing silicon nitride according to claim 1, 2, 3, or 4, wherein the heat treatment decomposition temperature is 1100 to 1900°C.
JP60251590A 1985-11-08 1985-11-08 Preparation of silicon nitride Pending JPS62108719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60251590A JPS62108719A (en) 1985-11-08 1985-11-08 Preparation of silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60251590A JPS62108719A (en) 1985-11-08 1985-11-08 Preparation of silicon nitride

Publications (1)

Publication Number Publication Date
JPS62108719A true JPS62108719A (en) 1987-05-20

Family

ID=17225076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60251590A Pending JPS62108719A (en) 1985-11-08 1985-11-08 Preparation of silicon nitride

Country Status (1)

Country Link
JP (1) JPS62108719A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160871A (en) * 1987-11-07 1989-06-23 Hoechst Ag Polysilazane, method for its manufacture ceramic material containing silicon nitride which can be manufactured from said polysilazane and method for its manufacture
JPH01203432A (en) * 1987-12-23 1989-08-16 Hoechst Ag Polymer hydride thiosilazanes, production thereof, silicon nitride-cowtaining ceramic meterial capable of being produced therefrom and production thereof
JPH01203431A (en) * 1987-12-23 1989-08-16 Hoechst Ag Polymer hydride silazanes, production thereof, silicon nitride-containing ceramic material capable of being produced therefrom and production thereof
JPH04115699U (en) * 1991-03-29 1992-10-14 大日本印刷株式会社 Transfer foil for polystyrene molded products
US6242045B1 (en) 1991-12-13 2001-06-05 Visteon Global Technologies, Inc. Process of preparing metal nitride films using a metal halide and an amine
US10544506B2 (en) * 2015-03-30 2020-01-28 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of forming a silicon nitride film using Si—N containing precursors

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160871A (en) * 1987-11-07 1989-06-23 Hoechst Ag Polysilazane, method for its manufacture ceramic material containing silicon nitride which can be manufactured from said polysilazane and method for its manufacture
JPH01203432A (en) * 1987-12-23 1989-08-16 Hoechst Ag Polymer hydride thiosilazanes, production thereof, silicon nitride-cowtaining ceramic meterial capable of being produced therefrom and production thereof
JPH01203431A (en) * 1987-12-23 1989-08-16 Hoechst Ag Polymer hydride silazanes, production thereof, silicon nitride-containing ceramic material capable of being produced therefrom and production thereof
JPH04115699U (en) * 1991-03-29 1992-10-14 大日本印刷株式会社 Transfer foil for polystyrene molded products
US6242045B1 (en) 1991-12-13 2001-06-05 Visteon Global Technologies, Inc. Process of preparing metal nitride films using a metal halide and an amine
US10544506B2 (en) * 2015-03-30 2020-01-28 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of forming a silicon nitride film using Si—N containing precursors

Similar Documents

Publication Publication Date Title
KR840001536B1 (en) Method of producing for polysilane
US4840778A (en) Inorganic polysilazane and method of producing the same
JP3130117B2 (en) Boron silicon nitride ceramics and precursor compounds, their preparation and use
US4675424A (en) Method for making polysilazanes
JP3042537B2 (en) Modified polysilazane and method for producing the same
EP0295062B1 (en) Polysilacyclobutasilazanes
JPH02175726A (en) Copolysilazane and its production
JPH0725893B2 (en) Synthesis of polymers based on boron and nitrogen precursors of boron and nitrogen and novel materials obtained from them.
US5171736A (en) Preceramic organosilicon-boron polymers
US5010158A (en) Process for preparing polysiloxazane compositions and the products formed thereby
US5064786A (en) Silane modified polysilacyclobutasilazanes
JP2511074B2 (en) Pre-ceramic polymer, ceramic material and methods for producing the same
US4745205A (en) Novel preceramic polymers derived from cyclic silazanes and halogenated disilanes and a method for their preparation
JPH01129033A (en) Polymer based on boron and nitrogen especially usable in production of ceramic product and article based on boron nitride and production thereof
JPS62108719A (en) Preparation of silicon nitride
JPH07216094A (en) Polyborosilazanes as preceramics, their preparation, and ceramic materials derived from them
US5559062A (en) Method of manufacturing a composite sintered body
JPS63191832A (en) Production of new polyaluminopolysilazane
US5453527A (en) Silicon-aluminium nitride ceramic and precursor compounds, processes for their preparation and their use
US5071935A (en) Boron/nitrogen preceramic polymers and boron nitride ceramic materials produced therefrom
JPH01203430A (en) Modified polysilazane and production thereof
JPH07196372A (en) Boron nitride ceramic and its production
JPH01203429A (en) Modified polysilazane and production thereof
JPS59207812A (en) Production of silicon nitride
JPS62113768A (en) Method of sintering silicon nitride