JPH0389505A - Manufacture of magnetic alloy - Google Patents

Manufacture of magnetic alloy

Info

Publication number
JPH0389505A
JPH0389505A JP22615989A JP22615989A JPH0389505A JP H0389505 A JPH0389505 A JP H0389505A JP 22615989 A JP22615989 A JP 22615989A JP 22615989 A JP22615989 A JP 22615989A JP H0389505 A JPH0389505 A JP H0389505A
Authority
JP
Japan
Prior art keywords
alloy
volume ratio
nitrogen
magnetic
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22615989A
Other languages
Japanese (ja)
Inventor
Yasushi Watanabe
恭志 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP22615989A priority Critical patent/JPH0389505A/en
Publication of JPH0389505A publication Critical patent/JPH0389505A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a magnetic alloy having high saturation magnetic flux density and low coercive force by specifying the volume ratio of nitrogen gas and the volume ratio of oxygen gas in a mixed gas. CONSTITUTION:Adhesion onto a substrate 11 of the impurity on the surface of a target 5 is prevented by closing a shutter 10 and covering the substrate 11 for several min after the starting of sputtering, and the shutter 10 is opened. An Fe-N-O alloy or an Fe-M-N-O alloy (M represents a metal or a semimetal except iron) at a desired element composition ratio is obtained. Accordingly, the volume ratio of nitrogen gas in a mixed gas is brought to 2-30% and the volume ratio of oxygen gas to 2-30% in the Fe-N-O alloy is acquired, thus obtaining a magnetic alloy having high saturation magnetic flux density of 10kG or more and small coercive force.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高密度磁気記録用の磁気ヘッドに適する磁性
合金の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a magnetic alloy suitable for a magnetic head for high-density magnetic recording.

(従来の技術) 近年、磁気記録の高密度化や広帯域化の必要性が高まり
、磁気記録媒体に高い抗磁力(Hc)を有する磁性材料
を使用して記録トラック幅を狭くすることにより、高密
度磁気記録再生を実現している。そして、この高い抗磁
力をもつ磁気記録媒体に記録再生するための磁気ヘッド
材料として、飽和磁束密度BSの高い磁性合金が必要と
されており、センダスト合金やCo−Zr系非晶質合金
等をコアの一部または全部に使用した磁気ヘッドが提案
されている。
(Prior art) In recent years, the need for higher density and wider band magnetic recording has increased, and magnetic recording media are now made of magnetic materials with high coercive force (Hc) to narrow the recording track width. Achieves density magnetic recording and reproduction. Magnetic alloys with high saturation magnetic flux density BS are required as magnetic head materials for recording and reproducing on magnetic recording media with high coercive force, and Sendust alloys, Co-Zr amorphous alloys, etc. A magnetic head using part or all of the core has been proposed.

しかしながら、これらの合金のBsは10kG程度か或
いはそれ以下であり、磁気記録媒体の抗磁力が2000
0e以上になるとセンダスト合金やCo−Zr系非晶質
合金を使用した磁気ヘッドでは良好な磁気記録再生が困
難になった。また、磁気記録媒体の長平方向ではなく、
厚さ方向に磁化して記録する垂直磁化記録方式も提案さ
れているがこの垂直磁化記録方式を良好に行うには、磁
気ヘッドの主磁極先端部の厚さを0.5μm以下にする
必要があり、比較的抗磁力の低い磁気記録媒体に記録す
るにも、高い飽和磁束密度をもつ磁気ヘッド用磁性合金
が必要になる。
However, the Bs of these alloys is about 10 kG or less, and the coercive force of the magnetic recording medium is 2000 kG.
When it exceeds 0e, it becomes difficult to perform good magnetic recording and reproduction with magnetic heads using Sendust alloy or Co--Zr amorphous alloy. Also, instead of the longitudinal direction of the magnetic recording medium,
A perpendicular magnetization recording method that records by magnetizing in the thickness direction has also been proposed, but in order to perform this perpendicular magnetization recording successfully, the thickness of the tip of the main pole of the magnetic head must be 0.5 μm or less. Therefore, even for recording on a magnetic recording medium with relatively low coercive force, a magnetic alloy for a magnetic head with a high saturation magnetic flux density is required.

そして、センダスト合金やCo−Zr系非晶質合金より
も飽和磁束密度の高い磁性合金として、窒化鉄やFe−
3t系合金等の鉄を主成分とした磁性合金が知られてい
る。
Iron nitride and Fe-
Magnetic alloys containing iron as a main component, such as 3t alloys, are known.

(発明が解決しようとする課題) ところが、従来より知られている、これらの高Bs磁性
合金は保磁力Hcが大きく、そのままでは磁気ヘッドの
材料としては不十分であるのでセンダスト合金やパーマ
ロイ等の保持力の小さい磁性材料か、或いは5i02等
の非磁性材料を中間層とした多層構造の磁気ヘッドが提
案されている。
(Problem to be solved by the invention) However, these conventionally known high Bs magnetic alloys have a large coercive force Hc and are not sufficient as materials for magnetic heads as they are, so sendust alloys, permalloy, etc. A multilayer magnetic head has been proposed in which the intermediate layer is made of a magnetic material with low coercive force or a non-magnetic material such as 5i02.

しかしながら、この様に異なる系の物質を多層化するに
は工数やコストがかかり、信頼性を保つのも難しいとい
うI:’;I Z点があった。
However, creating multiple layers of materials of different systems in this way requires a lot of man-hours and costs, and it is also difficult to maintain reliability.

これらの問題点を解決するために、本発明穴等はFe−
N−0合金やFe−Ta−N−0合金等によって、多層
構造にしない単層でも高飽和磁束密度を有しさらに低保
磁力である磁性合金を提案した。(特願昭63−207
136、特願昭64−35071など)。本発明は、こ
のような磁気特性の優れた磁性合金を得るのに適した磁
性合金の製造方法を提供することを目的とする。
In order to solve these problems, the holes etc. of the present invention are made of Fe-
We have proposed a magnetic alloy using N-0 alloy, Fe-Ta-N-0 alloy, etc., which has a high saturation magnetic flux density even in a single layer without a multilayer structure, and has a low coercive force. (Special application 1986-207
136, patent application No. 64-35071, etc.). An object of the present invention is to provide a method for manufacturing a magnetic alloy suitable for obtaining such a magnetic alloy with excellent magnetic properties.

(課題を解決するための手段) 本発明は上記の課題を解決するために、鉄、または鉄を
主成分として鉄以外の金属または半金属の少なくとも1
種類以上の元素を鉄中に含有させた合金を、不活性ガス
と窒素と酸素の混合ガス雰囲気中でスパッタリング法に
より基板上に堆積するに際し、前記混合ガス中の窒素ガ
スの体積比Xを2〜30%、酸素ガスの体積比yを2〜
30%にした磁性合金の製造方法(ただし、不活性ガス
体積比十x+y−100である)を提供すると共に、 さらに、鉄、または鉄を主成分として鉄以外の金属また
は半金属の少なくとも1種類以上の元素を鉄中に含有さ
せた合金を、スパッタリング法によって基板上に堆積さ
せるに際し、不活性ガスと窒素と酸素の混合ガスのイオ
ンまたは窒素と酸素の混合ガスのイオンを前記基板上に
照射しながら行うようにした磁性合金の製造方法を提供
するものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides iron or at least one metal or metalloid containing iron as the main component.
When depositing an alloy containing more than one type of element in iron on a substrate by sputtering in a mixed gas atmosphere of inert gas, nitrogen, and oxygen, the volume ratio X of nitrogen gas in the mixed gas is set to 2. ~30%, the volume ratio y of oxygen gas is 2~
30% (however, the inert gas volume ratio is 10 x + y - 100), and further comprising iron, or at least one metal or metalloid containing iron as a main component other than iron. When depositing an alloy containing the above elements in iron on a substrate by sputtering, the substrate is irradiated with ions of an inert gas and a mixed gas of nitrogen and oxygen, or ions of a mixed gas of nitrogen and oxygen. The present invention provides a method for manufacturing a magnetic alloy in which the manufacturing method is performed while

(実施例) 本発明の磁性合金の製造方法の一実施例を第1図に示す
(Example) An example of the method for manufacturing a magnetic alloy of the present invention is shown in FIG.

一対のターゲット5.5は鉄、または鉄に他の金属また
は半金属を含有させた合金である。このターゲット5.
5はターゲットホルダ9によって支えられており、この
ターゲット5とターゲットホルダ9には、直流電源13
よりマイナス電位が印加され、さらにこのターゲットホ
ルダ9の周囲にはシールド4が取り付けである。
The pair of targets 5.5 is made of iron or an alloy of iron containing another metal or metalloid. This target 5.
5 is supported by a target holder 9, and the target 5 and target holder 9 are connected to a DC power source 13.
A more negative potential is applied, and a shield 4 is attached around the target holder 9.

また、このターゲットホルダ9の内部には、両ターゲッ
ト5.5間にプラズマ14を集束するための磁石6.6
が挿入され、かつターゲット5の表面の加熱を防ぐため
に冷却水8が流入している。
Also, inside this target holder 9, there is a magnet 6.6 for focusing the plasma 14 between both targets 5.5.
is inserted, and cooling water 8 flows in to prevent the surface of the target 5 from heating.

そして、接地された真空#I!15の左右に、2個のタ
ーゲットホルダ9が絶縁体7によって絶縁されて設けら
れている。
And the grounded vacuum #I! Two target holders 9 are provided on the left and right sides of 15 and are insulated by an insulator 7.

また、この真空槽15の上部より、酸素(02窒素(N
2)、アルゴン(A「)がそれぞれ流量計1〜うにより
所定の流量に調節されて導入されている。なお、アルゴ
ンはターゲット5をスパッタすると同時に、成膜する磁
性合金膜中の酸素と窒素の量を調節するためのものであ
る。
Further, from the upper part of this vacuum chamber 15, oxygen (02 nitrogen (N
2), argon (A') is introduced after being adjusted to a predetermined flow rate using flowmeters 1 to 3. At the same time, argon sputters the target 5, and at the same time, the oxygen and nitrogen in the magnetic alloy film to be formed are introduced. This is to adjust the amount of

そして、真空槽15の下部には、基板ホルダー12上に
基板11がおかれ、不純物を防ぐためのシャッター10
が址板11を覆っている。
At the bottom of the vacuum chamber 15, the substrate 11 is placed on the substrate holder 12, and a shutter 10 is installed to prevent impurities.
covers the base plate 11.

このようなスパッタ装置において、直流電源13により
、左右のターゲットホルダー9に支えられたターゲット
5.5間にプラズマ14を発生させると、ターゲット5
はマイナス電位であるので、プラズマ14中のアルゴン
イオン(Ar”)かターゲット5に衝突し、ターゲット
5の鉄原子または鉄原子と他の金属・半金属原子が飛び
出す。
In such a sputtering apparatus, when plasma 14 is generated between the targets 5.5 supported by the left and right target holders 9 by the DC power supply 13, the target 5.
Since is at a negative potential, argon ions (Ar") in the plasma 14 collide with the target 5, and iron atoms or iron atoms and other metal/metallic atoms of the target 5 fly out.

そして、ターゲット5から飛び出したこれらの原子とプ
ラズマ中の酸素及び窒素の原子または分子が基板11の
上に成長していく。
These atoms ejected from the target 5 and oxygen and nitrogen atoms or molecules in the plasma grow on the substrate 11.

なお、スパッタ開始後の数分間は、シャッター10を閉
じて基板11を覆うことにより、ターゲット5の表面の
不純物が基板11の上に付かないようにし、その後でシ
ャッター10を開けるようにする。そして、流量計1〜
3にて酸素、窒素、アルゴンの導入量を調節することに
より、所望の元素組成比のFe−N−0合金またはFe
−M−N−0合金(Mは鉄以外の金属または半金属)を
得ることができる。
Note that for several minutes after the start of sputtering, the shutter 10 is closed to cover the substrate 11 to prevent impurities on the surface of the target 5 from adhering to the substrate 11, and then the shutter 10 is opened. And flow meter 1~
By adjusting the amounts of oxygen, nitrogen, and argon introduced in step 3, Fe-N-0 alloy or Fe
-M-N-0 alloy (M is a metal or metalloid other than iron) can be obtained.

このようにして得られるFe−N−0合金において、第
7図に示すように混合ガス中の窒素体積比Xが2%未満
であると十分な低保持力(Hc)が得られず、また酸素
体積比yが2%未満であっても十分な低Hcは得られな
い。次に第3図に示すように酸素体積比yを2%とした
場合、窒素体積比が30%以下であれば、飽和磁束密度
Bsが10kG以上の磁性合金を得ることができる。ま
た、第4図に示すように窒素体積比Xを2%とした場合
、酸素体積比が30%以下であれば飽和磁束密度Bsが
10kG以上の磁性合金を得ることができる。また、F
e−M−N−0合金においてMが少量であれば第3図及
び第4図と略同様の結果が得られる。このように、鉄、
または鉄を主成分として金属または半金属の少なくとも
1種類以上の元素を鉄中に含有させた合金を、不活性ガ
スと窒素と酸素の混合ガス雰囲気中でスパッタリングを
行って、Fe−N−0合金またはF e −M −N−
0合金を基板上に成膜する磁性合金の製造方法において
、混合ガス中の窒素ガスの体積比を2〜30%、酸素ガ
スの体積比を2〜30%にすることにより、10kG以
上の高Bsを持ち保持力の小さい磁性合金を得ることが
できることがわかる。
In the Fe-N-0 alloy obtained in this way, if the nitrogen volume ratio Even if the oxygen volume ratio y is less than 2%, a sufficiently low Hc cannot be obtained. Next, as shown in FIG. 3, when the oxygen volume ratio y is 2% and the nitrogen volume ratio is 30% or less, a magnetic alloy with a saturation magnetic flux density Bs of 10 kG or more can be obtained. Further, as shown in FIG. 4, when the nitrogen volume ratio X is 2%, a magnetic alloy with a saturation magnetic flux density Bs of 10 kG or more can be obtained if the oxygen volume ratio is 30% or less. Also, F
If the amount of M in the e-M-N-0 alloy is small, results substantially similar to those shown in FIGS. 3 and 4 can be obtained. In this way, iron,
Alternatively, an alloy containing iron as a main component and at least one metal or metalloid element is sputtered in an atmosphere of a mixed gas of inert gas, nitrogen, and oxygen to produce Fe-N-0 Alloy or F e -M -N-
In the method for manufacturing magnetic alloys in which 0 alloy is deposited on a substrate, the volume ratio of nitrogen gas in the mixed gas is set to 2 to 30%, and the volume ratio of oxygen gas is set to 2 to 30%. It can be seen that a magnetic alloy having Bs and low coercive force can be obtained.

本発明の磁性合金の製造方法の他の例を第2図に示す。Another example of the method for manufacturing the magnetic alloy of the present invention is shown in FIG.

17はターゲットスパッタ用のイオンガンaであり、こ
のイオンガンaからアルゴン等の不活性ガスのイオンビ
ームがターゲット16に照射し、ターゲット16の鉄、
または鉄と他の金属或いは半金属の原子が飛び出して基
板ホルダー19上の基板20に堆積する。また、18は
基板照射用のイオンガンbてあり、このイオンガンbか
らアルゴン等の不活性ガスと窒素および酸素のイオンビ
ームが直接基板を照射している。このようにして基板上
にFe−N−0合金膜またはFe−M−N−0合金膜が
堆積する。第5図はFe−N−0合金において酸素体積
比ytを10%にした時の窒素体積比xLとBsの関係
を示した図である。この図から窒素体積比xlを90%
にしてもBsは10kG以上であり、さらにxiを10
0%の部分に延長してもBsは10kG以上である。第
6図はFe−N−0合金において窒素体積比xlを10
%にした時の酸素体積比y1とBsの関係を示した図で
ある。酸素体積比ytを90%にしてもBsは10kG
以上であり、さらにylを10096の部分に延長して
もBsは10kG以上の高Bsであり、非常に広範囲の
条件である高Bsの磁性合金が得られるので制御しやす
く製造が容易になる。また、Fe−M−N−0合金でも
Mが少量であれば、第5図、第6図と略同様の結果が得
られる。従って、鉄、または、鉄を主成分として金属ま
たは半金属の少なくとも1N類以上の元素を含有させた
合金を、スパッタリング法によって基板上に堆積させる
際に、不活性ガスと窒素と酸素の混合ガスのイオンまた
は窒素と酸素の混合ガスのイオンを前記基板上に照射す
ることにより、飽和磁束密度Bsが非常に高いFe−N
−0合金膜またはFe−M−N−0合金膜を得ることが
できることがわかる。なお、基板照射を不活性ガスのイ
オンだけで行った場合に、低Hcが得られないことを、
本発明穴は実験で確認している。
17 is an ion gun a for target sputtering, and an ion beam of an inert gas such as argon is irradiated onto the target 16 from this ion gun a, and the iron of the target 16,
Alternatively, atoms of iron and other metals or semimetals are ejected and deposited on the substrate 20 on the substrate holder 19. Further, reference numeral 18 denotes an ion gun b for substrate irradiation, from which the substrate is directly irradiated with an ion beam of inert gas such as argon, nitrogen, and oxygen. In this way, an Fe-N-0 alloy film or a Fe-M-N-0 alloy film is deposited on the substrate. FIG. 5 is a diagram showing the relationship between the nitrogen volume ratio xL and Bs when the oxygen volume ratio yt is 10% in the Fe-N-0 alloy. From this figure, the nitrogen volume ratio xl is 90%
Even so, Bs is more than 10kG, and xi is 10
Even if extended to the 0% portion, Bs is 10 kG or more. Figure 6 shows that the nitrogen volume ratio xl is 10 in the Fe-N-0 alloy.
It is a figure showing the relationship between oxygen volume ratio y1 and Bs when expressed as %. Even if the oxygen volume ratio yt is 90%, Bs is 10kG
This is the above, and even if yl is further extended to the 10096 portion, the Bs is still as high as 10 kG or more, and a high Bs magnetic alloy can be obtained under a very wide range of conditions, making it easier to control and manufacture. Furthermore, if the Fe-M-N-0 alloy contains a small amount of M, substantially the same results as in FIGS. 5 and 6 can be obtained. Therefore, when depositing iron or an alloy containing iron as the main component and at least 1N elements of metals or semimetals on a substrate by sputtering, a mixture of inert gas, nitrogen, and oxygen is used. By irradiating the substrate with ions of ions or ions of a mixed gas of nitrogen and oxygen, Fe-N with a very high saturation magnetic flux density Bs is produced.
It can be seen that a -0 alloy film or a Fe-M-N-0 alloy film can be obtained. It should be noted that low Hc cannot be obtained when the substrate is irradiated only with inert gas ions.
The holes of the present invention have been confirmed through experiments.

(発明の効果) 以上詳述したように、本発明になる製造方法を用いれば
飽和磁束密度Bsが10kG以上と非常に高い磁性合金
を製造することができ、この磁性合金を例えば薄膜磁気
ヘッドに適用することにより高密度な磁気記録再生が実
現できる特長がある。
(Effects of the Invention) As detailed above, by using the manufacturing method of the present invention, it is possible to manufacture a magnetic alloy with a very high saturation magnetic flux density Bs of 10 kG or more, and this magnetic alloy can be used, for example, in a thin film magnetic head. It has the advantage that high-density magnetic recording and reproduction can be achieved by applying it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の製造方法に用いられるスパッタ
装置の概略図、第2図は第2の製造方法に用いられるイ
オンビームスパッタ装置の模式図、第3図は第1図の製
造方法において、酸素体積比yを2%とした時の窒素体
積比Xと飽和磁束密度Bsの関係を示した図、第4図は
、第1の製造方法において、窒素体積比Xを2%とした
時の酸素体積比yと飽和磁束密度Bsの関係を示した図
、第5図は第2の製造方法において酸素体積比yIを1
0%とした時の窒素体積比xiと飽和磁束密度Bsの関
係を示した図、第6図は第2の製造方法において、窒素
体積比x1を10%とした時の酸素体積比y1と飽和磁
束密度Bsの関係を記した図、第7図は混合ガス中の窒
素体積比および酸素体積比と保磁力との関係を示す図で
ある。
FIG. 1 is a schematic diagram of a sputtering device used in the first manufacturing method of the present invention, FIG. 2 is a schematic diagram of an ion beam sputtering device used in the second manufacturing method, and FIG. 3 is a schematic diagram of the sputtering device used in the first manufacturing method of the present invention. Figure 4 shows the relationship between the nitrogen volume ratio X and the saturation magnetic flux density Bs when the oxygen volume ratio y is 2% in the first manufacturing method. Figure 5 shows the relationship between the oxygen volume ratio y and the saturation magnetic flux density Bs when the oxygen volume ratio yI is 1 in the second manufacturing method.
A diagram showing the relationship between the nitrogen volume ratio xi and the saturation magnetic flux density Bs when the nitrogen volume ratio xi is set to 0%, and Figure 6 shows the relationship between the oxygen volume ratio y1 and the saturation when the nitrogen volume ratio x1 is set to 10% in the second manufacturing method FIG. 7 is a diagram showing the relationship between the magnetic flux density Bs and the relationship between the nitrogen volume ratio and oxygen volume ratio in the mixed gas and the coercive force.

Claims (2)

【特許請求の範囲】[Claims] (1)鉄、または鉄を主成分として鉄以外の金属または
半金属の少なくとも1種類以上の元素を鉄中に含有させ
た合金を、不活性ガスと窒素と酸素の混合ガス雰囲気中
でスバッタリング法により基板上に堆積させるに際し、
前記混合ガス中の窒素ガスの体積比xを2〜30%、酸
素ガスの体積比yを2〜30%にしたことを特徴とする
磁性合金の製造方法。ただし不活性ガス体積比+x+y
=100である。
(1) Iron or an alloy containing iron as the main component and at least one metal or metalloid element other than iron is sputtered in a mixed gas atmosphere of inert gas, nitrogen, and oxygen. When depositing on a substrate using the ring method,
A method for manufacturing a magnetic alloy, characterized in that the volume ratio x of nitrogen gas in the mixed gas is set to 2 to 30%, and the volume ratio y of oxygen gas is set to 2 to 30%. However, inert gas volume ratio +x+y
=100.
(2)鉄、または鉄を主成分として鉄以外の金属または
半金属の少なくとも1種類以上の元素を鉄中に含有させ
た合金を、スパッタリング法によって基板上に堆積させ
るに際し、不活性ガスと窒素と酸素の混合ガスのイオン
または窒素と酸素の混合ガスのイオンを前記基板上に照
射しながら行うようにしたことを特徴とする磁性合金の
製造方法。
(2) When depositing iron or an alloy containing iron as the main component and at least one metal or metalloid element other than iron on a substrate by sputtering, inert gas and nitrogen A method for producing a magnetic alloy, characterized in that the process is carried out while irradiating the substrate with ions of a mixed gas of nitrogen and oxygen or ions of a mixed gas of nitrogen and oxygen.
JP22615989A 1989-08-31 1989-08-31 Manufacture of magnetic alloy Pending JPH0389505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22615989A JPH0389505A (en) 1989-08-31 1989-08-31 Manufacture of magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22615989A JPH0389505A (en) 1989-08-31 1989-08-31 Manufacture of magnetic alloy

Publications (1)

Publication Number Publication Date
JPH0389505A true JPH0389505A (en) 1991-04-15

Family

ID=16840789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22615989A Pending JPH0389505A (en) 1989-08-31 1989-08-31 Manufacture of magnetic alloy

Country Status (1)

Country Link
JP (1) JPH0389505A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822831B2 (en) * 1999-11-26 2004-11-23 Fujitsu Limited Magnetic thin film, magnetic thin film forming method, and recording head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822831B2 (en) * 1999-11-26 2004-11-23 Fujitsu Limited Magnetic thin film, magnetic thin film forming method, and recording head

Similar Documents

Publication Publication Date Title
US5403457A (en) Method for making soft magnetic film
JPH0389505A (en) Manufacture of magnetic alloy
JP2689512B2 (en) Magnetic alloy for magnetic head
JPH0572733B2 (en)
JPH02199027A (en) Magnetic alloy
JPS6015819A (en) Magnetic recording medium
JPH03116910A (en) Magnetic alloy film
JPH03270203A (en) Magnetic alloy
JPS5925975A (en) Production of thin alloy film
JPS59157828A (en) Magnetic recording medium
JPH07116564B2 (en) Magnetic alloy
JPH03270204A (en) Magnetic alloy
JPS63216968A (en) Manufacture of soft-magnetic material
JPS6151814A (en) Permalloy thin film and vertical magnetic recording medium
JPH03134138A (en) Magnetic alloy
JPH01152256A (en) Thin soft-magnetic film and its production
JPS60125933A (en) Production of magnetic medium
JPH0645146A (en) Manufacture of soft magnetic film
JPH01146312A (en) Soft magnetic thin film
JP2001237136A (en) Fe-N SOFT MAGNETIC THIN-FILM AND METHOD OF FORMING THE SAME
JPH03288410A (en) Magnetic alloy
JPH01152255A (en) Manufacture of soft-magnetic material
JPH04187745A (en) Magnetic alloy
JPS63213657A (en) Production of soft magnetic material
JPH03270202A (en) Magnetic alloy