JPH038765A - Production of voltage-dependent nonlinear resistor porcelain composition and varistor - Google Patents

Production of voltage-dependent nonlinear resistor porcelain composition and varistor

Info

Publication number
JPH038765A
JPH038765A JP1143727A JP14372789A JPH038765A JP H038765 A JPH038765 A JP H038765A JP 1143727 A JP1143727 A JP 1143727A JP 14372789 A JP14372789 A JP 14372789A JP H038765 A JPH038765 A JP H038765A
Authority
JP
Japan
Prior art keywords
mol
varistor
voltage
component
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1143727A
Other languages
Japanese (ja)
Inventor
Keiichi Noi
野井 慶一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1143727A priority Critical patent/JPH038765A/en
Publication of JPH038765A publication Critical patent/JPH038765A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To reduce varistor voltage and increase voltage-current nonlinear index and extent of surge resistance by constructing a varistor from a composition composed of SrTiO3 which is a principal component, the second and third components of specific metal oxide groups and the fourth component of SrTiO3-SiO2 in a specified proportion. CONSTITUTION:A varistor is produced by calcining a composition composed of a mixture of 100 pts.wt. principal component containing (1) 90.000-99.998mol% SraTiO3 (0.0950<=a<=1.000), (2) 0.001-5.000mol% one or more of Nb2O5, Ta2O5, etc., and (3) 0.001-5.000mol% one or more of Al2O3, Sb2O3, etc., with 0.001-10.000 pts.wt. additive prepared by calcining (4) a mixture of 60.000-32.500mol% SrTiO3 with 40.000-67.500mol% SiO2 at >=1200 deg.C. The resultant element has a low varistor voltage, a high dielectric constant and voltage-current nonlinear index due to a large particle diameter and a great extent of surge resistance due to a homogeneous flow of surge current because of small dispersion in particle diameter.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気機器、電子機器で発生する異常高電圧、ノ
イズ、静電気などから機器の半導体および回路を保護す
るためのコンデンサ特性とバリスタ特性を有する電圧依
存性非直線抵抗体磁器組成物およびバリスタの製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a voltage having capacitor characteristics and varistor characteristics to protect semiconductors and circuits of equipment from abnormal high voltages, noise, static electricity, etc. generated in electrical equipment and electronic equipment. The present invention relates to a dependent nonlinear resistor ceramic composition and a method for manufacturing a varistor.

従来の技術 従来、各種の電気機器、電子機器における異常高電圧の
吸収、ノイズの除去、火花消去、静電気対策のために電
圧依存性非直線抵抗特性を有するSiCバリスタや、Z
nO系バリスタなどが使用されている。このようなバリ
スタの電圧−電流特性は近似的に次式のように表すこと
ができる。
Conventional technology Conventionally, SiC varistors and Z
nO type varistors are used. The voltage-current characteristics of such a varistor can be approximately expressed as in the following equation.

1=(V/C)α ここで、Iは電流、■は電圧、Cはバリスタ固有の定数
、αは電圧−電流非直線指数である。
1=(V/C) α Here, I is a current, ■ is a voltage, C is a constant specific to the varistor, and α is a voltage-current nonlinear index.

SiCバリスタのαは2〜7程度、ZnO系バリスタで
はαが50にもおよぶものがある。このようなバリスタ
は比較的高い電圧の吸収には優れた性能を有しているが
、誘電率が低く、固有の静電容量が小さいため、バリス
タ電圧以下の比較的低い電圧の吸収にはほとんど効果を
示さず、また誘電損失tanδが5〜10%と大きい。
The α of SiC varistors is about 2 to 7, and the α of some ZnO-based varistors is as high as 50. Such varistors have excellent performance in absorbing relatively high voltages, but due to their low dielectric constant and small inherent capacitance, they have little ability to absorb relatively low voltages below the varistor voltage. It has no effect, and the dielectric loss tan δ is as large as 5 to 10%.

一方、これらの低電圧のノイズなどの除去には見かけの
誘電率が5X104程度で、tanδが1%前後の半導
体コンデンサが利用されている。
On the other hand, semiconductor capacitors with an apparent dielectric constant of about 5×10 4 and a tan δ of about 1% are used to remove these low voltage noises.

しかし、このような半導体コンデンサはサージなどによ
りある限度以上の電圧または電流が印加されると、静電
容量が減少したり、破壊されたりしてコンデンサとして
の機能を果たさなくなったりする。
However, when a voltage or current exceeding a certain limit is applied to such a semiconductor capacitor due to a surge or the like, the capacitance decreases or the semiconductor capacitor is destroyed, and the capacitor no longer functions as a capacitor.

そこで最近になってSrTiO3を主成分とし、バリス
タ特性とコンデンサ特性の両方の機能を有するものが開
発され、コンピュータなどの電子機器におけるIC,L
SIなどの半導体素子の保護に利用されている。
Therefore, recently, a product that has SrTiO3 as its main component and has both varistor and capacitor properties has been developed, and it
It is used to protect semiconductor devices such as SI.

発明が解決しようとする課題 上記のSrTiO3を主成分とするバリスタとコンデン
サの両方の機能を有する素子は、ZnO系バリスタに比
べ誘電率が約10倍と大きいが、αやサージ耐量が小さ
く、バリスタ電圧を低くすると特性が劣化しやすいとい
った欠点を有していた。
Problems to be Solved by the Invention The above-mentioned element that has SrTiO3 as a main component and functions as both a varistor and a capacitor has a dielectric constant about 10 times higher than that of a ZnO-based varistor, but its α and surge resistance are small, making it difficult to use as a varistor. It has the disadvantage that the characteristics tend to deteriorate when the voltage is lowered.

そこで本発明では、誘電率が大きく、バリスタ電圧が低
(、αが大きいと共にサージ耐量が大きい電圧依存性非
直線抵抗体磁器組成物およびバリスタの製造方法を提供
することを目的とするものである。
Therefore, an object of the present invention is to provide a voltage-dependent nonlinear resistor ceramic composition that has a large dielectric constant, a low varistor voltage (α), and a large surge withstand capacity, and a method for manufacturing the varistor. .

課題を解決するための手段 上記の問題点を解決するために本発明では、S r a
 T i 03  (0.950≦h≦1.000) 
 (以下第1成分と呼ぶ)を90.000〜99.99
8mo 1%、Nb2O5,Ta205.WO3,Dy
2O3,Y2O3,La2O3,CeO2,Sm2O3
,P r6ONd203のうち少なくとも1種類以上(
以下第2成分と呼ぶ)を0.001〜5.000mo 
1%。
Means for Solving the Problems In order to solve the above problems, in the present invention, S r a
T i 03 (0.950≦h≦1.000)
(hereinafter referred to as the first component) from 90.000 to 99.99
8mo 1%, Nb2O5, Ta205. WO3, Dy
2O3, Y2O3, La2O3, CeO2, Sm2O3
, at least one type of Pr6ONd203 (
(hereinafter referred to as the second component) from 0.001 to 5.000 mo
1%.

Al20z、5b203.Bad、BeO,Pb0゜B
2O3,Cr20v、Fe2O:+、CdO,に20゜
CaO,Co2O3,Cr2O3,Fe2O3,CdO
,K2O,CaO,Co2O3,CuO,Cu2O,L
i2O。
Al20z, 5b203. Bad, BeO, Pb0゜B
2O3, Cr20v, Fe2O:+, CdO, 20°CaO, Co2O3, Cr2O3, Fe2O3, CdO
, K2O, CaO, Co2O3, CuO, Cu2O, L
i2O.

L i F、MgO,MnO2,MnO3,Na2O。L i F, MgO, MnO2, MnO3, Na2O.

NaF,NiO,Rh2O3,5eOx、Ag2O。NaF, NiO, Rh2O3, 5eOx, Ag2O.

SiO2,S i C,S ro、T 1203.Th
02゜T i 02 、 V2O5,B 1203. 
Z no、ZrO2゜SnO2のうち少なくとも1種類
以上(以下第3成分と呼ぶ)を0.001〜5.000
mo 1%含有してなる主成分100重量部と、SrT
iO360.000〜32.500mo 1%,SiO
240.000〜67.500mo 1%からなる1昆
合物を1200〜1300℃で焼成してなる添加物(以
下第4成分と呼ぶ)0.001〜10.000重量部と
からなる電圧依存性非直線抵抗体磁器組成物を得ること
により問題を解決しようとするものである。
SiO2, S i C, S ro, T 1203. Th
02°T i 02 , V2O5,B 1203.
At least one or more of Z no, ZrO2゜SnO2 (hereinafter referred to as the third component) from 0.001 to 5.000
100 parts by weight of the main component containing 1% of SrT
iO360.000~32.500mo 1%, SiO
Voltage dependence consisting of 0.001 to 10.000 parts by weight of an additive (hereinafter referred to as the fourth component) made by baking a mixture of 1% of 240.000 to 67.500 mo at 1200 to 1300°C The aim is to solve this problem by obtaining a non-linear resistive ceramic composition.

また、上記組成物を1100℃以上で焼成するバリスタ
の製造方法、あるいは上記組成物を1100℃以上で焼
成した後、還元性雰囲気中で1200℃以上で焼成し、
その後酸化性雰囲気中で900〜1300°Cで焼成す
るバリスタの製造方法を提案するものである。
Further, a method for producing a varistor comprising firing the above composition at 1100°C or higher, or firing the above composition at 1100°C or higher and then firing at 1200°C or higher in a reducing atmosphere,
The present invention proposes a method for manufacturing a varistor in which the varistor is then fired at 900 to 1300°C in an oxidizing atmosphere.

作用 上記の発明において第1成分は主たる成分であり、第2
成分は主に第1成分の半導体化を促進する金属酸化物で
ある。また、第3成分は誘電率。
Effect In the above invention, the first component is the main component, and the second component is the main component.
The components are mainly metal oxides that promote semiconducting of the first component. Also, the third component is the dielectric constant.

α、サージ耐量の改善に寄与するものであり、第4成分
はバリスタ電圧の低下、誘電率の改善に有効なものであ
る。特に、第4成分は融点が1230〜1250℃と比
較的低いため、融点前後の温度で焼成すると液相となり
、その他の成分の反応を促進すると共に粒子の成長を促
進する。そのため粒界部分に第3成分が偏析しやす(な
り、粒界が高抵抗化され易くなり、バリスタ機能および
コンデンサ機能が改善される。また、粒成長が促進され
るためバリスタ電圧が低(なり、粒径の均一性が向上す
るため特性の安定性がよくなり、特にサージ耐量が改善
されることとなる。
α contributes to improving the surge resistance, and the fourth component is effective in reducing the varistor voltage and improving the dielectric constant. In particular, since the fourth component has a relatively low melting point of 1230 to 1250° C., when fired at a temperature around the melting point, it turns into a liquid phase, which promotes the reactions of the other components and the growth of particles. As a result, the third component is more likely to segregate at the grain boundaries, making the grain boundaries more likely to have high resistance, improving the varistor and capacitor functions.Also, grain growth is promoted, so the varistor voltage is lower. Since the uniformity of the particle size is improved, the stability of properties is improved, and especially the surge resistance is improved.

実施例 以下に実施例を挙げて本発明を具体的に説明する。Example The present invention will be specifically described below with reference to Examples.

まず、SrTiO3.5iOzを下記の第1表に示すよ
うに組成比を種々変えて秤量し、ボールミルなどで20
8 r混合する。次に、乾燥した後、下記の第1表1こ
示すように温度を種々変えて焼成し、再びボールミルな
どで208 r粉砕した後、乾燥し、第4成分とする。
First, 3.5 iOz of SrTiO was weighed at various composition ratios as shown in Table 1 below, and 20
8 Mix. Next, after drying, the mixture is calcined at various temperatures as shown in Table 1 below, ground again at 208 r with a ball mill, etc., and dried to obtain the fourth component.

次いで、第1成分、第2成分、第3成分、第4成分を下
記の第1表に示した組成比になるように秤量し、ボール
ミルなどで24Hr混合した後、乾燥し、ポリビニルア
ルコールなどの有機バインダーを10wt%添加して造
粒した後、1 (t /cnf )のプレス圧力で10
φXi”(mm)の円板状に成形し、1000℃で10
Hr焼成し脱バインダーする。次に、第1表に示したよ
うに温度を種々変えて4Hr焼成(第1焼成〉し、その
後還元性雰囲気、例えばN2 :H2=9:1のガス中
で温度を種々変えて4Hr焼成(第2焼成)する。さら
にその後、酸化性雰囲気中で温度を種々変えて2 Hr
焼成(第3焼成)する。
Next, the first component, second component, third component, and fourth component were weighed to have the composition ratio shown in Table 1 below, mixed for 24 hours using a ball mill, etc., dried, and mixed with polyvinyl alcohol, etc. After adding 10 wt% of organic binder and granulating it, 10 wt% was added at a press pressure of 1 (t/cnf).
Formed into a disc shape of φXi” (mm) and heated at 1000°C for 10
The binder is removed by Hr firing. Next, as shown in Table 1, the material is fired for 4 hours at various temperatures (first firing), and then fired for 4 hours at various temperatures in a reducing atmosphere, for example, a gas with N2:H2=9:1. After that, the temperature was varied in an oxidizing atmosphere for 2 hours.
Fire (third firing).

こうして得られた第1図および第2図に示す焼結体1の
両平面に外周を残すようにしてAgなどの導電性ペース
トをスクリーン印刷などにより塗布し、600℃、5m
1nで焼成し、電極2,3を形成する。次に、半田など
によりリード線を取付け、エポキシなどの樹脂を塗装す
る。このようにして得られた素子の特性を下記の第2表
に示す。
A conductive paste such as Ag was applied by screen printing or the like, leaving the outer periphery on both planes of the sintered body 1 shown in FIGS. 1 and 2 obtained in this way.
The electrodes 2 and 3 are formed by firing at 1n. Next, the lead wires are attached using solder or the like, and a resin such as epoxy is applied. The characteristics of the device thus obtained are shown in Table 2 below.

なお、見掛は誘電率はIKHzでの静電容量から計算し
たものであり、αは a = 1 / L o g (V+omA/ V+m
A )(ただし、VlmA、VlomAは1mA、10
mAの電流を流した時に素子の両端にかかる電圧である
。)で評価した。また、サージ耐量はパルス性の電流を
印加した後のV 1 m Aの変化率が±10%以内で
ある時の最大のパルス性電流値により評価している。
Note that the apparent permittivity is calculated from the capacitance at IKHz, and α is a = 1 / L o g (V + omA / V + m
A) (However, VlmA, VlomA are 1mA, 10
This is the voltage applied across the device when a current of mA flows through it. ) was evaluated. Further, the surge resistance is evaluated based on the maximum pulse current value when the rate of change in V 1 mA after applying the pulse current is within ±10%.

(以  下  余  白  ) また、第1成分の5raTi03のaの範囲を規定した
のは、aが1.000よりも太き(なると格子欠陥が発
生しに(いため半導体化が促進されず、V  mAが高
くなりすぎて特性が劣化し、方0.950より小さくな
るとTi過剰になりすぎてTiO2の結晶が生成し、組
織が不均一になり特性が劣化するためである。さらに、
第2成分は0.001mo 1%未満では効果を示さず
、5、000mol%を越えると粒界に偏析して粒界の
高抵抗化を抑制し、粒界に第2相を形成するため特性が
劣化するものである。また、第3成分はO,OO1mo
l%未満では効果を示さず、5、000mo 1%を超
えると粒界に偏析して第2相を形成するため特性が劣化
するものである。
(Margin below) Also, the range of a for the first component 5raTi03 was specified because a is thicker than 1.000 (as a result, lattice defects occur (therefore, semiconductor formation is not promoted, and V This is because if the mA becomes too high, the characteristics will deteriorate, and if it becomes less than 0.950, Ti will be too excessive and TiO2 crystals will form, making the structure non-uniform and deteriorating the characteristics.Furthermore,
The second component has no effect if it is less than 0.001mol%, and if it exceeds 5,000mol%, it segregates at the grain boundaries, suppresses the high resistance of the grain boundaries, and forms a second phase at the grain boundaries, so it has characteristics. is deteriorated. Also, the third component is O, OO1mo
If it is less than 1%, it will not be effective, and if it exceeds 5,000mo1%, it will segregate at grain boundaries and form a second phase, resulting in deterioration of properties.

また、第4成分はSrTiO3とSiO2の2成分系の
相図のなかでMg5rO360.000〜32.500
mol%、5iCh  40.000〜67.500m
ol%の範囲内のものは最も融点の低い領域の物質であ
り、その範回外では融点が高(なるものである。また、
第4成分の添加量は、0.001重量部未満では効果を
示さず、10.000!量部を越えると粒界の抵抗は高
(なるが粒界の幅が厚くなるため、静電容量が小さくな
ると共にVl mAが高くなり、サージに対して弱(な
るものである。また、第4成分の焼成温度を規定したの
は、低融点の第4成分が合成される温度が1200℃以
上であるためである。そして、第1焼成の温度を規定し
たのは、第4成分の融点が1230〜1250℃である
ため、1100℃以上の温度で焼成すると第4成分が液
相に近い状態になって焼結が促進されるためであり、1
100℃未満では第4成分の液相焼結効果がないためで
ある。また、第2焼成の温度を規定したのは、1200
°C未満では第1焼成後の焼結体が十分に還元されず、
バリスタ特性、コンデンサ特性共に劣化するためである
。さらに、第3焼成の温度を規定したのは、900℃未
満では粒界の高抵抗化が十分に進まないため、Vl m
Aが低くなりすぎバリスタ特性が劣化するためであり、
1300℃を越えると静電容量が小さくなりすぎコンデ
ンサ特性が劣化するためである。また、第1焼成の雰囲
気は酸化性雰囲気でも還元性雰囲気でも同様の効果があ
ることを確認した。
In addition, the fourth component is Mg5rO360.000 to 32.500 in the phase diagram of the two-component system of SrTiO3 and SiO2.
mol%, 5iCh 40.000-67.500m
Those within the range of ol% are substances with the lowest melting point, and those outside that range have high melting points.Also,
If the amount of the fourth component added is less than 0.001 parts by weight, no effect will be shown; If the amount exceeds 50%, the grain boundary resistance becomes high (but the width of the grain boundary becomes thicker, the capacitance becomes smaller and the Vl mA becomes higher, making it weak against surges. The firing temperature of the four components was specified because the temperature at which the fourth component with a low melting point is synthesized is 1200°C or higher.The temperature of the first firing was specified because the temperature of the fourth component with a low melting point was synthesized. is 1,230 to 1,250°C, so if the fourth component is fired at a temperature of 1,100°C or higher, the fourth component becomes close to a liquid phase and sintering is promoted.
This is because the fourth component has no liquid phase sintering effect below 100°C. In addition, the temperature for the second firing was regulated at 1200°C.
If the temperature is below °C, the sintered body after the first firing will not be sufficiently reduced.
This is because both the varistor characteristics and the capacitor characteristics deteriorate. Furthermore, the temperature of the third firing was specified because if it is less than 900°C, the resistance of grain boundaries cannot be sufficiently increased.
This is because A becomes too low and the varistor characteristics deteriorate.
This is because if the temperature exceeds 1300° C., the capacitance becomes too small and the capacitor characteristics deteriorate. Furthermore, it was confirmed that the same effect can be obtained whether the atmosphere for the first firing is an oxidizing atmosphere or a reducing atmosphere.

なお、第2成分としては、上記実施例で挙げた成分以外
にSm2O3,P rso++、Nd2O5を用いるこ
とができ、かつ2種類以上を組み合せて上記範囲内の添
加量で用いてもよいものである。また、第3成分として
は、上記実施例で挙げた成分以外にBad、PbO,B
203 、Cab。
In addition, as the second component, Sm2O3, Prso++, and Nd2O5 can be used in addition to the components listed in the above examples, and two or more types may be combined and used in an amount within the above range. . Further, as the third component, in addition to the components mentioned in the above examples, Bad, PbO, B
203, Cab.

CuO,Li20.LiF、Na20.NaF。CuO, Li20. LiF, Na20. NaF.

Rh2O3、SeO2,S io2.S ro。Rh2O3, SeO2, Sio2. Sro.

ThO2,Ti0z 、を用いることができ、かつ第2
成分と同様に2種類以上を組合せて上述した範囲内の添
加量で用いてもよいものである。さらに、上記実施例で
はこれら添加物の組合せについては一部のみ示している
が、その他の組合せでも同様の効果が得られることが確
認された。
ThO2, Ti0z can be used, and the second
As with the components, two or more types may be combined and used in the amount added within the above-mentioned range. Furthermore, although only some of the combinations of these additives are shown in the above examples, it was confirmed that similar effects can be obtained with other combinations.

発明の効果 以上に示したように本発明によれば、粒子径が大きいた
めバリスタ電圧が低く、誘電率εおよびαが大きく、粒
子径のばらつきが小さいことからサージ電流が素子に均
一に流れるため、サージ耐量が大きくなるという効果が
得られる。
Effects of the Invention As shown above, according to the present invention, the varistor voltage is low because the particle size is large, the permittivity ε and α are large, and the variation in particle size is small, so surge current flows uniformly through the element. , the effect of increasing surge resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による素子を示す上面図、第2図は本発
明による素子を示す断面図である。 1・・・・・・焼結体、2,3・・・・・・電極。
FIG. 1 is a top view showing an element according to the invention, and FIG. 2 is a sectional view showing the element according to the invention. 1... Sintered body, 2, 3... Electrode.

Claims (1)

【特許請求の範囲】 (1)Sr_aTiO_3(0.950≦a≦1.00
0)を90.000〜99.998mol%,Nb_2
O_5,Ta_2O_5,WO_3,Dy_2O_3,
Y_2O_3,La_2O_3,CeO_2,Sm_2
O_3,Pr_6O_1_1,Nd_2O_3のうち少
なくとも1種類以上を0.001〜5.000mol%
,Al_2O_3,Sb_2O_3,BaO,BeO,
PbO,B_2O_3,Cr_2O_3,Fe_2O_
3,CdO,K_2O,CaO,Co_2O_3,Cu
O,Cu_2O,Li_2O,LiF,MgO,MnO
_2,MoO_3,Na_2O,NaF,NiO,Rh
_2O_3,SeO_2,Ag_2O,SiO_2,S
iC,SrO,Tl_2O_3,ThO_2,TiO_
2,V_2O_5,Bi_2O_3,ZnO,ZrO_
2,SnO_2のうち少なくとも1種類以上を0.00
1〜5.000mol%含有してなる主成分100重量
部と、SrTiO_3 60.000〜32.500mol%,SiO_240
.000〜67.500mol%からなる混合物を12
00℃以上で焼成してなる添加物0.001〜10.0
00重量部とからなることを特徴とする電圧依存性非直
線抵抗体磁器組成物。 (2)Sr_aTiO_3(0.950≦a≦1.00
0)を90.000〜99.998mol%,Nb_2
O_5,Ta_2O_5,WO_3,Dy_2O_3,
Y_2O_3,La_2O_3,CeO_2,Sm_2
O_3,Pr_6O_1_1,Nd_2O_3のうち少
なくとも1種類以上を0.001〜5.000mol%
,Al_2O_3,Sb_2O_3,BaO,BeO,
PbO,B_2O_3,Cr_2O_3,Fe_2O_
3,CdO,K_2O,CaO,Co_2O_3,Cu
O,Cu_2O,Li_2O,LiF,MgO,MnO
_2,MoO_3,Na_2O,NaF,NiO,Rh
_2O_3,SeO_2,Ag_2O,SiO_2,S
iC,SrO,Tl_2O_3,ThO_2,TiO_
2,V_2O_5,Bi_2O_3,ZnO,ZrO_
2,SnO_2のうち少なくとも1種類以上を0.00
1〜5.000mol%含有してなる主成分100重量
部と、SrTiO_3 60.000〜32.500mol%,SiO_240
.000〜67.500mol%からなる混合物を12
00℃以上で焼成してなる添加物0.001〜10.0
00重量部とからなる組成物を1100℃以上で焼成し
たことを特徴とするバリスタの製造方法。 (3)Sr_aTiO_3(0.950≦a≦1.00
0)を90.000〜99.998mol%,Nb_2
O_5,Ta_2O_5,WO_3,Dy_2O_3,
Y_2O_3,La_2O_3,CeO_2,Sm_2
O_3,Pr_6O_1_1,Nd_2O_3のうち少
なくとも1種類以上を0.001〜5.000mol%
,Al_2O_3,Sb_2O_3,BaO,BeO,
PbO,B_2O_3,Cr_2O_3,Fe_2O_
3,CdO,K_2O,CaO,Co_2O_3,Cu
O,Cu_2O,Li_2O,LiF,MgO,MnO
_2,MoO_3,Na_2O,NaF,NiO,Rh
_2O_3,SeO_2,Ag_2O,SiO_2,S
iC,SrO,Tl_2O_3,ThO_2,TiO_
2,V_2O_5,Bi_2O_3,ZnO,ZrO_
2,SnO_2のうち少なくとも1種類以上を0.00
1〜5.000mol%含有してなる主成分100重量
部と、SrTiO_3 60.000〜32.500mol%,SiO_240
.000〜67.500mol%からなる混合物を12
00℃以上で焼成してなる添加物0.001〜10.0
00重量部とからなる組成物を1100℃以上で焼成し
た後、還元性雰囲気中で1200℃以上で焼成し、その
後酸化性雰囲気中で900〜1300℃で焼成したこと
を特徴とするバリスタの製造方法。
[Claims] (1) Sr_aTiO_3 (0.950≦a≦1.00
0) from 90.000 to 99.998 mol%, Nb_2
O_5, Ta_2O_5, WO_3, Dy_2O_3,
Y_2O_3, La_2O_3, CeO_2, Sm_2
0.001 to 5.000 mol% of at least one of O_3, Pr_6O_1_1, Nd_2O_3
, Al_2O_3, Sb_2O_3, BaO, BeO,
PbO, B_2O_3, Cr_2O_3, Fe_2O_
3, CdO, K_2O, CaO, Co_2O_3, Cu
O, Cu_2O, Li_2O, LiF, MgO, MnO
_2, MoO_3, Na_2O, NaF, NiO, Rh
_2O_3, SeO_2, Ag_2O, SiO_2, S
iC, SrO, Tl_2O_3, ThO_2, TiO_
2, V_2O_5, Bi_2O_3, ZnO, ZrO_
2.0.00 of at least one type of SnO_2
100 parts by weight of the main component containing 1 to 5.000 mol%, SrTiO_3 60.000 to 32.500 mol%, SiO_240
.. A mixture consisting of 000 to 67.500 mol%
Additives baked at 00°C or higher 0.001 to 10.0
00 parts by weight of a voltage-dependent nonlinear resistor ceramic composition. (2) Sr_aTiO_3 (0.950≦a≦1.00
0) from 90.000 to 99.998 mol%, Nb_2
O_5, Ta_2O_5, WO_3, Dy_2O_3,
Y_2O_3, La_2O_3, CeO_2, Sm_2
0.001 to 5.000 mol% of at least one of O_3, Pr_6O_1_1, Nd_2O_3
, Al_2O_3, Sb_2O_3, BaO, BeO,
PbO, B_2O_3, Cr_2O_3, Fe_2O_
3, CdO, K_2O, CaO, Co_2O_3, Cu
O, Cu_2O, Li_2O, LiF, MgO, MnO
_2, MoO_3, Na_2O, NaF, NiO, Rh
_2O_3, SeO_2, Ag_2O, SiO_2, S
iC, SrO, Tl_2O_3, ThO_2, TiO_
2, V_2O_5, Bi_2O_3, ZnO, ZrO_
2.0.00 of at least one type of SnO_2
100 parts by weight of the main component containing 1 to 5.000 mol%, SrTiO_3 60.000 to 32.500 mol%, SiO_240
.. A mixture consisting of 000 to 67.500 mol%
Additives baked at 00°C or higher 0.001 to 10.0
A method for manufacturing a varistor, characterized in that a composition comprising 0.00 parts by weight is fired at 1100°C or higher. (3) Sr_aTiO_3 (0.950≦a≦1.00
0) from 90.000 to 99.998 mol%, Nb_2
O_5, Ta_2O_5, WO_3, Dy_2O_3,
Y_2O_3, La_2O_3, CeO_2, Sm_2
0.001 to 5.000 mol% of at least one of O_3, Pr_6O_1_1, Nd_2O_3
, Al_2O_3, Sb_2O_3, BaO, BeO,
PbO, B_2O_3, Cr_2O_3, Fe_2O_
3, CdO, K_2O, CaO, Co_2O_3, Cu
O, Cu_2O, Li_2O, LiF, MgO, MnO
_2, MoO_3, Na_2O, NaF, NiO, Rh
_2O_3, SeO_2, Ag_2O, SiO_2, S
iC, SrO, Tl_2O_3, ThO_2, TiO_
2, V_2O_5, Bi_2O_3, ZnO, ZrO_
2.0.00 of at least one type of SnO_2
100 parts by weight of the main component containing 1 to 5.000 mol%, SrTiO_3 60.000 to 32.500 mol%, SiO_240
.. A mixture consisting of 000 to 67.500 mol%
Additives baked at 00°C or higher 0.001 to 10.0
00 parts by weight is fired at 1100°C or higher, then fired at 1200°C or higher in a reducing atmosphere, and then fired at 900 to 1300°C in an oxidizing atmosphere. Method.
JP1143727A 1989-06-06 1989-06-06 Production of voltage-dependent nonlinear resistor porcelain composition and varistor Pending JPH038765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1143727A JPH038765A (en) 1989-06-06 1989-06-06 Production of voltage-dependent nonlinear resistor porcelain composition and varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1143727A JPH038765A (en) 1989-06-06 1989-06-06 Production of voltage-dependent nonlinear resistor porcelain composition and varistor

Publications (1)

Publication Number Publication Date
JPH038765A true JPH038765A (en) 1991-01-16

Family

ID=15345598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1143727A Pending JPH038765A (en) 1989-06-06 1989-06-06 Production of voltage-dependent nonlinear resistor porcelain composition and varistor

Country Status (1)

Country Link
JP (1) JPH038765A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994029236A1 (en) * 1993-06-09 1994-12-22 The United States Of America, Represented By The NOVEL CERAMIC FERROELECTRIC COMPOSITE MATERIAL - BSTO-MgO
US5427988A (en) * 1993-06-09 1995-06-27 The United States Of America As Represented By The Secretary Of The Army Ceramic ferroelectric composite material - BSTO-MgO
US5569632A (en) * 1994-06-30 1996-10-29 Korea Institute Of Science And Technology Compositions of high frequency dielectrics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994029236A1 (en) * 1993-06-09 1994-12-22 The United States Of America, Represented By The NOVEL CERAMIC FERROELECTRIC COMPOSITE MATERIAL - BSTO-MgO
US5427988A (en) * 1993-06-09 1995-06-27 The United States Of America As Represented By The Secretary Of The Army Ceramic ferroelectric composite material - BSTO-MgO
US5569632A (en) * 1994-06-30 1996-10-29 Korea Institute Of Science And Technology Compositions of high frequency dielectrics

Similar Documents

Publication Publication Date Title
JPH038765A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JP2789714B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2830322B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2800268B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPH038766A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JP2727693B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPH038767A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JP2808775B2 (en) Varistor manufacturing method
JP2830321B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2789675B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2822612B2 (en) Varistor manufacturing method
JP2808777B2 (en) Varistor manufacturing method
JPH0443602A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JPH038761A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JP2789676B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPH038764A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JP2808778B2 (en) Varistor manufacturing method
JPH0443601A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JPH0443609A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JPH03237058A (en) Porcerain composition for voltage dependent nonlinear resistor and production of varistor
JPH03261657A (en) Voltage-dependent non-linear resistive porcelain composition and production of varistor
JPH0443610A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JP2555790B2 (en) Porcelain composition and method for producing the same
JPH0443605A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JPH03138905A (en) Voltage dependent non-linear ceramic resistor and its manufacture