JPH0390140A - Ultrasonic measuring device with echo of blood flow as reference - Google Patents

Ultrasonic measuring device with echo of blood flow as reference

Info

Publication number
JPH0390140A
JPH0390140A JP22742189A JP22742189A JPH0390140A JP H0390140 A JPH0390140 A JP H0390140A JP 22742189 A JP22742189 A JP 22742189A JP 22742189 A JP22742189 A JP 22742189A JP H0390140 A JPH0390140 A JP H0390140A
Authority
JP
Japan
Prior art keywords
blood flow
signal
measurement
echo
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22742189A
Other languages
Japanese (ja)
Inventor
Yasuto Takeuchi
康人 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP22742189A priority Critical patent/JPH0390140A/en
Publication of JPH0390140A publication Critical patent/JPH0390140A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To perform measurement in many parts of a biotissue by measuring a blood flow Doppler signal from a sample volume(SV), which is set in a narrow range in a pipe line of a measurement-objective blood vessel, and calculating a power level of the signal. CONSTITUTION:In a range gate setting part 9, a sample volume(SV) is set in a narrow range accommodated in a pipe lie of a measurement-objective blood vessel, and in a pulse Doppler processing part 8, pulse Doppler measurement is performed by a measuring means without a band limiting element narrower than at least a band pass width of an ultrasonic probe. In a power measuring part 13, a power level of a blood flow Doppler signal, measured by the SV in the pipe line of the blood vessel by the pulse Doppler processing part, is measured, and in a comparison utilizing part 17, arithmetic operation, of comparing and correcting echo intensity of blood vessel peripheral tissue from an echo level measuring part 16 or various measured amounts of attenuation or the like to the corresponding tissue, is performed with a power level value, measured in the power measuring part, serving as a reference signal.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、血流ドプラ信号を参照信号として血流周辺
の組織のエコー強度又は該組織までの減衰を計測する超
音波計測装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ultrasonic measuring device that measures the echo intensity of tissues around blood flow or the attenuation to the tissue using a blood flow Doppler signal as a reference signal. be.

[従来の技術] 従来血流のエコーレベルを参照信号として、血流周辺の
組織のエコー強度、又は該組織までの減衰を計測する技
術の公知文献としては、例えば(1)第52回日本超音
波医学会講演論文集、昭63−6.52−200.  
’血流ドプラ信号を参照信号とする組織散乱・減衰のi
n Vlvo推定法”中山ほか。
[Prior Art] Conventionally known documents on the technique of measuring the echo intensity of tissues surrounding the blood flow or the attenuation to the tissue using the echo level of the blood flow as a reference signal include (1) 52nd Japan Super Proceedings of the Sonic Medical Society, June 52-200, 1986.
'i of tissue scattering and attenuation using blood flow Doppler signal as reference signal
n Vlvo estimation method” Nakayama et al.

p399〜400 、 (2)第53回日本超音波医学
会講演論文集、昭83−11 、53P a−s 、 
 “血流ドプラ信号を参照信号とする組織散乱・減衰の
in vlvo推定法推定法域1宮城pal〜32があ
る。
p399-400, (2) Proceedings of the 53rd Japanese Society of Ultrasonics in Medicine, 1983-11, 53P a-s,
“There is an in-vlvo estimation method for tissue scattering and attenuation using a blood flow Doppler signal as a reference signal.

上記文献によれば、血流からのドプラ信号強度を基準と
して組織の散乱特性及び減衰特性を定量的に推定する方
法を提案している。また超音波トランスデユーサの音場
周波数特性をあらかじめ測定しておく場合は勿論、そう
でない場合にも単純な手法で測定できるとしている。
According to the above-mentioned literature, a method is proposed for quantitatively estimating the scattering characteristics and attenuation characteristics of a tissue based on the Doppler signal intensity from blood flow. Furthermore, it is possible to measure the sound field frequency characteristics of the ultrasonic transducer using a simple method, not only in cases where the sound field frequency characteristics are measured in advance, but also in cases where this is not the case.

しかし上記測定法においては、血流エコーのサンプル点
を変更するとうまく血流のエコーレベルが計測できない
という問題点がある。
However, the above measurement method has the problem that the echo level of the blood flow cannot be measured properly if the sample point of the blood flow echo is changed.

[発明が解決しようとする課題] 上記の文献に開示されたような従来の血流エコーレベル
を基準として、組織の散乱特性及び減衰特性を定量的に
求める方法においては、血流のエコーを基準とするため
にサンプル点からのドプラ信号を利用しているが、超音
波ビームの方位及び距離の変化に応じて、又は何らかの
方法でサンプル点を移動させると、超音波計測システム
の固有の感度(即ち受信ゲイン又はリターンロス)が変
化したり、又は十分に血流区間のみを抽出するようにサ
ンプリングができなくなるという問題点があった。
[Problems to be Solved by the Invention] In the conventional method of quantitatively determining the scattering characteristics and attenuation characteristics of tissue using the blood flow echo level as a reference as disclosed in the above-mentioned literature, the blood flow echo is used as the reference. However, if the sample point is moved in response to changes in the orientation and distance of the ultrasound beam, or in some other way, the inherent sensitivity of the ultrasound measurement system ( In other words, there are problems in that the reception gain or return loss) changes, or that sampling cannot be performed to sufficiently extract only the blood flow section.

このサンプル点を変更することは超音波計測上必須のこ
とであるが、実際にサンプル点を変えても影響がないよ
うな適度に太い血管を測定対象の周辺で見つけるのは困
難であるという問題点があった。
Changing this sample point is essential for ultrasonic measurements, but the problem is that it is difficult to find appropriately large blood vessels around the measurement target that will not have any effect even if the sample point is changed. There was a point.

この発明は、かかる問題点を解決するためになされたも
ので、血流のエコーレベルを測定する際に、太い血管が
見つからないような組織部分にサンプル点を変更しても
正しく血流のエコーレベルの計測ができる血流のエコー
を基準とした超音波計測装置を得ることを目的とする。
This invention was made to solve this problem, and when measuring the echo level of blood flow, even if the sample point is changed to a tissue part where large blood vessels are not found, the echo level of blood flow will not be correctly detected. The purpose of the present invention is to obtain an ultrasonic measuring device based on echoes of blood flow that can measure levels.

[課題を解決するための手段] この発明に係る血流のエコーを基準とした超音波計測装
置は、血流のエコーレベルを基準として、血流周辺の組
織のエコー強度又は該組織までの減衰等の超音波計測を
行う装置において、計測対象の血管の管路内に収る範囲
にサンプルボリュームを設定するサンプルボリューム設
定手段と、少くとも超音波探触子の通過帯域幅より狭い
帯域制限要素のないパルスドプラ計測手段又はMTI計
測手段ε、該パルスドプラ計測手段又はMTIii測手
段が射手段管の管路内のサンプルボリュームより計測し
た血流ドプラ信号のパワーレベルを計測するパワー計測
手段と、該パワー計測手段の計測したパワーレベル値を
基準信号として、前記血管周辺の組織のエコー強度又は
該組織までの減衰量等の諸計測量の比較・較正を行う比
較・較正手段とを有するものである。
[Means for Solving the Problems] The ultrasonic measuring device based on echoes of blood flow according to the present invention uses the echo level of blood flow as a reference to measure the echo intensity of tissues surrounding the blood flow or the attenuation to the tissue. A device for performing ultrasonic measurement such as the above includes a sample volume setting means for setting the sample volume to a range that fits within the duct of the blood vessel to be measured, and a band limiting element that is at least narrower than the passband width of the ultrasonic probe. a pulsed Doppler measuring means or MTI measuring means ε without a pulsed Doppler measuring means or MTIii measuring means, a power measuring means for measuring the power level of a blood flow Doppler signal measured from a sample volume in the conduit of the ejection tube, and the power It has a comparison/calibration means for comparing and calibrating various measured quantities such as the echo intensity of the tissue around the blood vessel or the amount of attenuation to the tissue, using the power level value measured by the measurement means as a reference signal.

[作用] この発明においては、血流のエコーレベルを基準として
、血流周辺の組織のエコー強度又は該組織までの減衰等
の超音波計測を行う装置において、サンプルボリューム
設定手段、パルスドプラ計測手段又はMTI計測手段、
パワー計fi1手段及び比較・較正手段とを有し、サン
プルボリューム設定手段は計測対象の血管の管路内に収
る狭い範囲にサンプルボリュームを設定し、パルスドプ
ラ計測手段又はMT!計測手段は少くとも超音波探触子
の通過帯域幅より狭い帯域制限要素のない計測手段によ
りパルスドプラ計測又はMTI計測を行う。
[Function] In the present invention, in an apparatus that performs ultrasonic measurement such as echo intensity of a tissue surrounding a blood flow or attenuation to the tissue based on the echo level of the blood flow, a sample volume setting means, a pulsed Doppler measurement means, or MTI measurement means,
It has a power meter fi1 means and a comparison/calibration means, and the sample volume setting means sets the sample volume in a narrow range that fits within the duct of the blood vessel to be measured, and the sample volume setting means sets the sample volume in a narrow range that fits within the duct of the blood vessel to be measured. The measurement means performs pulsed Doppler measurement or MTI measurement using a measurement means that does not have a band-limiting element that is narrower than the passband width of the ultrasonic probe.

パワー計測手段は前記パルスドプラ計測手段又はMTI
計測手段が前記血管の管路内のサンプルボリュームより
計測した血流ドプラ信号のパワーレベルを計測し、比較
・較正手段は前記パワー計測手段の計測したパワーレベ
ル値を基準信号として、前記血管周辺の組織のエコー強
度又は該組織までの減衰等の諸計測量の比較・較正を行
う。
The power measurement means is the pulsed Doppler measurement means or MTI.
The measuring means measures the power level of the blood flow Doppler signal measured from the sample volume in the conduit of the blood vessel, and the comparison/calibration means uses the power level value measured by the power measuring means as a reference signal to calculate the power level of the blood flow Doppler signal around the blood vessel. Compare and calibrate various measured quantities such as tissue echo intensity or attenuation to the tissue.

[実施Pj] 第1図はこの発明の一実施例を示す超音波診断装置のブ
ロック図である。同図において、1は送波トリガ信号の
入力毎に送信波形を発生する波形発生器、2はN個(例
えば84個)の振動子を駆動するタイミングを制御して
体内の所望の位置にビームホーカスを生成する送波ビー
ムフォーマ−であり、例えばN個の遅延素子の遅延時間
を可変制御するものでもよい。3は送波回路で、探触子
4に含まれるN個の振動子をそれぞれ個別に駆動し、超
音波を送波せしめる回路である。4は超音波の送受波を
行う探触子で、内部に例えばN個のアレイ状に配列され
た振動子を含む。5は受波回路で、探触子4からのNチ
ャネルの受波信号をそれぞれ個別に増巾して出力する。
[Implementation Pj] FIG. 1 is a block diagram of an ultrasonic diagnostic apparatus showing an embodiment of the present invention. In the figure, 1 is a waveform generator that generates a transmission waveform every time a transmission trigger signal is input, and 2 is a waveform generator that controls the timing of driving N (for example, 84) vibrators to direct the beam to a desired position in the body. It is a transmission beamformer that generates a focus, and may be one that variably controls the delay time of N delay elements, for example. Reference numeral 3 denotes a wave transmitting circuit, which individually drives each of the N transducers included in the probe 4 to transmit ultrasonic waves. Reference numeral 4 denotes a probe that transmits and receives ultrasonic waves, and includes, for example, N transducers arranged in an array inside. Reference numeral 5 denotes a wave receiving circuit that individually amplifies and outputs the N-channel received signals from the probe 4.

6は受波ビームフォーマ−であり、Nチャネルの入力信
号にそれぞれ所定の遅延時間を与えて加算合成すること
により、所望の位置からのエコー信号を得るものである
Reference numeral 6 denotes a reception beamformer, which obtains an echo signal from a desired position by adding and combining the input signals of N channels by giving a predetermined delay time to each input signal.

7はBモード用信号処理部であり、例えばリニア走査や
セクタ走査等により得られたエコーをBモード表示でき
るように信号処理し、表示用メモリ部14に出力するも
のである。8はドプラ用信号処理部であり、血流エコー
からのドプラシフト周波数を検出するための信号処理を
行う。10はFFT(高速フーリエ変換)処理部であり
、FFTスペクトラム検出等の処理を行う。11は増巾
器であり、入力するドプラ周波数を増巾し、スピーカ1
2を駆動する。13は本発明に固有なパワー計測部であ
り、血流ドプラ信号のレベルを2乗し、パワー(電力)
を計測する。14は表示用メモリ部であり、一般にDS
C(デジタルスキャンコンバータ)とも呼ばれる。15
はCRT表示器、1Bも本発明に固有なエコーレベル計
測部であり、表示用メモリ部14に記憶される血流周辺
組織のエコーのレベル計測を行う。17も本発明に固有
な比較利用部であり、パワー計測部13から入力される
血流ドプラ信号のパワーレベルを基準として、エコーレ
ベル計測部16から入力される血管周辺の組織のエコー
レベル値等の諸計測量の比較・較正を行う部分である。
Reference numeral 7 denotes a B-mode signal processing section, which processes echoes obtained by, for example, linear scanning or sector scanning so that they can be displayed in B-mode, and outputs them to the display memory section 14. A Doppler signal processing unit 8 performs signal processing for detecting a Doppler shift frequency from blood flow echoes. Reference numeral 10 denotes an FFT (fast Fourier transform) processing section, which performs processing such as FFT spectrum detection. 11 is an amplifier, which amplifies the input Doppler frequency and transmits it to speaker 1.
Drive 2. 13 is a power measurement unit specific to the present invention, which squares the level of the blood flow Doppler signal and calculates the power (electric power).
Measure. 14 is a display memory section, which is generally used in DS
Also called C (digital scan converter). 15
1B is a CRT display, and 1B is also an echo level measuring section unique to the present invention, which measures the level of echoes of tissues surrounding blood flow stored in the display memory section 14. 17 is also a comparison usage unit specific to the present invention, and uses the power level of the blood flow Doppler signal input from the power measurement unit 13 as a reference, and calculates the echo level value, etc. of tissues around blood vessels input from the echo level measurement unit 16. This is the part that compares and calibrates various measured quantities.

第2図(a)及び(b)は第1図の動作を説明するため
の説明図であり、同図(a)は超音波ビームと血管の位
置関係を示す説明図、同図(b)は、エコーレベル及び
レンジゲートの波形図である。
FIGS. 2(a) and 2(b) are explanatory diagrams for explaining the operation of FIG. 1, and FIG. 2(a) is an explanatory diagram showing the positional relationship between the ultrasound beam and the blood vessel, and FIG. is a waveform diagram of echo level and range gate.

第2図(a)及び(b)を参照し、第1図の動作を説明
する。まず第1図は一般的な広帯域のMTI(移動物標
表示)装置に、本発明に係る13.18及びlγの機器
を付加した構成となっている。波形発生器1は、送信ト
リガ信号が入力される度に送信波形を発生するが、その
波形は本質的に広帯域な波形(パルス波又はバースト波
)を発生し、探触子4のパスバンドより広帯域の波形で
あるとする。
The operation of FIG. 1 will be explained with reference to FIGS. 2(a) and 2(b). First, FIG. 1 shows a configuration in which 13.18 and lγ devices according to the present invention are added to a general broadband MTI (moving target indication) device. The waveform generator 1 generates a transmission waveform every time a transmission trigger signal is input, but the waveform essentially generates a broadband waveform (pulse wave or burst wave), and is wider than the passband of the probe 4. Assume that it is a broadband waveform.

その他は通常の1点サンプリングパルスドプラ(ポイン
トドプラ)と同一動作を行う。従って送波ビームフォー
マ−2は波形発生器1からの入力信号からN個(例えば
64個)の振動子を駆動するタイミングを制御して体内
の所望の点位置にビームホーカスを生成する信号を発生
する。送波回路3は入力するビームフォーミング信号に
より探触子4に含まれるN個(前例で64個)の振動子
をそれぞれ個別に駆動する。探触子4は送波回路3から
の駆動信号により超音波ビームを被検体(本例では生体
)内部に送波し、被検体内部より反射される超音波を受
波して受波回路5に供給する。受波回路5は探触子4か
ら入力されるNチャネルの受波信号をそれぞれ個別に増
巾する。受波ビームフォーマ−6は受波回路5からのN
チャネルの入力信号にそれぞれ所定の遅延時間を与えて
加算合成することにより、所望の位置からのエコー信号
を出力する。このエコー信号がBモード計測のときはB
モード信号処理部7に、またドプラ計測のときにはドプ
ラ用信号処理部8へ供給される。第2図(a)は、探触
子4から送出される超音波ビームが生体中の血管と交差
し、その血管内の狭い黒丸印の範囲にレンジゲートが設
定されている状態を示している。また同図(b)には、
超音波を送波して時間T経過後に血管内に入るように設
定された狭い時間幅ΔTのレンジゲートと、超音波を送
波後の受信エコーレベル(一般にdB表示が多い)と、
時間幅Wの血管の管路内に収まっている超音波エコーの
それぞれの波形が示されている。第1図のレンジゲート
指定部9は第2図(b)に示されるようなレンジゲート
信号をドプラ信号処理部8に供給するが、本発明におい
てはこのレンジゲートの設定はその時間幅ΔTを十分に
狭くすることが必要である。しかしその結果超音波ドプ
ラ測定系の帯域幅が狭くなったり、又は距離分解能が悪
化することがないように考慮されているものとする。計
測対象である血管内の血流のサンプル点が計測すべき血
管の管路内に確実に収るようにレンジゲート指定部9に
よりレンジゲートを操作する。
Other operations are the same as normal one-point sampling pulse Doppler (point Doppler). Therefore, the transmitting beamformer 2 controls the timing of driving N (for example, 64) transducers based on the input signal from the waveform generator 1, and generates a signal that generates a beam focus at a desired point position in the body. do. The wave transmitting circuit 3 individually drives N (64 in the example) vibrators included in the probe 4 using the input beamforming signal. The probe 4 transmits an ultrasonic beam to the inside of the object (in this example, a living body) based on the drive signal from the wave transmitting circuit 3, receives the ultrasonic waves reflected from inside the object, and sends the ultrasonic beam to the receiving circuit 5. supply to. The wave receiving circuit 5 individually amplifies the N-channel received signals inputted from the probe 4. The receiving beamformer 6 receives N from the receiving circuit 5.
By giving a predetermined delay time to each channel input signal and adding and combining them, an echo signal from a desired position is output. When this echo signal is B mode measurement, B
The signal is supplied to the mode signal processing section 7, and also to the Doppler signal processing section 8 during Doppler measurement. FIG. 2(a) shows a state in which the ultrasonic beam sent out from the probe 4 intersects a blood vessel in a living body, and a range gate is set within the narrow black circle within the blood vessel. . Also, in the same figure (b),
A range gate with a narrow time width ΔT that is set to transmit ultrasound and enter the blood vessel after time T has elapsed, and a received echo level (generally expressed in dB) after transmitting ultrasound,
The waveforms of the ultrasound echoes falling within the vascular channel with a time width W are shown. The range gate designating section 9 in FIG. 1 supplies a range gate signal as shown in FIG. It is necessary to make it sufficiently narrow. However, consideration must be given so that the bandwidth of the ultrasonic Doppler measurement system does not narrow or the distance resolution deteriorates as a result. The range gate is operated by the range gate specifying unit 9 so that the sample point of the blood flow in the blood vessel to be measured is reliably placed within the duct of the blood vessel to be measured.

従ってドプラ計測されるサンプルボリューム(以下Sv
という)は従来よりも小さな値となる。
Therefore, the sample volume (hereinafter Sv
) is a smaller value than before.

ドプラー用信号処理部8は、受波ビームフォーマ−6よ
り入力するエコー信号から前記レンジゲ−ト内の信号を
選択し、その送信周波数と送信周波数の差である血流(
血管内の血球の流れ)に起因するドプラ周波数信号を検
出し、これをFFT処理部10、増巾器t1及びパワー
計測部13へ供給する。FFT処理部10は入力信号を
高速フーリエ変換して周波数分析を行い、血流速度を算
出し、この速度に対応したカラー表示データとして表示
用メモリ部14へ供給する。Bモード用信号処理部7は
人力するエコー信号より断層画像データを作成し、表示
用メモリ部14に供給する。表示用メモリ部14はBモ
ード断層画像に血流のカラー画像を重畳してCR7表示
器15に表示する。増巾器11は入力するドプラ周波数
を増巾し、スピーカt2を駆動して音響信号を発生する
The Doppler signal processing unit 8 selects the signal within the range gate from the echo signals input from the reception beamformer 6, and calculates the blood flow (which is the difference between the transmission frequency and the transmission frequency).
A Doppler frequency signal caused by the flow of blood cells within a blood vessel is detected and supplied to the FFT processing unit 10, the amplifier t1, and the power measurement unit 13. The FFT processing section 10 subjects the input signal to fast Fourier transform, performs frequency analysis, calculates blood flow velocity, and supplies it to the display memory section 14 as color display data corresponding to this velocity. The B-mode signal processing section 7 creates tomographic image data from manually generated echo signals and supplies it to the display memory section 14 . The display memory section 14 superimposes a color image of blood flow on the B-mode tomographic image and displays it on the CR7 display 15. The amplifier 11 amplifies the input Doppler frequency and drives the speaker t2 to generate an acoustic signal.

以上は一般的な超音波MTI装置の動作であるが、本発
明はさらに以下の動作を行う。
The above is the operation of a general ultrasonic MTI device, but the present invention further performs the following operation.

パワー計測部13は入力する血流ドプラ信号レベルを2
乗することによりパワーを算出する。即ち第2図(a)
の血管内の黒丸印で示されたサンプル点における血流ド
プラ信号のパワーを算出する。
The power measurement unit 13 sets the input blood flow Doppler signal level to 2.
Calculate the power by multiplying. That is, Fig. 2(a)
The power of the blood flow Doppler signal at the sample point indicated by the black circle in the blood vessel is calculated.

この算出パワーを0OdBとする。エコーレベル計測部
lBは計測したい場所である前記血管近傍の、例えば第
2図(a)の本川で示されたサンプル点における組織の
エコーレベルを計測する。この計測値を**dBとする
Let this calculated power be 0 OdB. The echo level measurement unit 1B measures the tissue echo level at the sample point shown by the main river in FIG. 2(a), for example, near the blood vessel where measurement is desired. Let this measurement value be **dB.

エコーレベル計測部1Bは表示用メモリ14に記憶され
るBモード画像のピクセルのレベルを計ることにより上
記計測が可能である。勿論信号処理過程中の対数増巾器
等の非線形処理部の特性は既知であり、必要とされる補
正(この補正値は本質的に前記00dB−**dBに近
い値となる)が行われた上で最終計測値を算出する。こ
のエコーレベル計測部IBよりの組織のエコーレベルと
、パワー計測部13よりの1点サンプリング型の血流ド
プラ信号のパワー値が比較利用部17に供給される。比
較利用部17はパワー計測部13がサンプリング点の寸
法を可及的に小さくして得られた血流ドプラ信号の全パ
ワーレベルを血球のエコーレベルと考えて、1このパワ
ーレベルを基準にしてその他の計測量、例えば前記血管
近傍の組織のエコーレベル値等の諸計測量の比較・較正
を行う。
The echo level measuring section 1B can perform the above measurement by measuring the level of pixels of the B-mode image stored in the display memory 14. Of course, the characteristics of the nonlinear processing unit such as the logarithmic amplifier during the signal processing process are known, and the necessary correction (this correction value is essentially a value close to the above-mentioned 00 dB - ** dB) is performed. After that, calculate the final measurement value. The tissue echo level from the echo level measuring section IB and the power value of the one-point sampling type blood flow Doppler signal from the power measuring section 13 are supplied to the comparison/utilization section 17 . The comparison/utilization unit 17 considers the total power level of the blood flow Doppler signal obtained by the power measurement unit 13 by minimizing the size of the sampling point as the blood cell echo level, and uses this power level as a reference. Other measured quantities, such as echo level values of tissues near the blood vessel, are compared and calibrated.

この場合に用いられる血流ドプラ信号のスペクトラムは
、その超音波送波信号のスペクトラムの広帯域性により
かなり広がるので、FFT処理部10におけるスペクト
ラムは通常のものとやや異なるが、スピーカ12から出
力される音響信号は人間の聴覚にとって余り差が生じな
いものである。
The spectrum of the blood flow Doppler signal used in this case is spread considerably due to the broadband nature of the spectrum of the ultrasonic transmission signal, so the spectrum in the FFT processing section 10 is slightly different from the normal one, but it is output from the speaker 12. Acoustic signals do not make much difference to human hearing.

また比較利用部17における比較・較正の演算処理の場
合に、ヘマトクリット値(血液のなかで赤血球が占める
容積の割合、健康成人の値は男子が45%、女子が40
%程度である。)により補正処理を行うように機器を構
成すると、更に好ましい計測処理結果が得られる。
In addition, in the case of comparison/calibration calculation processing in the comparison/utilization section 17, the hematocrit value (the proportion of the volume occupied by red blood cells in the blood, the value for healthy adults is 45% for boys and 40% for girls).
It is about %. ), more preferable measurement processing results can be obtained by configuring the equipment to perform correction processing according to the method.

次に本発明の技術的背景を述べる。一般に血流ドプラ信
号はサンプルボリューム(SV)を大きくしないと良い
信号対雑音比(S/N)が得られない。しかしその逆の
対位概念である相互相関形の処理形態を採り、超音波計
測系の帯域幅を広帯域化することによりSvを小さくす
ることができる。本発明はSVを可及的に小さくするこ
とにより、小さな血管の血流ドプラ信号も適確にそのパ
ワーレベルを計測し、これを基準信号として他の信号の
較正又は比較等を行い諸計測を行うものである。従って
本発明においては、本質的に探触子の通常帯域幅より狭
い帯域制限要素の無い超音パルスドプラ又はMT!シス
テムを用いることが必要である。
Next, the technical background of the present invention will be described. Generally, a good signal-to-noise ratio (S/N) for blood flow Doppler signals cannot be obtained unless the sample volume (SV) is increased. However, by adopting a cross-correlation type processing form, which is the opposite concept, and widening the bandwidth of the ultrasonic measurement system, Sv can be reduced. By making the SV as small as possible, the present invention can accurately measure the power level of blood flow Doppler signals of small blood vessels, and use this as a reference signal to calibrate or compare other signals and perform various measurements. It is something to do. Therefore, in the present invention, ultrasonic pulsed Doppler or MT! which is essentially free of band-limiting elements narrower than the normal bandwidth of the probe! It is necessary to use the system.

また本実施例においては、血流ドプラ信号をポイントド
プラによりパワー計測し参照信号とする例を示したが、
本発明はこれに限定されるものではなく、これをMT1
方式又は2次元フローマツピングの形式に展開した方式
としてもよい。またこの場合、いわゆるスペックルパタ
ーンの相互相関により血流のイメージを求める方法でも
よい。
In addition, in this example, an example was shown in which the power of the blood flow Doppler signal is measured by point Doppler and used as a reference signal.
The present invention is not limited to this, but it can be applied to MT1
The method may be developed into a two-dimensional flow mapping method or a two-dimensional flow mapping method. In this case, a method of obtaining an image of blood flow by so-called cross-correlation of speckle patterns may be used.

更にこの場合、パルスペア処理によるインターラインM
TI方式や、インタフレーム或はインタフィールドMT
I方式により動き、即ち血流を捕える手法を用いてもよ
い。いずれの方式の場合にも信号処理結果として得られ
る動きや流れを意味する信号のパワーレベルが、本発明
の目的とする参黒信号こすべき血流のエコーレベルとな
るわけである。
Furthermore, in this case, the interline M by pulse pair processing
TI method, Interframe or Interfield MT
A method of capturing movement, ie, blood flow, using the I method may also be used. In either method, the power level of a signal indicating movement or flow obtained as a result of signal processing becomes the echo level of the blood flow to be used as a reference signal, which is the object of the present invention.

〔発明の効果コ 以上のようにこの発明によれば、血流のエコーレベルを
計測する際に、少(とも超音波探触子の通過帯域幅より
狭い帯域制限要素のないパルスドプラ計測手段又はMT
I計測手段により、計測対象の血管の管路内の狭い範囲
に設定されたサンプルボリュームより血流ドプラ信号を
計測し、そのパワーレベルを算出できるので、従来計測
不能であったきわめて細い血管の血流エコー信号を基準
とした血流周辺の組織のエコー強度や近傍の細い血管の
血流量の相対比等が計測できるようになり、従来よりも
生体組織の多くの部分での計測又は診断が可能となる効
果が得られる。
[Effects of the Invention] As described above, according to the present invention, when measuring the echo level of blood flow, a pulse Doppler measurement means or MT without a band-limiting element narrower than the passband width of an ultrasound probe is used.
The I measurement means can measure the blood flow Doppler signal from a sample volume set in a narrow range within the duct of the blood vessel to be measured, and calculate its power level. It is now possible to measure the echo intensity of tissues surrounding blood flow and the relative ratio of blood flow in nearby small blood vessels based on the flow echo signal, making it possible to measure or diagnose more areas of living tissue than before. The following effect can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施を示す超音波診断装置のブロ
ック図、′IJ2図(a)及び(b)は第1図の動作を
説明するための説明図である。 図において、1は波形発生器、2は送波ビームフォーマ
−3は送波回路、4は探触子、5は受波回路、6は受波
ビームフォーマ−7はBモード用信号処理部、8はドプ
ラ用信号処理部、9はレンジゲート指定部、10はFF
T処理部、11は増巾器、12はスピーカ、13はパワ
ー計測部、14は表示用メモリ部、15はCRT表示器
、16はエコーレベル計測部、17は比較利用部である
FIG. 1 is a block diagram of an ultrasonic diagnostic apparatus showing one implementation of the present invention, and FIGS. 2(a) and 2(b) are explanatory diagrams for explaining the operation of FIG. 1. In the figure, 1 is a waveform generator, 2 is a transmitting beamformer, 3 is a transmitting circuit, 4 is a probe, 5 is a receiving circuit, 6 is a receiving beamformer, 7 is a B-mode signal processing unit, 8 is a Doppler signal processing section, 9 is a range gate designation section, and 10 is an FF
11 is an amplifier, 12 is a speaker, 13 is a power measurement section, 14 is a display memory section, 15 is a CRT display, 16 is an echo level measurement section, and 17 is a comparison/use section.

Claims (1)

【特許請求の範囲】 血流のエコーレベルを基準として、血流周辺の組織のエ
コー強度又は該組織までの減衰等の超音波計測を行う装
置において、 計測対象の血管の管路内に収る範囲にサンプルボリュー
ムを設定するサンプルボリューム設定手段と、 少くとも超音波探触子の通過帯域幅より狭い帯域制限要
素のないパルスドプラ計測手段又はMTI計測手段と、 該パルスドプラ計測手段又はMTI計測手段が前記血管
の管路内のサンプルボリュームより計測した血流ドプラ
信号のパワーレベルを計測するパワー計測手段と、 該パワー計測手段の計測したパワーレベル値を基準信号
として、前記血管周辺の組織のエコー強度又は該組織ま
での減衰量等の諸計測量の比較・較正を行う比較・較正
手段とを有することを特徴とする血流のエコーを基準と
した超音波計測装置。
[Scope of Claims] An apparatus for measuring ultrasonic waves, such as echo intensity of tissues surrounding the blood flow or attenuation to the tissue, using the echo level of the blood flow as a reference, which includes: sample volume setting means for setting a sample volume in a range; pulsed Doppler measurement means or MTI measurement means that does not have a band-limiting element narrower than the passband width of the ultrasound probe; and the pulsed Doppler measurement means or MTI measurement means A power measuring means for measuring the power level of a blood flow Doppler signal measured from a sample volume in a conduit of a blood vessel; and using the power level value measured by the power measuring means as a reference signal, the echo intensity of the tissue around the blood vessel or An ultrasonic measuring device based on echoes of blood flow, characterized by comprising comparison/calibration means for comparing and calibrating various measured quantities such as the amount of attenuation to the tissue.
JP22742189A 1989-09-04 1989-09-04 Ultrasonic measuring device with echo of blood flow as reference Pending JPH0390140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22742189A JPH0390140A (en) 1989-09-04 1989-09-04 Ultrasonic measuring device with echo of blood flow as reference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22742189A JPH0390140A (en) 1989-09-04 1989-09-04 Ultrasonic measuring device with echo of blood flow as reference

Publications (1)

Publication Number Publication Date
JPH0390140A true JPH0390140A (en) 1991-04-16

Family

ID=16860583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22742189A Pending JPH0390140A (en) 1989-09-04 1989-09-04 Ultrasonic measuring device with echo of blood flow as reference

Country Status (1)

Country Link
JP (1) JPH0390140A (en)

Similar Documents

Publication Publication Date Title
CN107616809B (en) Tissue characterization in medical diagnostic ultrasound
US8597191B2 (en) Ultrasonic imaging apparatus and a method of generating ultrasonic images
EP0008517B1 (en) Duplex ultrasonic imaging system with repetitive excitation of common transducer in doppler modality
US4257278A (en) Quantitative volume blood flow measurement by an ultrasound imaging system featuring a Doppler modality
US7713198B2 (en) Ultrasonic diagnostic equipment and method of controlling ultrasonic diagnostic equipment
EP0154869A1 (en) Ultrasonic measurement apparatus
JP2001252276A (en) Ultrasonic imaging device
US7666142B2 (en) Ultrasound doppler diagnostic apparatus and image data generating method
US11617567B2 (en) Quantitative ultrasound using fundamental and harmonic signals
CN106333707A (en) Ultrasonic Doppler spectrum calibration method, device and ultrasonic diagnostic system
JP4074100B2 (en) Ultrasound diagnostic imaging equipment
US8905933B2 (en) Ultrasonic diagnostic apparatus
JPH0810257A (en) Ultrasonic diagnostic device
JP3866368B2 (en) Ultrasonic diagnostic equipment
JPS6253182B2 (en)
Seo et al. Motion tolerant unfocused imaging of physiological waveforms for blood pressure waveform estimation using ultrasound
US8192364B2 (en) Method for assessing vascular disease by quantitatively measuring vaso vasorum
CN1257695A (en) Dual-ultrasonic Doppler method for measuring blood flow speed
JPH0390140A (en) Ultrasonic measuring device with echo of blood flow as reference
Tortoli et al. A simplified approach for real-time detection of arterial wall velocity and distension
JPH0390139A (en) Ultrasonic measuring device with echo of blood flow as reference
JP2005058533A (en) Ultrasonic diagnostic apparatus
JPH02215449A (en) Ultrasonic diagnostic device
JPH0556973A (en) Ultrasonic blood flow imaging device
JPH02126836A (en) Ultrasonic diagnosis device