JPH0387341A - Manufacture of high strength phosphor bronze having good bendability - Google Patents

Manufacture of high strength phosphor bronze having good bendability

Info

Publication number
JPH0387341A
JPH0387341A JP22152589A JP22152589A JPH0387341A JP H0387341 A JPH0387341 A JP H0387341A JP 22152589 A JP22152589 A JP 22152589A JP 22152589 A JP22152589 A JP 22152589A JP H0387341 A JPH0387341 A JP H0387341A
Authority
JP
Japan
Prior art keywords
phosphor bronze
strength
workability
bronze
bending workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22152589A
Other languages
Japanese (ja)
Inventor
Hidehiko So
宗 秀彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP22152589A priority Critical patent/JPH0387341A/en
Publication of JPH0387341A publication Critical patent/JPH0387341A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the phosphor bronze with high strength without deteriorating its bendability by regulating the grain size of phosphor bronze contg. specified wt.% Sn, P and Ni at a specified temp. to specified mm and annealing it so that intermetallic compounds of Ni and P are precipitated. CONSTITUTION:The compsn. of phosphor bronze is formed from, by weight, 3.5 to 9.0% Sn, 0.001 to 0.30% P, 0.001 to 0.50% Ni and the balance Cu with inevitable impurities. The phosphor bronze is annealed so that its grain size at 150 to 650 deg.C is regulated to 0.001 to 0.025mm and Ni and P are precipitated as intermetallic compounds. The phosphor bronze is furthermore cold-rolled at <=90% reduction ratio. As auxiliary components, 0.001 to 2.0% of one or more kinds among Fe, Mg, Al, Si, Cr, Mn, Co, Zn, Ti, Zr and Pb are moreover incorporated thereto. In this way, the phosphor bronze can inexpensively correspond to the miniaturization and thinning of electronic parts.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明の製造方法は、電子部品を始めとする高強度でか
つ良好な曲げ加工性が要求され、場合によっては高いば
ね性が要求されるあらゆる分野の製品に利用可能である
[Detailed Description of the Invention] [Industrial Field of Application] The manufacturing method of the present invention is applicable to electronic parts and other products that require high strength and good bending workability, and in some cases, high springiness. It can be used for products in all fields.

[従来の技術] 従来強度が要求される電子部品には、黄銅、洋白、りん
青銅、ベリリウム銅等の銅合金や、ステンレス等の鉄合
金が用いられている。これらの電子部品用の材料の中で
、りん青銅は強度も高く、曲げ加工性、耐食性、耐応力
腐食割れ性も良好であり、広く利用されている。しかし
、近年、部品の小型化に伴ない、電子部品用の材料も薄
肉化の傾向があり、そうした場合、材料には高強度であ
ることが要求されるようになった。ところかりん青銅の
強化機構はCu中へのSnの固溶強化と冷間加工(圧延
)による加工硬化の組み合せによるものであり、高強度
なりん青銅を得ようとすると、冷間圧延の加工度を高く
しなければならず、そのため曲げ加工性が悪くなる。特
に曲げ軸が圧延方向に対し平行方向の曲げ加工性が悪く
なる。また、りん青銅の加工硬化による強度の向上もお
のずと限界がある。
[Prior Art] Conventionally, copper alloys such as brass, nickel silver, phosphor bronze, and beryllium copper, and iron alloys such as stainless steel have been used for electronic components that require strength. Among these materials for electronic components, phosphor bronze has high strength, good bending workability, corrosion resistance, and stress corrosion cracking resistance, and is widely used. However, in recent years, as parts have become smaller, materials for electronic parts have also tended to become thinner, and in such cases, materials are required to have high strength. However, the strengthening mechanism of phosphor bronze is due to the combination of solid solution strengthening of Sn in Cu and work hardening due to cold working (rolling). must be made high, which results in poor bending workability. In particular, the bending workability in the direction in which the bending axis is parallel to the rolling direction becomes poor. Furthermore, there are naturally limits to the improvement in strength of phosphor bronze through work hardening.

そのため、強度が要求される部位には、ベリリウム銅が
一般に用いられている。しかしベリリウム銅は高価であ
り、又、プレス加工後に熱処理が必要な場合もあり、か
なりトータルコストが高くなる。
Therefore, beryllium copper is generally used in areas where strength is required. However, beryllium copper is expensive and may require heat treatment after press working, resulting in a considerably high total cost.

[発明が解決しようとする課題] 上述のように、部品の小型化に伴ない、高強度の材料が
要求されるようになってきているが、従来のりん青銅で
は限界があり、又ベリリウム銅では高価すぎるため、安
価で高強度でかつ曲げ加工性も良好である材料が待ち望
まれている。
[Problem to be solved by the invention] As mentioned above, with the miniaturization of parts, high-strength materials are required, but conventional phosphor bronze has its limitations, and beryllium copper Since these materials are too expensive, there is a need for materials that are inexpensive, have high strength, and have good bending properties.

[課題を解決するための手段] 本発明はこのような点に鑑み、高強度で安価でかつ曲げ
加工性に優れたりん青銅の製造方法を提供するものであ
る。
[Means for Solving the Problems] In view of these points, the present invention provides a method for producing phosphor bronze that is high in strength, inexpensive, and has excellent bending workability.

すなわち、本発明は、S n  3.5〜9.0wt%
、P  0.001〜0.30wt%、N i  (1
,QO1〜0.50wt%を含み、あるいはさらに副成
分としてFe5Mg。
That is, in the present invention, S n 3.5 to 9.0 wt%
, P 0.001-0.30wt%, N i (1
, QO1 to 0.50 wt%, or further contains Fe5Mg as a subcomponent.

A I SS l %Cr % M n s Co、Z
n、Ti。
A I SS l % Cr % M n s Co, Z
n, Ti.

Zr5Pbの中から1種又は215i以上を0.001
〜2.0wt%含み、残部Cuおよび不可避的な不純物
からなるりん青銅において、150〜650℃の温度で
結晶粒が0.0(11〜0.025ma+になり、かつ
NiとPが金属間化合物として析出する様に焼鈍するこ
とを特徴とする曲げ加工性の良好な高強度りん青銅の製
造方法であり、かつ、上記結晶粒が0.001〜0.0
25mmに成長したりん青銅を90%以下の加工度で冷
間圧延することを特徴とする曲げ加工性が良好な高強度
りん青銅の製造方性であり、かつ、上記90%以下の加
工度で冷間圧延したりん青銅を150〜650℃の温度
で再結晶しない程度の時間歪取焼鈍を行うことを特徴と
する曲げ加工性の良好な高強度りん青銅の製造方法に関
するものである。
One type from Zr5Pb or 0.001 of 215i or more
In phosphor bronze containing ~2.0 wt%, the balance being Cu and unavoidable impurities, the crystal grains become 0.0 (11 to 0.025 ma+) at a temperature of 150 to 650°C, and Ni and P form an intermetallic compound. A method for producing high-strength phosphor bronze with good bending workability, characterized in that annealing is performed so that the crystal grains are 0.001 to 0.0
A method for producing high-strength phosphor bronze with good bending workability, characterized by cold rolling phosphor bronze grown to 25 mm at a working degree of 90% or less, and at the above-mentioned working degree of 90% or less. The present invention relates to a method for producing high-strength phosphor bronze with good bending workability, which comprises subjecting cold-rolled phosphor bronze to strain relief annealing at a temperature of 150 to 650° C. for a time that does not cause recrystallization.

以下に本発明により曲げ加工性が良好な高強度りん青銅
が得られる理由を述べる。
The reason why high-strength phosphor bronze with good bending workability can be obtained by the present invention will be described below.

前にも述べたように、りん青銅はCu中へのSnの固溶
強化と冷間加工(圧延)による加工硬化を組合せたもの
であるが、Sn、ilを3.5〜9、Owt%とするの
は、3゜5wt%未満では強度は若干向上するものの不
十分であり、9.0wt%を超えると、製造性及び加工
性が困難になるためである。すなわち、Snmが9.O
wt%を超えると溶解鋳造時の凝固収縮量が大きくなり
、インゴットの内部欠陥が発生し易くなり、又、冷間加
工性も著しく劣化するためである。Pを添加するのは脱
酸及び靭性を持たせるためであるが、添加量を0.00
1〜0.30wt%とするのは、0.001vL%未満
ではその効果がなく 、0.30wt%を超えると導電
率が低下し、耐SCC性及び錫又ははんだめっきの耐熱
剥離性が著しく劣化するためである。Niを0.001
〜0.50wt%添加する理由は、Niによる固溶強化
に合わせて、NiはPと金属間化合物を作り易く、この
粒子を析出させることにより、強度を向上させるためで
ある。
As mentioned before, phosphor bronze is a combination of solid solution strengthening of Sn in Cu and work hardening by cold working (rolling). The reason for this is that if the content is less than 3.5 wt%, the strength will improve slightly, but it will be insufficient, and if it exceeds 9.0 wt%, manufacturability and processability will become difficult. That is, Snm is 9. O
This is because if it exceeds wt%, the amount of solidification shrinkage during melting and casting will increase, internal defects will easily occur in the ingot, and cold workability will also deteriorate significantly. The purpose of adding P is to deoxidize and provide toughness, but the amount added is 0.00
The reason why the content is 1 to 0.30 wt% is that if it is less than 0.001 vL%, there is no effect, and if it exceeds 0.30 wt%, the conductivity will decrease and the SCC resistance and heat peeling resistance of tin or solder plating will deteriorate significantly. This is to do so. Ni 0.001
The reason for adding ~0.50 wt% is that Ni easily forms an intermetallic compound with P in conjunction with solid solution strengthening by Ni, and by precipitating these particles, the strength is improved.

添加量を0.001〜0.50wt%とするのは、0.
001wt%未満ではその効果がなく、また、0.50
wt%を超えると導電率が低下し、錫又ははんだ耐熱剥
離性が劣化するためである。
The addition amount is 0.001 to 0.50 wt%.
If it is less than 0.001 wt%, it has no effect, and if it is less than 0.50 wt%, it has no effect.
This is because if it exceeds wt%, the electrical conductivity will decrease and the heat peeling resistance of tin or solder will deteriorate.

副成分としてFe、Mg、Al5S i、Cr、Mn、
C0% Zn、T i、Z r、Pbの中から1種又は
2種以上をo、oot〜2.0wt%添加するのは、強
度を向上させるためであるが、添加量を0.001〜2
.Owt%とする理由は、0.001wt%未満ではそ
の効果がなく、2.0wt%を超えると加工性が著しく
劣化し、導電率、はんだ付は性が劣化するためである。
Sub-components include Fe, Mg, Al5Si, Cr, Mn,
The reason why one or more of C0% Zn, Ti, Zr, and Pb is added at o, oot to 2.0 wt% is to improve the strength, but the addition amount is 0.001 to 2.0 wt%. 2
.. The reason why it is set as Owt% is that if it is less than 0.001wt%, there is no effect, and if it exceeds 2.0wt%, the workability is significantly deteriorated, and the conductivity and soldering properties are deteriorated.

このような成分の合金を150〜650℃の温度で結晶
粒がo、ooi〜0.025mmになり、かつNiとP
が金属間化合物として析出させるように焼鈍する理由は
、結晶粒をo、oot〜0.025■と微細に成長させ
ることにより、曲げ加工性を良好にし、かつNiとPの
金属間化合物を析出させ、強度を向上させるためである
。結晶粒を0.001〜0.02!lvmとするのは、
0.001℃m未満では未再結晶部がほとんどであり、
加工組織が残り、曲げ性は著しく悪(,0,025ao
+を超えると、曲げ加工を施したときに肌荒れし易くな
るためである。150〜650℃の温度で焼鈍するのは
、再結晶と同時にNiとPの金属間化合物を析出させる
ためであるが、150℃未満では再結晶するのに間開が
かかりすぎ、コスト高となり、工業的には無理であり、
650℃を超えると、Cu中へのN15Pの固溶量が多
くなり、NiとPの金属間化合物が析出せず、強度が向
上しないためである。このような条件で焼鈍したりん青
銅において、さらに強度を向上させるため、90%以下
の加工度で冷間圧延を行う。加工度を90%未満とする
のは、90%を超える加工度で冷間圧延を行うと、曲げ
加工性が劣化し、強度もそれ以上あまり向上しないため
である。更にこの冷間圧延したりん青銅を150〜65
0℃の温度で歪取り焼鈍を行うのは、ばね性及び曲げ加
工性を向上させるためであり、テンション・アニーリン
グ・ラインで行えば、良好な形状の材料が得られる。焼
鈍温度を150〜650℃とするのは150℃未満では
焼鈍時間が長すぎ、コスト高になるためであり、650
℃を超える適正な焼鈍時間が短くなり、炉の温度、炉を
通板する速度のばらつきの影響を受は易くなり、安定し
た強度、ばね性の材料が得られないためである。
When an alloy with such components is heated to a temperature of 150 to 650°C, the crystal grains become o, ooi to 0.025 mm, and Ni and P
The reason for annealing so that Ni and P precipitate as intermetallic compounds is that by growing the crystal grains as fine as o,oot~0.025■, the bending workability is improved, and the intermetallic compounds of Ni and P are precipitated. This is to improve strength. 0.001 to 0.02 crystal grains! lvm is
Below 0.001°Cm, most of the parts are unrecrystallized,
Processed structure remains, and bendability is extremely poor (0,025ao
This is because if it exceeds +, the skin tends to become rough when bending is performed. The reason for annealing at a temperature of 150 to 650°C is to precipitate an intermetallic compound of Ni and P at the same time as recrystallization, but if it is less than 150°C, it will take too much space for recrystallization, resulting in high costs. It is industrially impossible,
This is because if the temperature exceeds 650°C, the amount of solid solution of N15P in Cu increases, and the intermetallic compound of Ni and P does not precipitate, resulting in no improvement in strength. In order to further improve the strength of the phosphor bronze annealed under such conditions, cold rolling is performed at a working ratio of 90% or less. The reason why the degree of workability is set to less than 90% is that if cold rolling is performed at a degree of workability exceeding 90%, the bending workability will deteriorate and the strength will not improve much further. Furthermore, this cold-rolled phosphor bronze is 150 to 65
The reason why strain relief annealing is performed at a temperature of 0° C. is to improve spring properties and bending workability, and if it is performed on a tension annealing line, a material with a good shape can be obtained. The reason why the annealing temperature is set to 150 to 650°C is that if it is less than 150°C, the annealing time is too long and the cost is high.
This is because the proper annealing time exceeding 0.degree. C. becomes shorter, the material becomes more susceptible to variations in the furnace temperature and the speed at which the sheet passes through the furnace, and a material with stable strength and springiness cannot be obtained.

以上の製造方法により、曲げ加工性の良好な高強度りん
青銅が得られる。
By the above manufacturing method, high-strength phosphor bronze with good bending workability can be obtained.

[実施例] 本発明を実施例をもって具体的に説明する。[Example] The present invention will be specifically explained using examples.

第1表にかかる成分のりん青銅を表中に示した製造条件
にて焼21t11圧延を行い、0.25+nmの厚さの
板材を得た。表中、比較例のNo、20は市販のベリリ
ウム銅(C1720−88)の0.2511111の板
材である。これらの例について、引張強さ、伸び、ばね
限界値、導電率、N1−P金属間化合物密度、曲げ加工
性、耐食性、耐応力腐食割れ性(以下耐SCC性と称す
)、はんだ付は性、はんた耐熱剥離性を調査した。引張
強さ、伸びはJIS5号引張試験片を用い測定した。ば
ね限界値は10■幅で11001a長さの短所に加工し
測定した。導電率は10mm幅で1001長さの短所に
加圧し、4端子法により測定した。N1−P金属間化合
物密度は、X線マイクロアナライザーにより5000倍
の視野で観察し、確認できる0、05μmから 1.0
μmまでの化合物数を50μm×50μmの範囲につい
て求めた。耐食性はJISH6502に準じ、試料表面
を1200工メリー紙にて研摩後、40℃、90%RH
において25ppm S O2雰囲気に14日間暴露し
、暴露前後の重量変化を測定した。この単αは腐食減量
を示す。(mdd :m g / d m 2/day
) 耐SCC性は12.51幅で150mm長さの短m試験
片に加工し、第1図に示すようにこの短Fg+lをルー
プ状にタコ糸2で縛り、2倍に純水で希釈したアンモニ
ア水3交を含む20交デシケータ内に暴露し、割れが発
生するまでの日数を調査した。はんだ付は性は試料表面
を# 1200工メリー紙にて研摩した後10III1
幅で50IIII11の長さに加工し、沸騰蒸気に1時
間暴露後ロジン系フラックスを用い、230℃の60S
n/ 40Pbはんだに5秒間浸漬し、外観を観察し、
95%以上の面積がはんだにより被覆されている場合を
良好とした。はんだめっき耐熱剥離性は試料表面を61
200工メリー紙にて研摩後、60Sn/ 40Pbは
んだを電気めっきし、150℃にて加熱し、100時間
毎に取り出し、板厚(0,25IIIm)の内側曲げ半
径で90°曲げを往復1回行い、曲げ部のはんだめっき
の剥離の有無を調べた。また、曲げ加工性は、1001
11幅に試料を加工した後、CE S MOOO2に準
じ、W曲げ試験を行い、曲げ部の外観を観察した。
Phosphor bronze having the components shown in Table 1 was subjected to baking 21t11 rolling under the production conditions shown in the table to obtain a plate material with a thickness of 0.25+nm. In the table, Comparative Example No. 20 is a plate material of commercially available beryllium copper (C1720-88) with a thickness of 0.2511111. For these examples, tensile strength, elongation, spring limit value, electrical conductivity, N1-P intermetallic compound density, bending workability, corrosion resistance, stress corrosion cracking resistance (hereinafter referred to as SCC resistance), soldering properties , the solder heat peeling properties were investigated. Tensile strength and elongation were measured using a JIS No. 5 tensile test piece. The spring limit value was measured by machining it into a width of 10cm and a length of 11001a. The electrical conductivity was measured by applying pressure to a short point of 10 mm width and 1001 length using a four-terminal method. The N1-P intermetallic compound density can be confirmed by observing with an X-ray microanalyzer with a field of view magnified 5000 times, from 0.05 μm to 1.0
The number of compounds up to μm was determined for a range of 50 μm×50 μm. Corrosion resistance is in accordance with JISH6502, after polishing the sample surface with 1200mm merry paper, 40℃, 90%RH
The samples were exposed to a 25 ppm SO2 atmosphere for 14 days, and weight changes before and after exposure were measured. This single α indicates corrosion loss. (mdd:mg/dm2/day
) For SCC resistance, a short m test piece with a width of 12.51 and a length of 150 mm was processed, and as shown in Figure 1, this short Fg+l was tied into a loop with octopus thread 2 and diluted twice with pure water. The sample was exposed to a 20-cycle desiccator containing 3-cycle ammonia water, and the number of days until cracking occurred was investigated. For soldering, the surface of the sample was polished with #1200 merry paper.
It was processed into a width of 50III and a length of 11, and after being exposed to boiling steam for 1 hour, it was heated to 60S at 230℃ using a rosin-based flux.
Immerse it in n/40Pb solder for 5 seconds, observe the appearance,
A case where 95% or more of the area was covered with solder was considered good. Solder plating heat peelability is 61 on the sample surface.
After polishing with 200mm merry paper, electroplated with 60Sn/40Pb solder, heated at 150℃, taken out every 100 hours, and bent 90° back and forth once with the inner bending radius of the board thickness (0.25IIIm). The presence or absence of peeling of the solder plating on the bent portion was examined. In addition, the bending workability is 1001
After processing the sample to a width of 11, a W bending test was conducted according to CE S MOOO2, and the appearance of the bent portion was observed.

曲げ軸は圧延方向に平行方向(Bad way)とし、
内側曲げ半径は板厚(0,25■)と同一とした。
The bending axis is parallel to the rolling direction (Bad way),
The inner bending radius was the same as the plate thickness (0.25 mm).

+Ihげ加工性のi11定は外観により、良好、肌荒れ
、割れ発生と3段階とした。
The i11 constant of +Ihing workability was classified into 3 levels depending on the appearance: good, rough skin, and cracking.

第1表中、本発明例は、Cu−5,1wL%5n−0,
04wL%P −0,23wt%Niを基本成分とした
ものと、Cu−7,6wt%5n−0,口9wtP −
0,37wt%Niを基本成分としたものに副成分を添
加した合金において、350〜400 ”Cにて0.0
07〜0.015mmに結晶粒が成長するまで焼鈍した
後、50〜70%の加工度で冷間圧延を行い、その後歪
取焼業屯を行ったものであり、Nt−P金属間化合物も
かなりの量析出していて、高強度でばね性も高く、曲げ
加工性も良好で他の特性も良好であることがわかる。
In Table 1, the present invention example shows Cu-5,1wL%5n-0,
04wL%P -0.23wt%Ni as the basic component and Cu-7.6wt%5n-0,9wtP-
0.0 at 350-400''C in an alloy with 0.37wt%Ni as the basic component and subcomponents added.
After annealing until crystal grains grow to a size of 0.07 to 0.015 mm, cold rolling was performed at a workability of 50 to 70%, and then strain relief was performed, and the Nt-P intermetallic compound was also It can be seen that a considerable amount of precipitate was present, and that the material had high strength, high spring properties, good bending workability, and other properties.

一方、比較例でNo、12は結晶粒が0.001■未満
であるため、曲げ加工性が悪く、N1−P金属間化合物
の析出量も少ない。No、13は結晶粒が0.040+
mと大きいため、曲げ加工の際肌荒れが生じる。No、
14は加工度が95%と高いため、曲げ加工性が悪い。
On the other hand, in Comparative Example No. 12, the crystal grain size was less than 0.001 square centimeters, so the bending workability was poor and the amount of N1-P intermetallic compound precipitated was also small. No. 13 has a crystal grain of 0.040+
Since it is large (m), roughness occurs during bending. No,
No. 14 has a high degree of workability of 95%, so the bending workability is poor.

No、15は高温で焼鈍したため、NiとPの金属間化
合物がほとんど析出せず、強度があまり高くなく、導電
率も低温焼鈍したNo、1に比べて低い。No、1Bは
Niを添加していないため、N1−P金属間化合物は生
成せず、Cu中へ全てPが固溶するため、No、6と比
較し導電率が低く、強度も高くない。No。
Since No. 15 was annealed at a high temperature, almost no intermetallic compound of Ni and P was precipitated, the strength was not very high, and the electrical conductivity was lower than No. 1 which was annealed at a low temperature. No. 1B does not contain Ni, so no N1-P intermetallic compound is formed, and all P is dissolved in Cu, so the conductivity is lower and the strength is not higher than No. 6. No.

17はPfiが多すぎるため、耐SCC性、はんだ耐熱
剥離性が極めて悪く、導電率も低い。No。
Since No. 17 contains too much Pfi, its SCC resistance and solder heat peeling resistance are extremely poor, and its electrical conductivity is also low. No.

18は副成分の添加量が4.2wt%と多いため、導電
率が低く、はんだ付は性も悪い。N、19は5nfiが
多すぎるため、強度は高いが曲げ加工性が悪い。No、
20は市販のベリリウム銅であり、本発明の例に比べて
高強度であり、導電率も高いが、曲げ加工性が悪く、耐
SCC性もあまり良好でない。
Since No. 18 has a large additive amount of auxiliary components of 4.2 wt%, the conductivity is low and the soldering properties are poor. N, 19 has too much 5nfi, so it has high strength but poor bending workability. No,
No. 20 is commercially available beryllium copper, which has higher strength and higher conductivity than the examples of the present invention, but has poor bending workability and poor SCC resistance.

[発明の効果] 本発明は曲げ加工性を損わずにりん青銅を高強度化する
製造方法であり、電子部品小型化、薄肉化に対し、安価
に対応し得る製造方法である。
[Effects of the Invention] The present invention is a manufacturing method for increasing the strength of phosphor bronze without impairing bending workability, and is a manufacturing method that can be used to reduce the size and thickness of electronic components at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐SCC性試験片の斜視図を示す。 1・・・短所、2・・・タコ糸。 FIG. 1 shows a perspective view of the SCC resistance test piece. 1... Disadvantages, 2... Octopus thread.

Claims (6)

【特許請求の範囲】[Claims] (1)Sn3.5〜9.0wt%、P0.001〜0.
30wt%、Ni0.001〜0.50wt%を含み、
残部Cuおよび不可避的な不純物からなるりん青銅にお
いて、150〜650℃の温度で結晶粒が0.001〜
0.025mmになり、かつNiとPが金属間化合物と
して析出する様に焼鈍することを特徴とする曲げ加工性
の良好な高強度りん青銅の製造方法。
(1) Sn3.5-9.0wt%, P0.001-0.
30 wt%, Ni 0.001 to 0.50 wt%,
In phosphor bronze consisting of the balance Cu and unavoidable impurities, the crystal grain size is 0.001 to
A method for producing high-strength phosphor bronze with good bending workability, characterized by annealing so that the thickness becomes 0.025 mm and Ni and P precipitate as an intermetallic compound.
(2)請求項(1)記載の結晶粒が0.001〜0.0
25mmであり、かつNiとPが金属間化合物として析
出する様に焼鈍したりん青銅において、さらに90%以
下の加工度で冷間圧延を行うことを特徴とする曲げ加工
性の良好な高強度りん青銅の製造方法。
(2) The crystal grains according to claim (1) are 0.001 to 0.0
A high-strength phosphor bronze with good bending workability characterized in that it is phosphor bronze having a thickness of 25 mm and annealed so that Ni and P precipitate as intermetallic compounds, and is further cold-rolled at a workability of 90% or less. Method of manufacturing bronze.
(3)請求項(2)記載の90%以下の加工度で冷間圧
延を行ったりん青銅において、150〜650℃の温度
で再結晶しない時間歪取焼鈍を行うことを特徴とする曲
げ加工性の良好な高強度りん青銅の製造方法。
(3) A bending process characterized by performing time strain relief annealing at a temperature of 150 to 650°C without recrystallization on phosphor bronze cold-rolled with a working degree of 90% or less as described in claim (2). A method for producing high-strength phosphor bronze with good properties.
(4)Sn3.5〜9.0wt%、P0.001〜0.
30wt%、Ni0.001〜0.50wt%を含み、
さらに副成分としてFe、Mg、Al、Si、Cr、M
n、Co、Zn、Ti、Zr、Pbの中から1種又は2
種以上を0.001〜2.0wt%含み、残部Cuおよ
び不可避的な不純物からなるりん青銅において、150
〜650℃の温度で結晶粒が0.001〜0.025m
mになり、かつNiとPが金属間化合物として析出する
様に焼鈍することを特徴とする曲げ加工性の良好な高強
度りん青銅の製造方法。
(4) Sn3.5-9.0wt%, P0.001-0.
30 wt%, Ni 0.001 to 0.50 wt%,
Furthermore, as subcomponents Fe, Mg, Al, Si, Cr, M
One or two of n, Co, Zn, Ti, Zr, and Pb
In phosphor bronze containing 0.001 to 2.0 wt% of carbon dioxide or more, and the balance consisting of Cu and unavoidable impurities,
Grain size is 0.001~0.025m at a temperature of ~650℃
1. A method for producing high-strength phosphor bronze with good bending workability, characterized by annealing so that Ni and P precipitate as an intermetallic compound.
(5)請求項(4)記載の結晶粒が0.001〜0.0
25mmであり、かつNiとPが金属間化合物として析
出する様に焼鈍したりん青銅において、さらに90%以
下の加工度で冷間圧延を行うことを特徴とする曲げ加工
性の良好な高強度りん青銅の製造方法。
(5) The crystal grains according to claim (4) are 0.001 to 0.0
A high-strength phosphor bronze with good bending workability characterized in that it is phosphor bronze having a thickness of 25 mm and annealed so that Ni and P precipitate as intermetallic compounds, and is further cold-rolled at a workability of 90% or less. Method of manufacturing bronze.
(6)請求項(5)記載の90%以下の加工度で冷間圧
延を行ったりん青銅において、150〜650℃の温度
で再結晶しない時間歪取焼鈍を行うことを特徴とする曲
げ加工性の良好な高強度りん青銅の製造方法。
(6) A bending process characterized by performing time strain relief annealing at a temperature of 150 to 650°C without recrystallization on phosphor bronze cold-rolled with a working degree of 90% or less as described in claim (5). A method for producing high-strength phosphor bronze with good properties.
JP22152589A 1989-08-30 1989-08-30 Manufacture of high strength phosphor bronze having good bendability Pending JPH0387341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22152589A JPH0387341A (en) 1989-08-30 1989-08-30 Manufacture of high strength phosphor bronze having good bendability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22152589A JPH0387341A (en) 1989-08-30 1989-08-30 Manufacture of high strength phosphor bronze having good bendability

Publications (1)

Publication Number Publication Date
JPH0387341A true JPH0387341A (en) 1991-04-12

Family

ID=16768081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22152589A Pending JPH0387341A (en) 1989-08-30 1989-08-30 Manufacture of high strength phosphor bronze having good bendability

Country Status (1)

Country Link
JP (1) JPH0387341A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0841408A2 (en) * 1996-11-07 1998-05-13 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
US5865910A (en) * 1996-11-07 1999-02-02 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
US6149741A (en) * 1996-07-30 2000-11-21 Establissements Griset Copper-based alloy having a high electrical conductivity and a high softening temperature for application in electronics
US6436206B1 (en) 1999-04-01 2002-08-20 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
US6471792B1 (en) 1998-11-16 2002-10-29 Olin Corporation Stress relaxation resistant brass
EP1862560A1 (en) * 2005-03-02 2007-12-05 The Furukawa Electric Co., Ltd. Copper alloy and method for production thereof
JP5873590B1 (en) * 2015-05-22 2016-03-01 株式会社藤井製作所 Free-cutting phosphor bronze rod
CN114214530A (en) * 2021-12-06 2022-03-22 宁波金田铜业(集团)股份有限公司 Preparation method of corrosion-resistant tin-phosphor bronze wire

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6149741A (en) * 1996-07-30 2000-11-21 Establissements Griset Copper-based alloy having a high electrical conductivity and a high softening temperature for application in electronics
EP0841408A2 (en) * 1996-11-07 1998-05-13 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
WO1998020176A1 (en) * 1996-11-07 1998-05-14 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
US5820701A (en) * 1996-11-07 1998-10-13 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
US5865910A (en) * 1996-11-07 1999-02-02 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
EP0841408A3 (en) * 1996-11-07 1999-03-03 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
US6471792B1 (en) 1998-11-16 2002-10-29 Olin Corporation Stress relaxation resistant brass
US6436206B1 (en) 1999-04-01 2002-08-20 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
EP1862560A1 (en) * 2005-03-02 2007-12-05 The Furukawa Electric Co., Ltd. Copper alloy and method for production thereof
EP1862560A4 (en) * 2005-03-02 2013-09-18 Furukawa Electric Co Ltd Copper alloy and method for production thereof
JP5873590B1 (en) * 2015-05-22 2016-03-01 株式会社藤井製作所 Free-cutting phosphor bronze rod
CN114214530A (en) * 2021-12-06 2022-03-22 宁波金田铜业(集团)股份有限公司 Preparation method of corrosion-resistant tin-phosphor bronze wire

Similar Documents

Publication Publication Date Title
KR910001490B1 (en) Copper alloy having an improved combination of strenth and conductivity and the process for making
US6132529A (en) Leadframe made of a high-strength, high-electroconductivity copper alloy
JP4056175B2 (en) Copper alloy plate for lead frames, terminals, connectors, switches or relays with excellent press punchability
JP3800279B2 (en) Copper alloy sheet with excellent press punchability
TWI628407B (en) Copper alloy plate and coil for heat dissipation parts
JPS63266049A (en) Production of high tensile copper based alloy
JP5135914B2 (en) Manufacturing method of high-strength copper alloys for electrical and electronic parts
JP4006468B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JPH0387341A (en) Manufacture of high strength phosphor bronze having good bendability
KR20010062360A (en) copper alloy for electronic materials with excellent surface special and manufacturing method therefor
JPH03162553A (en) Manufacture of high strength and high conductivity copper alloy having good bendability
JPH07258803A (en) Production of titanium-copper alloy excellent in bendability and stress relaxation property
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP3729733B2 (en) Copper alloy plate for lead frame
JPS6345336A (en) Copper alloy for electronic and electric appliance and its production
JPS62182240A (en) Conductive high-tensile copper alloy
JPH0987814A (en) Production of copper alloy for electronic equipment
JPH03104845A (en) Manufacture of high strength phosphor bronze having good bendability
JP2555068B2 (en) Manufacturing method of high strength copper base alloy
JPH0559974B2 (en)
JPS63128158A (en) Manufacture of high strength copper alloy having high electrical conductivity
JPH05311298A (en) Copper base alloy for connector and its manufacture
JPS63105941A (en) High strength conductive copper alloy and its production
JPS6369933A (en) Copper alloy for electronic and electrical equipment and its production
JPH0832935B2 (en) High strength and high toughness Cu alloy with little characteristic anisotropy