JPH0390139A - Ultrasonic measuring device with echo of blood flow as reference - Google Patents

Ultrasonic measuring device with echo of blood flow as reference

Info

Publication number
JPH0390139A
JPH0390139A JP22468189A JP22468189A JPH0390139A JP H0390139 A JPH0390139 A JP H0390139A JP 22468189 A JP22468189 A JP 22468189A JP 22468189 A JP22468189 A JP 22468189A JP H0390139 A JPH0390139 A JP H0390139A
Authority
JP
Japan
Prior art keywords
blood flow
power
volume
calculated
attenuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22468189A
Other languages
Japanese (ja)
Inventor
Yasuto Takeuchi
康人 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP22468189A priority Critical patent/JPH0390139A/en
Publication of JPH0390139A publication Critical patent/JPH0390139A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain measurement in many parts of a biotissue by setting a sample volume(SV) in a range of sufficiently covering a blood vessel and calculating an attenuation amount to the corresponding tissue from the instantaneous volume of a blood flow in the SV, power of a blood flow Doppler signal per unit volume and natural sensitivity to the peripheral tissue of the blood flow. CONSTITUTION:In a range gate assigning part 10, a sample volume(SV) is set in a range of sufficiently covering a measurement-objective blood vessel, and in a comparison utilizing part 19, the instantaneous volume of blood flow in the SV is calculated from a measurement-objective blood vessel size, obtained by a B mode picture image, and from an echo level by an echo level measuring part 17, in a pipe size measuring part 18. In a power measuring part 14, power of a blood flow Doppler signal in the SV is calculated, and in the comparison utilizing part, the calculated value is divided by the effective volume of the SV with power of the blood flow Doppler signal per unit volume calculated. In the comparison utilizing part which serves as an attenuation amount calculating means, natural sensitivity, in the case of no attenuation to the measurement-objective blood flow peripheral tissue, is left as previously corrected, and a power value, calculated by the measuring part, is divided by the natural sensitivity with the attenuation amount to the blood flow peripheral tissue calculated.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、血流ドプラ信号を参照信号として、血流周
辺の組織のエコー強度又は該組織までの減衰を計測する
超音波計測装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ultrasonic measuring device that measures the echo intensity of tissue around blood flow or the attenuation to the tissue using a blood flow Doppler signal as a reference signal. It is.

[従来の技術] 従来血流のエコーレベルを参照信号として、血流周辺の
組織のエコー強度、又は該組織までの減衰を計測する技
術の公知文献としては、例えば(1)、第52回日本超
音波医学会講演論文集、昭83−6.52−200、“
血流ドプラ信号を参照信号とする組織散乱・減衰のin
 v1vo推定法”中山はか、p、!9〜400 、(
2) 、第53回日本超音波医学会講演論文集、昭88
−11 、53P3−3、“血流ドプラ信号を参照信号
とする組織散乱・減衰のin vlvo推定法推定法域
はか、り、31〜32、がある。
[Prior Art] Conventionally known documents on techniques for measuring the echo intensity of tissues surrounding blood flow or the attenuation to the tissue using the echo level of blood flow as a reference signal include (1), 52nd Japan Proceedings of the Society of Ultrasonics in Medicine, 1983-6.52-200, “
In of tissue scattering and attenuation using blood flow Doppler signal as reference signal
v1vo estimation method” Haka Nakayama, p,!9~400, (
2), Proceedings of the 53rd Japanese Society of Ultrasound in Medicine, 1988
-11, 53P3-3, "The in-vlvo estimation method for tissue scattering and attenuation using blood flow Doppler signals as reference signals. There are 31-32.

上記文献によれば、血流からのドプラ信号強度を基準と
して組織の散乱特性及び減衰特性を定量的に推定する方
法を提案している。また超音波トランスデユーサの音場
周波数特性をあらかじめ測定しておく場合は勿論、そう
でない場合にも単純な方法で測定できるとしている。
According to the above-mentioned literature, a method is proposed for quantitatively estimating the scattering characteristics and attenuation characteristics of a tissue based on the Doppler signal intensity from blood flow. Furthermore, it is possible to use a simple method to measure the sound field frequency characteristics of an ultrasonic transducer, whether or not the sound field frequency characteristics have been measured in advance.

しかし上記測定法においては、基準信号とねる血流のエ
コーレベルの計測が実際には正確に行われにくいという
問題を含んでいる。
However, the above measurement method has a problem in that it is difficult to accurately measure the reference signal and the echo level of the flowing blood flow.

[発明が解決しようとする課題] 上記文献に開示されたような従来の血流エコーレベルを
基準として組織の散乱特性及び減衰特性を定量的に求め
る方法においては、ドプラ信号としての血流エコーレベ
ルを正確に規定するために、超音波ビームの計測対象で
あるサンプルボリューム(以下Svという)の位置を完
全に血管内に入れてしまう必要がある。即ち血液の粘性
により血管の中心は速く、血管壁付近は遅く流れ、一般
に血流は血管内を層流の速度分布により流れる。従って
超音波ドプラにより血流速度を正確に計測するには、超
音波ビームの計測対象である、ある広がりを持つSvの
位置は完全に血管内(好ましくは血管の中心部)入るよ
うにする必要がある。これは超音波ビームのSvが完全
に血管内の位置のときに、超音波計測システムのレスポ
ンス、即ち距離に対する血流固有のエコーレベルが正し
く再現されるからである。
[Problems to be Solved by the Invention] In the conventional method of quantitatively determining the scattering characteristics and attenuation characteristics of a tissue based on the blood flow echo level as disclosed in the above-mentioned document, the blood flow echo level as a Doppler signal is In order to accurately define the sample volume (hereinafter referred to as Sv), which is the measurement target of the ultrasound beam, it is necessary to completely place it within the blood vessel. That is, due to the viscosity of blood, blood flows quickly in the center of the blood vessel and slowly near the blood vessel wall, and generally blood flows within the blood vessel with a laminar velocity distribution. Therefore, in order to accurately measure blood flow velocity using Doppler ultrasound, the position of Sv with a certain spread, which is the measurement target of the ultrasound beam, must be completely within the blood vessel (preferably the center of the blood vessel). There is. This is because when the Sv of the ultrasonic beam is completely located within the blood vessel, the response of the ultrasonic measurement system, that is, the echo level specific to blood flow relative to distance, is correctly reproduced.

しかし実際に組織のいたるところで中程度から太い血管
を求め、SVの位置を完全に血管内に入れてしまうこと
は困難であるという問題点がある。
However, there is a problem in that it is difficult to actually find medium to large blood vessels throughout the tissue and to position the SV completely within the blood vessels.

この発明は、かかる問題点を解決するためになされたも
ので、血流のエコーレベルを測定する際にSvの位置を
完全に血管内に入れてしまはなくとも正しく計測ができ
る血流のエコーを基準とした超音波計測装置を得ること
を目的とする。
This invention was made in order to solve this problem, and when measuring the echo level of blood flow, it is possible to accurately measure the echo level of blood flow even if the position of Sv does not completely enter the blood vessel. The purpose is to obtain an ultrasonic measuring device based on

[課題を解決するための手段] この発明に係る血流のエコーを基準とした超音波計測装
置は、超音波ドプラを用いて得られた血流のエコーレベ
ルを基準として血流周辺の組織のエコー強度又は該組織
までの減衰を計測する装置において、計測対象の血管を
十分にカバーする範囲にサンプルボリュームを設定する
サンプルボリューム設定手段と、超音波Bモード画像よ
り得られる前記計測対象の血管の管径及び組織のエコー
レベルから、前記サンプルボリューム内の血流の瞬時体
積を算出する血流体積算出手段と、前記サンプルボリュ
ーム内の血流ドプラ信号のパワーを算出し、該算出値を
サンプルボリュームの有効体積で除算し、単位体積当り
の血流ドプラ信号のパワーを算出するパワー算出手段と
、計測対象の血流周辺組織までに減衰が無い場合の固有
感度をあらかじめ較正しておき、前記パワー算出手段よ
り算出されたパワー値を前記固有感度で除算して、前記
血流周辺組織までの減衰量を算出する減衰量算出手段と
を有するものである。
[Means for Solving the Problems] An ultrasonic measuring device based on echoes of blood flow according to the present invention measures tissue surrounding blood flow based on the echo level of blood flow obtained using ultrasonic Doppler. In an apparatus for measuring echo intensity or attenuation to the tissue, a sample volume setting means for setting a sample volume in a range that sufficiently covers a blood vessel to be measured, and a sample volume setting means for setting a sample volume to a range that sufficiently covers the blood vessel to be measured, and a sample volume setting means for setting a sample volume to a range that sufficiently covers the blood vessel to be measured; a blood flow volume calculation means for calculating an instantaneous volume of blood flow within the sample volume from the tube diameter and tissue echo level; The power calculation means for calculating the power of the blood flow Doppler signal per unit volume by dividing by the effective volume of and attenuation amount calculation means for dividing the power value calculated by the calculation means by the specific sensitivity to calculate the amount of attenuation to tissues surrounding the blood flow.

[作用] この発明においては、超音波ドプラを用いて得られた血
流のエコーレベルを基準として血流周辺の組織のエコー
強度又は該組織までの減衰を計測する装置において、サ
ンプルボリューム設定手段、血流体積算出手段、パワー
算出手段及び減衰量算出手段とを有し、サンプルボリュ
ーム設定手段は計測対象の血管を十分にカバーする範囲
にサンプルボリュームを設定し、血流体積算出手段は超
音波Bモード画像より得られる前記計測対象の血管の管
径及び組織のエコーレベルから、前記サンプルボリュー
ム内の血流の瞬時体積を算出する。パワー算出手段は前
記サンプルボリューム内の血流ドプラ信号のパワーを算
出し、該算出値をサンプルボリュームの有効体積で除算
し、単位体積当りの血流ドプラ信号のパワーを算出し、
減衰量算出手段は計測対象の血流周辺組織までに減衰が
無い場合の固有感度をあらかじめ較正しておき、前記パ
ワー算出手段より算出されたパワー値を前記固有感度で
除算して、前記血流周辺組織までの減衰量を算出する。
[Function] In the present invention, in an apparatus that measures the echo intensity of a tissue surrounding a blood flow or the attenuation to the tissue based on the echo level of a blood flow obtained using ultrasonic Doppler, a sample volume setting means, It has a blood flow volume calculation means, a power calculation means, and an attenuation amount calculation means, the sample volume setting means sets the sample volume in a range that sufficiently covers the blood vessel to be measured, and the blood flow volume calculation means sets the sample volume to a range that sufficiently covers the blood vessel to be measured. The instantaneous volume of blood flow within the sample volume is calculated from the diameter of the blood vessel to be measured and the tissue echo level obtained from the mode image. The power calculation means calculates the power of the blood flow Doppler signal within the sample volume, divides the calculated value by the effective volume of the sample volume, and calculates the power of the blood flow Doppler signal per unit volume,
The attenuation calculation means calibrates in advance the inherent sensitivity when there is no attenuation in the tissue surrounding the blood flow to be measured, and divides the power value calculated by the power calculation means by the inherent sensitivity to determine the blood flow. Calculate the amount of attenuation to surrounding tissue.

[実施例コ 第1図はこの発明の一実施例を示す超音波診断装置のブ
ロック図である。同図において、1は送波トリガ信号の
入力毎に送信波形を発生する波形発生器、2はN個(例
えば64個)の振動子を駆動するタイミングを制御して
体内の所望の位置にビームホーカスを生成する送波ビー
ムフォーマ−であり、例えばN個の遅延素子の遅延時間
を可変制御するものでよい。3は送波回路で、探触子4
1;含まれるN個の振動子をそれぞれ個別に駆動し、超
音波を送波せしめる回路である。4は超音波の送受波を
行う探触子で、内部に例えばN個のアレイ状に配列され
た振動子を含む。5は受波回路で、探触子4からのNチ
ャネルの受波信号をそれぞれ個別に増巾して出力する。
[Embodiment] FIG. 1 is a block diagram of an ultrasonic diagnostic apparatus showing an embodiment of the present invention. In the figure, 1 is a waveform generator that generates a transmission waveform every time a transmission trigger signal is input, and 2 is a waveform generator that controls the timing of driving N (for example, 64) transducers to direct the beam to a desired position in the body. This is a transmission beamformer that generates a focus, and may be one that variably controls the delay time of N delay elements, for example. 3 is a transmitting circuit, and probe 4
1: A circuit that individually drives each of the included N transducers to transmit ultrasonic waves. Reference numeral 4 denotes a probe that transmits and receives ultrasonic waves, and includes, for example, N transducers arranged in an array inside. Reference numeral 5 denotes a wave receiving circuit that individually amplifies and outputs the N-channel received signals from the probe 4.

6は受波ビームフォーマ−であり、Nチャネルの入力信
号にそれぞれ所定の遅延時間を与えて加算合成すること
により、所望の位置からのエコー信号を得るものである
Reference numeral 6 denotes a reception beamformer, which obtains an echo signal from a desired position by adding and combining the input signals of N channels by giving a predetermined delay time to each input signal.

7はBモード用信号処理部であり、例えばリニア走査や
セクタ走査等により得られたエコーをBモード表示でき
るように信号処理し、表示用メモリ部15に出力するも
のである。8はAモード用信号処理部、9はドプラ用信
号処理部であり、血流エコーからのドプラシフト周波数
を検出するための信号処理を行う。11はFFT (高
速フーリエ変換)処理部であり、FFTスペクトラム検
出等の処理を行う。12は増巾器であり、入力するドプ
ラ周波数を増巾し、スピーカ13を駆動する。14は本
発明に固有なパワー計測部であり、血流ドプラ信号のレ
ベルを2乗し、パワー(電力)を計測する(、15は表
示用メモリ部であり、一般にDSC(デジタルスキャン
コンバータ)とも呼ばれる。1BはCRT表示器、17
も本発明に固有なエコーレベル計測部であり、表示用メ
モリ部15に記憶される血流周辺組織のエコーのレベル
計測を行う。工8も本発明に固有な管径計測部であり、
表示用メモリ部15に記憶される血管の輪郭より血管の
管径を計測する。
Reference numeral 7 denotes a B-mode signal processing section, which processes echoes obtained by, for example, linear scanning or sector scanning so that they can be displayed in B-mode, and outputs them to the display memory section 15. 8 is an A-mode signal processing section, and 9 is a Doppler signal processing section, which performs signal processing for detecting a Doppler shift frequency from blood flow echoes. Reference numeral 11 denotes an FFT (fast Fourier transform) processing section, which performs processing such as FFT spectrum detection. Reference numeral 12 denotes an amplifier, which amplifies the input Doppler frequency and drives the speaker 13. 14 is a power measurement unit unique to the present invention, which squares the level of the blood flow Doppler signal and measures the power (15 is a display memory unit, which is also generally referred to as a DSC (digital scan converter)). 1B is a CRT display, 17
This is also an echo level measuring section unique to the present invention, and measures the level of echoes of tissues surrounding the blood flow stored in the display memory section 15. Step 8 is also a pipe diameter measuring section unique to the present invention,
The diameter of the blood vessel is measured from the outline of the blood vessel stored in the display memory section 15.

19も本発明に固有な比較利用部であり、前記管径、エ
コーレベル及びパワーの計測値の比較、演算を行う部分
である。
A comparison section 19 is also unique to the present invention, and is a section that compares and calculates the measured values of the tube diameter, echo level, and power.

第2図(a) 、(b)及び(c)は′1s1図の動作
の説明をするための説明図であり、同図(a)は超音波
ビームと血管の位置関係を示す説明図、同図(b)は(
a)の部分的拡大図、同図(C)は、エコーレベル及び
レンジゲートの波形図である。
FIGS. 2(a), (b), and (c) are explanatory diagrams for explaining the operation of the '1s1 diagram, and FIG. 2(a) is an explanatory diagram showing the positional relationship between the ultrasound beam and the blood vessel; Figure (b) is (
A partially enlarged view of a), and (C) of the same figure is a waveform diagram of the echo level and range gate.

第2図(a)〜(c)を参照し、第1図の動作を説明す
る。まず第1図は一般的な超音波Bモード及びドプラ診
断装置に、本発明に係る14及び17〜19の機器を付
加した構成となっている。波形発生器1は送信トリガ信
号が入力される度に送信波形を発生するが、通常はパル
ス波又はバースト波を発生し、送波ビームフォーマ−2
へ供給する。送波ビームフォーマ−2はBモード計測時
には細い超音波ビームを、ドプラ計測時には太い超音波
ビームを形成するように動作する。この超音波ビームを
形成するため送波ビームフォーマ−2は波形発生器1か
らの入力信号よりN個(例えば64個)の振動子を駆動
するタイミングを制御して体内の所定位置に所望のビー
ムホーカスを生成する信号を発生する。送波回路3は入
力するビームフォーミング信号により探触子4に含まれ
るN個(前例で64個)の振動子をそれぞれ個別に駆動
する。探触子4は送波回路3からの駆動信号により超音
波ビームを被検体く本例では生体)内部に送波し、被検
体内部より反射される超音波を受波して受波回路5に供
給する。受波回路5は探触子4から人力されるNチャネ
ルの受波信号をそれぞれ個別に増巾する。受波ビームフ
ォーマ−6は受波回路5からのNチャネルの入力信号に
それぞれ所定の遅延時間を与えて加算合成することによ
り、所望の位置力らのエコー信号を出力する。このエコ
ー信号がBモード計測のときはBモード信号処理部7に
、またドプラ計測のときにはドプラ用信号処理部9へ供
給きれる。第2図(a)は、探触子4から送出される超
音波ビームが生体中の血管と交差し、その血管を含むレ
ンジ範囲にレンジゲートが設定されている状態を示して
いる。また第2図(b)は、同図(a)の血管に超音波
ビームが交差する部分の拡大図である。同図(C)には
、超音波を送波して時間T経過後に設定された時間幅Δ
Tのレンジゲートと、超音波を送波後の受信エコーレベ
ル(−般にdB表示が多い)と、超音波ビームの前記レ
ンジゲート内に捕捉された時間幅Wの血管の管径のそれ
ぞれの波形が示されている。第1図のレンジゲート指定
部10は第2図(C)に示されるようなレンジゲート信
号をドプラ信号処理部9に供給する。
The operation of FIG. 1 will be explained with reference to FIGS. 2(a) to 2(c). First, FIG. 1 shows a configuration in which devices 14 and 17 to 19 according to the present invention are added to a general ultrasound B-mode and Doppler diagnostic device. The waveform generator 1 generates a transmission waveform every time a transmission trigger signal is input, but normally it generates a pulse wave or a burst wave, and the transmission beamformer 2 generates a transmission waveform.
supply to The transmission beam former 2 operates to form a thin ultrasonic beam during B-mode measurement and to form a thick ultrasonic beam during Doppler measurement. In order to form this ultrasonic beam, the transmitting beamformer 2 controls the timing of driving N (for example, 64) transducers based on the input signal from the waveform generator 1 to direct the desired beam to a predetermined position in the body. Generates a signal that generates focus. The wave transmitting circuit 3 individually drives N (64 in the example) vibrators included in the probe 4 using the input beamforming signal. The probe 4 transmits an ultrasonic beam into the inside of the subject (in this example, a living body) according to the drive signal from the wave transmitting circuit 3, and receives the ultrasonic waves reflected from inside the subject, and sends the ultrasonic beam to the receiving circuit 5. supply to. The wave receiving circuit 5 individually amplifies the N-channel received signals manually input from the probe 4. The receiving beamformer 6 outputs an echo signal of a desired positional force by adding and combining the N-channel input signals from the receiving circuit 5 by giving a predetermined delay time to each signal. This echo signal can be supplied to the B-mode signal processing section 7 during B-mode measurement, and to the Doppler signal processing section 9 during Doppler measurement. FIG. 2(a) shows a state in which the ultrasonic beam sent out from the probe 4 intersects a blood vessel in a living body, and a range gate is set in a range range that includes the blood vessel. Further, FIG. 2(b) is an enlarged view of the portion where the ultrasound beam intersects the blood vessel in FIG. 2(a). In the same figure (C), the time width Δ set after time T has elapsed after transmitting the ultrasonic wave is shown.
The range gate of T, the received echo level after transmitting the ultrasound (generally expressed in dB), and the tube diameter of the blood vessel with a time width W captured within the range gate of the ultrasound beam. Waveforms are shown. The range gate specifying section 10 in FIG. 1 supplies a range gate signal as shown in FIG. 2(C) to the Doppler signal processing section 9.

ドプラ用信号処理部9は、受波ビームフォーマ−6から
入力するエコー信号よりレンジゲート内の信号を選択し
、その送信周波数と受信周波数の差である血流(血管内
の血球の流れ)に起因するドプラ周波数信号を検出し、
これをFFT処理部11、増巾器12及びパワー計測部
t4へ供給する。FFT処理部1iは入力信号を高速フ
ーリエ変換して周波数分析を行い、血流速度を算出し、
この速度に対応したカラー表示データとして表示用メモ
リ部15へ供給する。Bモード用信号処理部7は入力す
るエコー信号より断層画像データを作威し、表示用メモ
リ部15に供給する。表示用メモリ部15はBモード断
層画像に血流のカラー画像を重畳してCRT表示器18
に表示する。また、ドプラ用信号処理部9よりAモード
用信号処理部8を介した信号を表示用メモリ部15に供
給することにより第2図(C)の如きAモード波形をC
R7表示器1Bに表示させるこεも可能である。増巾器
12は入力するドプラ周波数を増巾し、スピーカ18を
駆動して音響信号を発生する。
The Doppler signal processing unit 9 selects the signal within the range gate from the echo signals input from the receiving beamformer 6, and calculates the difference between the transmitting frequency and the receiving frequency, that is, the blood flow (flow of blood cells in blood vessels). Detects the Doppler frequency signal caused by
This is supplied to the FFT processing section 11, amplifier 12, and power measurement section t4. The FFT processing unit 1i fast Fourier transforms the input signal, performs frequency analysis, calculates blood flow velocity,
It is supplied to the display memory section 15 as color display data corresponding to this speed. The B-mode signal processing unit 7 generates tomographic image data from the input echo signal and supplies it to the display memory unit 15. The display memory unit 15 superimposes the color image of blood flow on the B-mode tomographic image and displays it on the CRT display 18.
to be displayed. Also, by supplying the signal from the Doppler signal processing section 9 via the A-mode signal processing section 8 to the display memory section 15, the A-mode waveform as shown in FIG.
It is also possible to display ε on the R7 display 1B. Amplifier 12 amplifies the input Doppler frequency and drives speaker 18 to generate an acoustic signal.

以上は一般的な超音波診断装置の動作であるが、本発明
はさらに次の手順により以下の動作を行う。
The above is the operation of a general ultrasonic diagnostic apparatus, but the present invention further performs the following operation according to the following procedure.

(1)CR7表示器1Bに表示されたBモード(又はC
モード)画像より目的とする血管の観測に係るスライス
断面の断面積とスライス厚さを乗算してサンプルボリュ
ーム(S V)内における血管の有効体積を求める。こ
の算出手法は例えば、成る小領域の所定のレベル以下の
ビクセル(又はボクセル)数を計数すること等により行
われる。
(1) B mode (or C mode displayed on CR7 display 1B)
Mode) The effective volume of the blood vessel within the sample volume (SV) is determined by multiplying the cross-sectional area of the slice cross-section related to the observation of the target blood vessel from the image by the slice thickness. This calculation method is performed, for example, by counting the number of vixels (or voxels) below a predetermined level in the small region.

管径計測部18はBモード画像より上記算出に必要な血
管の管径を計測し、エコーレベル計測部17はBモード
画像より観測に係る組織(本例では生体)のエコーレベ
ルを計測し、それぞれ比較利用部19に供給する。比較
利用部19は前記血管の有効体積の算出を行う。
The tube diameter measurement section 18 measures the tube diameter of the blood vessel necessary for the above calculation from the B-mode image, and the echo level measurement section 17 measures the echo level of the tissue (in this example, a living body) related to observation from the B-mode image. Each is supplied to the comparison usage section 19. The comparison/utilization unit 19 calculates the effective volume of the blood vessel.

(2)上記Svは観測に係る血管が十分にカバーするよ
うにパルスドプラ(又はCWドプラ)のSv(又は断面
積)を設定する。このSVの設定はレンジゲート指定部
10により行う。
(2) The Sv (or cross-sectional area) of pulsed Doppler (or CW Doppler) is set so that the blood vessel involved in observation is sufficiently covered. This SV setting is performed by the range gate designation section 10.

(3)上記の如く設定したSvからの血流のドプラi号
のパワーを算出する。このパワーの算出はパワー計測部
14がドプラ信号レベルを2乗することにより行う。
(3) Calculate the Doppler i power of the blood flow from Sv set as above. This power calculation is performed by the power measurement unit 14 by squaring the Doppler signal level.

(4〉上記血流のドプラ信号のパワーをSVの有効体積
(例えば超音波ビームプロファイルが既知として、有効
区間の長さとビームの太さを乗算して有効体積を求めて
もよい。)で除算し、単位体積当りの血流ドプラ信号の
パワーを算出する。この算出されたパワーは、元来血球
の数又は量を意味するから、高々ヘマトクリット値(血
液のなかで赤血球が占める容積の割合)に依存するのみ
で、その他のパラメータには依存し難い。また上記演算
は比較利用部19に行われる。
(4> Divide the power of the Doppler signal of the blood flow by the effective volume of the SV (for example, assuming the ultrasound beam profile is known, the effective volume may be obtained by multiplying the length of the effective section and the thickness of the beam.) Then, calculate the power of the blood flow Doppler signal per unit volume.Since this calculated power originally means the number or amount of blood cells, it is at most the hematocrit value (the percentage of the volume occupied by red blood cells in the blood). The above calculation is performed by the comparison usage section 19.

(5)上記(2)により設定されたSvにおける本装置
の血流に対する固有の感度、即ち同一距離の設定条件に
おいて、途中のパワーロス(減衰)が無い場合に受信さ
れるべきパワーレベルを、別途水中で較正又はδ9j定
してあらかじめ算出しておく。
(5) Separately determine the inherent sensitivity of this device to the blood flow at Sv set in (2) above, that is, the power level that should be received when there is no power loss (attenuation) on the way under the same distance setting condition. Calibrate or determine δ9j underwater and calculate in advance.

そして(4〉で算出された単位体積当りの血流ドプラ信
号のパワーを前記途中のロスが無い場合の固有の感度で
除算することにより、所望の距離までの減衰量が算出で
きる。この減衰量の算出も比較利用部19が行う。
Then, by dividing the power of the blood flow Doppler signal per unit volume calculated in (4) by the inherent sensitivity when there is no intermediate loss, the amount of attenuation up to the desired distance can be calculated. This amount of attenuation The comparison/utilization unit 19 also calculates.

また上記実施例においては、Bモード画像から血管の管
径と、組織のエコーレベルを計測する方法として、管腔
と思われる部分の所定レベル以下のビクセル数を計数す
る例を示したが、人口知能(AI)を用いて輪郭の認識
、ビクセル値の計測等をすべて自動的に行うようにして
もよい。
In addition, in the above embodiment, as a method for measuring the diameter of a blood vessel and the echo level of a tissue from a B-mode image, an example was shown in which the number of vixels below a predetermined level in a portion that is considered to be a lumen was counted. Intelligence (AI) may be used to automatically perform contour recognition, measurement of pixel values, etc.

また本発明の計測を有効に行うためには、ドプラ計測の
ときの超音波ビームを、Bモード計測の場合の同ビーム
よりも太くしておくことが必要である。これは分解能の
よいBモード画像を得るための細い超音波ビームと、血
流のドプラ計測を行うための太い超音波ビームとの相違
のためである。
Furthermore, in order to effectively carry out the measurement of the present invention, it is necessary to make the ultrasonic beam for Doppler measurement thicker than the same beam for B-mode measurement. This is due to the difference between a thin ultrasound beam for obtaining a B-mode image with good resolution and a thick ultrasound beam for performing Doppler measurement of blood flow.

[発明の効果] 以上のようにこの発明によれば、血流の工0−レベルを
計測する際にSvの位置を完全に血管内に入れてしまは
なくとも、血管を十分にカバーする範囲にSVを設定し
、SV内の血流の瞬時体積と、単位体積当りの血流ドプ
ラ信号のパワーと、血流周辺組織までの固有感度とから
、該組織までの減衰量が算出できるので、太い血管のみ
ならず細い血管の血流エコーを基準とした超音波計測も
できるようにしたので、従来よりも生体組織の多くの部
分での計測又は診断が可能となる効果が得られる。
[Effects of the Invention] As described above, according to the present invention, when measuring the 0-level of blood flow, even if the position of Sv is not completely inside the blood vessel, the range that sufficiently covers the blood vessel can be adjusted. By setting the SV at Since ultrasonic measurements can be performed based on blood flow echoes of not only large blood vessels but also small blood vessels, it is possible to perform measurement or diagnosis in more parts of living tissue than before.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す超音波診断装置のブ
ロック図、第2図(a) 、(b)及び(C)は第1図
の動作を説明するための説明図である。 図において、1は波形発生器、2は送波ビームフォーマ
−3は送波回路、4は探触子、5は受波回路、6は受波
ビームフォーマ−7はBモード用信号処理部、8はAモ
ード用信号処理部、9はドプラ用信号処理部、10はレ
ンジゲート指定部、11はFFT処理部、12は増巾器
、13はスピーカ、14はパワー計測部、15は表示用
メモリ部、16はCRT表示器、 17はエコーレベル計測部、 18は管径 計測部、 19は比較利用部である。
FIG. 1 is a block diagram of an ultrasonic diagnostic apparatus showing an embodiment of the present invention, and FIGS. 2(a), (b), and (C) are explanatory diagrams for explaining the operation of FIG. 1. In the figure, 1 is a waveform generator, 2 is a transmitting beamformer, 3 is a transmitting circuit, 4 is a probe, 5 is a receiving circuit, 6 is a receiving beamformer, 7 is a B-mode signal processing unit, 8 is a signal processing section for A mode, 9 is a signal processing section for Doppler, 10 is a range gate specification section, 11 is an FFT processing section, 12 is an amplifier, 13 is a speaker, 14 is a power measurement section, 15 is for display 16 is a CRT display; 17 is an echo level measuring section; 18 is a tube diameter measuring section; and 19 is a comparison/use section.

Claims (1)

【特許請求の範囲】 超音波ドプラを用いて得られた血流のエコーレベルを基
準として、血流周辺の組織のエコー強度又は該組織まで
の減衰を計測する装置において、計測対象の血管を十分
にカバーする範囲にサンプルボリュームを設定するサン
プルボリューム設定手段と、 超音波Bモード画像より得られる前記計測対象の血管の
管径及び組織のエコーレベルから、前記サンプルボリュ
ーム内の血流の瞬時体積を算出する血流体積算出手段と
、 前記サンプルボリューム内の血流ドプラ信号のパワーを
算出し、該算出値をサンプルボリュームの有効体積で除
算し、単位体積当りの血流ドプラ信号のパワーを算出す
るパワー算出手段と、計測対象の血流周辺組織までに減
衰が無い場合の固有感度をあらかじめ較正しておき、前
記パワー算出手段より算出されたパワー値を前記固有感
度で除算して、前記血流周辺組織までの減衰を算出する
減衰量算出手段とを有することを特徴とする血流のエコ
ーを基準とした超音波計測装置。
[Claims] In an apparatus that measures the echo intensity of tissues surrounding blood flow or the attenuation to the tissue based on the echo level of blood flow obtained using ultrasonic Doppler, a sample volume setting means for setting a sample volume in a range covering A blood flow volume calculating means for calculating, calculating the power of the blood flow Doppler signal within the sample volume, dividing the calculated value by the effective volume of the sample volume, and calculating the power of the blood flow Doppler signal per unit volume. The power calculation means and the inherent sensitivity when there is no attenuation in the tissue surrounding the blood flow to be measured are calibrated in advance, and the power value calculated by the power calculation means is divided by the inherent sensitivity to calculate the blood flow. 1. An ultrasonic measuring device based on echoes of blood flow, comprising attenuation calculation means for calculating attenuation to surrounding tissue.
JP22468189A 1989-09-01 1989-09-01 Ultrasonic measuring device with echo of blood flow as reference Pending JPH0390139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22468189A JPH0390139A (en) 1989-09-01 1989-09-01 Ultrasonic measuring device with echo of blood flow as reference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22468189A JPH0390139A (en) 1989-09-01 1989-09-01 Ultrasonic measuring device with echo of blood flow as reference

Publications (1)

Publication Number Publication Date
JPH0390139A true JPH0390139A (en) 1991-04-16

Family

ID=16817559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22468189A Pending JPH0390139A (en) 1989-09-01 1989-09-01 Ultrasonic measuring device with echo of blood flow as reference

Country Status (1)

Country Link
JP (1) JPH0390139A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115418A (en) * 2008-11-14 2010-05-27 Toshiba Corp Ultrasonic diagnostic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115418A (en) * 2008-11-14 2010-05-27 Toshiba Corp Ultrasonic diagnostic apparatus

Similar Documents

Publication Publication Date Title
EP2232299B1 (en) Method and system for imaging vessels
US6827686B2 (en) System and method for improved harmonic imaging
EP0008517A1 (en) Duplex ultrasonic imaging system with repetitive excitation of common transducer in Doppler modality
US4511984A (en) Ultrasound diagnostic apparatus
US6413218B1 (en) Medical diagnostic ultrasound imaging system and method for determining an acoustic output parameter of a transmitted ultrasonic beam
US5052394A (en) Method and apparatus for ultrasonic beam compensation
JP2001252276A (en) Ultrasonic imaging device
US11617567B2 (en) Quantitative ultrasound using fundamental and harmonic signals
JPH0532060B2 (en)
US20230404537A1 (en) Ultrasound medical imaging with optimized speed of sound based on fat fraction
CN106333707A (en) Ultrasonic Doppler spectrum calibration method, device and ultrasonic diagnostic system
Kelsey et al. Applications of ultrasound in speech research
JPH0467856A (en) Ultrasonic imager by bistatic transmission/reception
Abe et al. Estimation method for sound velocity distribution for high-resolution ultrasonic tomographic imaging
JP4074100B2 (en) Ultrasound diagnostic imaging equipment
JP2021522011A (en) Systems and methods for ultrasound screening
US5341808A (en) Doppler ultrasound clutter and sensitivity phantom
JPH0390139A (en) Ultrasonic measuring device with echo of blood flow as reference
Tortoli et al. A simplified approach for real-time detection of arterial wall velocity and distension
JPH1085211A (en) Ultrasonic image pickup method and device
JPH069563B2 (en) Ultrasonic diagnostic equipment
Hasegawa et al. Effects of beam steering angle in vector Doppler method with plane wave imaging
JPH0390140A (en) Ultrasonic measuring device with echo of blood flow as reference
Wei et al. Laterally-dependent velocity estimation bias in plane-wave Doppler ultrasound
Abe et al. 1J1-2 In vivo Estimation of Sound Velocity Distribution for Diagnosis of Chronic Liver Disease and High Resolution Ultrasonic Tomographic Imaging