JPH0987814A - Production of copper alloy for electronic equipment - Google Patents

Production of copper alloy for electronic equipment

Info

Publication number
JPH0987814A
JPH0987814A JP27207595A JP27207595A JPH0987814A JP H0987814 A JPH0987814 A JP H0987814A JP 27207595 A JP27207595 A JP 27207595A JP 27207595 A JP27207595 A JP 27207595A JP H0987814 A JPH0987814 A JP H0987814A
Authority
JP
Japan
Prior art keywords
temperature
copper alloy
cold rolling
workability
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27207595A
Other languages
Japanese (ja)
Inventor
Yasuo Tomioka
靖夫 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP27207595A priority Critical patent/JPH0987814A/en
Publication of JPH0987814A publication Critical patent/JPH0987814A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a method for producing a copper alloy for electronic equipment, excellent in characteristics, such as strength, electric conductivity, bendability, stress relaxation property, and thermal peeling resistance of solder. SOLUTION: A copper alloy material, which has a composition consisting of, by weight, 0.05-0.4% Cr, 0.03-0.25% Zr, 0.05-2.0% Zn, and the balance Cu with inevitable impurities and further containing, if necessary, (1) 0.1-1.8% Fe and 0.1-0.8% Ti or (and) (2) 0.01-1.0%, in total, of one or more elements among Ni, Sn, In, Mn, P, Mg, and Si, is used. This material is subjected, in succession, to (a) solution heat treatment at >=700 deg.C for regulating crystalline grain size to <=40μm, to (b) cold rolling at 20-60% draft, to (c) aging treatment at 300-700 deg.C, to (d) cold rolling at <=30% draft, and then to (e) stress relief annealing at 350-700 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種端子、コネク
ター、リレーまたはスイッチ等の電子部品のうちでも、
優れた強度、導電率、曲げ性、半田耐熱剥離および応力
緩和特性の優れたバランスが要求される分野で使用され
る電子機器用銅合金の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to electronic parts such as various terminals, connectors, relays and switches.
The present invention relates to a method for producing a copper alloy for electronic devices used in fields requiring excellent balance of strength, conductivity, bendability, solder heat resistance peeling and stress relaxation characteristics.

【0002】[0002]

【従来技術とその課題】各種端子、コネクター、リレー
またはスイッチといった電子部品に対しては、従来、安
価な「黄銅」、優れたばね特性を有する「りん青銅」或
いは優れたばね特性と耐食性を有する「洋白」といった
材料が適用されていた。
2. Description of the Related Art Conventionally, for electronic parts such as various terminals, connectors, relays or switches, inexpensive "brass", "phosphor bronze" having excellent spring characteristics, or "Western" having excellent spring characteristics and corrosion resistance is used. Materials such as "white" were applied.

【0003】ところが、近年、電子機器類およびその部
品には小型化、薄肉化が要求されるようになり、また、
自動車の電装部品のように高温の環境下で使用されるケ
ースでは、苛酷な環境に耐えられる信頼性の高い部品が
望まれている。このような要求に対して、材料には a)薄い板厚においても高い接触圧を生じるための十分
な強度を有すること、 b)応力緩和率が低く、高温下で長期間使用しても接触
圧が低下しないこと、 c)導電率が高く、通電時にジュール熱の発生しにく
く、また、発生する熱を放散しやすいこと、 d)厳しい曲げ加工を行っても曲げ部に割れや肌あれの
生じないこと、及び e)半田耐熱剥離性が良好なこと、といった多数の特性
が要求されている。
In recent years, however, electronic devices and their parts are required to be smaller and thinner, and
In the case of being used in a high temperature environment such as an electric component of an automobile, a highly reliable component capable of withstanding a harsh environment is desired. In order to meet such requirements, the material a) has sufficient strength to generate a high contact pressure even in a thin plate thickness, and b) has a low stress relaxation rate and can be used for a long time at high temperature. The pressure does not decrease, c) the electrical conductivity is high, Joule heat is less likely to be generated during energization, and the generated heat is easily dissipated. D) Even if severe bending is performed, cracks or roughening of the bent portion may occur. Many characteristics are required, such as not occurring, and e) good solder heat resistance peeling property.

【0004】このように、要求性能が益々高度化しつつ
ある電子機器部材への適用を考えた場合には、これらの
従来の銅合金材料では導電率の点で必ずしも満足できる
とは云えず、またコネクターとしての性能面からは「接
触部において応力緩和特性が悪い」という欠点が指摘さ
れていた。「応力緩和特性」とは、曲げ応力を加え、こ
の状態で所定の温度で一定期間保持した後、応力を開放
した際にもなお残留する歪の程度を云うものである。
As described above, when considering the application to electronic equipment members whose required performance is becoming more and more sophisticated, it cannot be said that these conventional copper alloy materials are always satisfactory in terms of electrical conductivity. From the viewpoint of the performance as a connector, a drawback was pointed out that "the stress relaxation property is poor at the contact portion". The "stress relaxation characteristic" refers to the degree of strain that remains even when stress is released after bending stress is applied and this state is maintained at a predetermined temperature for a certain period of time.

【0005】また、優れた導電性と強度を示し、半導体
機器リード材としても導電性ばね材として好適な銅合金
としてCu−0.05〜1.0%Cr−0.05〜1.
0%Zr系合金が知られているが、はんだ付け性、メッ
キ性、エッチング性、折り曲げ性については満足できる
特性を示さない。「応力緩和特性」は考慮されていな
い。この合金の改良として、特開昭63−125631
号は、合金中の酸化物及び硫化物を低減するべく、酸素
含有量を20ppm以下そして硫黄含有量を15ppm
以下に規制した合金を提唱している。更に、強度及びば
ね特性を更に改善するため、副成分として、Al,B
e,Co,Fe,Ni,Hf,In,Mo,Mg,P
b,Si,Te,Ti及びZnの1種以上を0.05〜
1.0%添加することも提唱している。しかしながら、
ばね特性、エッチング性、半田付け性、曲げ加工性、応
力緩和特性の点でいまだ半導体機器のリード材として十
分に満足できるとはいい難い。
Further, as a copper alloy which exhibits excellent conductivity and strength and is suitable as a conductive spring material as a lead material for semiconductor devices, Cu-0.05 to 1.0% Cr-0.05 to 1.
Although a 0% Zr-based alloy is known, it does not exhibit satisfactory properties in solderability, plating property, etching property, and bending property. “Stress relaxation characteristics” are not taken into consideration. As an improvement of this alloy, Japanese Patent Laid-Open No. 63-125631
To reduce oxides and sulfides in alloys, oxygen content below 20ppm and sulfur content below 15ppm.
The following regulated alloys are proposed. Further, in order to further improve the strength and the spring characteristics, Al, B are added as auxiliary components.
e, Co, Fe, Ni, Hf, In, Mo, Mg, P
One or more of b, Si, Te, Ti and Zn is 0.05 to
It is also proposed to add 1.0%. However,
Spring properties, etching properties, solderability, bending workability, and stress relaxation properties cannot be said to be sufficient as a lead material for semiconductor devices.

【0006】更に、米国特許第5,306,465号に
は、優れた強度と導電性を合わせ持つ銅合金として、
0.5%までのCr、0.05〜0.25%のZr、
0.1〜1.0%のCo,Fe,Ni乃至その混合物及
び0.05〜0.5%のTiを含有する合金を提唱して
いる。しかし、この合金とて、ばね特性、エッチング
性、半田耐熱剥離性、応力緩和特性及び曲げ加工性の点
でいまだ十分に満足できるとはいい難い。
Further, US Pat. No. 5,306,465 describes a copper alloy having excellent strength and conductivity.
Cr up to 0.5%, Zr 0.05 to 0.25%,
An alloy containing 0.1 to 1.0% Co, Fe, Ni or a mixture thereof and 0.05 to 0.5% Ti is proposed. However, it is hard to say that this alloy is still sufficiently satisfactory in terms of spring properties, etching properties, solder heat release properties, stress relaxation properties, and bending workability.

【0007】[0007]

【発明が解決しようとする課題】このようなことから、
本発明の課題は、従来の電子機器用銅合金に匹敵する強
度および曲げ性を有し、従来材よりも優れた応力緩和特
性および導電率を持ち、半田耐熱剥離性といった最近の
高度化した各種の要求性能に答え得る特性バランスを持
った銅合金の製造方法を提供することである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
An object of the present invention is to have strength and bendability comparable to conventional copper alloys for electronic devices, to have stress relaxation characteristics and electrical conductivity superior to conventional materials, and to use various recently advanced solder heat-resistant peeling properties. It is an object of the present invention to provide a method for producing a copper alloy having a property balance capable of meeting the required performance of

【0008】[0008]

【課題を解決するための手段】本発明者等は、固溶型銅
合金に比較して導電率を低下させずに高強度化が可能で
ある析出型銅合金の一つであるCu−Cr−Zr合金に
着目し、上記課題を達成するべく鋭意研究を重ねた結
果、特定種の合金成分として厳密に制限された特定の割
合でCr、Zr及びZnを含有させると共に、溶体化処
理の条件選定により結晶粒径を5〜40μmの範囲内に
調整し、さらに溶体化処理後の加工度並びに時効処理及
び歪取焼鈍条件を選定して製造された銅合金は、強度、
応力緩和特性、導電率、曲げ性、半田耐熱剥離性等の諸
特性を今後の電子機器用として高いレベルでバランス良
く兼備する上、必要に応じ適量のTi及びFe、更には
適量のNi、Sn、In、Mn、P、MgおよびSiを
添加すれば半田耐熱剥離性や強度特性の更なる改善も可
能であるとの新しい知見を得ることができた。
The inventors of the present invention have found that Cu-Cr, which is one of the precipitation-type copper alloys capable of increasing the strength without lowering the conductivity as compared with the solid solution type copper alloy. -As a result of intensive research to achieve the above-mentioned subject, focusing on a Zr alloy, as a result, in addition to containing Cr, Zr, and Zn in a specific ratio strictly limited as an alloy component of a specific species, solution treatment conditions The copper alloy produced by adjusting the crystal grain size within a range of 5 to 40 μm by selection, and further selecting the workability after solution treatment, the aging treatment and the strain relief annealing condition has strength,
In addition to having various properties such as stress relaxation characteristics, conductivity, bendability, and soldering heat peeling resistance at a high level in a well-balanced manner, suitable amounts of Ti and Fe, and if necessary, appropriate amounts of Ni and Sn , In, Mn, P, Mg and Si were added, it was possible to obtain new knowledge that the solder heat-resistant peeling property and the strength characteristics can be further improved.

【0009】本発明は、上記知見を基にして完成された
ものであり、重量割合にて、Cr:0.05〜0.4
%、Zr:0.03〜0.25%、及びZn:0.05
〜2.0%を含有し、更に必要に応じて、(a)Fe:
0.1〜1.8%及びTi:0.1〜0.8%、或いは
(b)Ni、Sn、In、Mn、P、Mg及びSiの1
種以上:総量で0.01〜1.0%、或いは(c)F
e:0.1〜1.8%及びTi:0.1〜0.8%そし
てNi、Sn、In、Mn、P、Mg及びSiの1種以
上:総量で0.01〜1.0%を含有し、残部がCuお
よび不可避的不純物からなる銅合金材料に対して、
(イ)結晶粒径を40μm以下に調整する、700℃以
上の温度での溶体化処理段階と、(ロ)加工度20〜6
0%の冷間圧延段階と、(ハ)300〜700℃の温度
での時効処理段階と、(ニ)加工度30%以下の冷間圧
延段階と、(ホ)350〜700℃の温度での歪取焼鈍
段階とを順次行うことを特徴とする電子機器用銅合金の
製造方法を提供する。
The present invention has been completed based on the above findings, and in weight ratio, Cr: 0.05 to 0.4.
%, Zr: 0.03 to 0.25%, and Zn: 0.05
.About.2.0% and, if necessary, (a) Fe:
0.1-1.8% and Ti: 0.1-0.8%, or (b) 1 of Ni, Sn, In, Mn, P, Mg and Si.
Species or more: 0.01 to 1.0% in total, or (c) F
e: 0.1 to 1.8% and Ti: 0.1 to 0.8% and one or more of Ni, Sn, In, Mn, P, Mg and Si: 0.01 to 1.0% in total. To a copper alloy material containing Cu and the balance consisting of Cu and inevitable impurities,
(A) A solution treatment step at a temperature of 700 ° C. or higher for adjusting the crystal grain size to 40 μm or less, and (b) a workability of 20 to 6
At 0% cold rolling stage, (C) aging treatment stage at a temperature of 300 to 700 ° C., (D) cold rolling stage at a workability of 30% or less, and (E) at a temperature of 350 to 700 ° C. The present invention provides a method for manufacturing a copper alloy for electronic devices, which comprises sequentially performing the stress relief annealing step of 1.

【0010】[0010]

【発明の実施の形態】以下、本発明の成分組成並びに製
造条件の限定理由を、その作用と共に詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the component composition and manufacturing conditions of the present invention will be described in detail below together with their action.

【0011】〔Cr〕Crは、合金を時効処理したとき
に単独で母合金中に析出して合金の強度および耐熱性を
向上させる作用を発揮するが、その含有量が0.05%
未満では前記作用による所望の効果が期待できず、一方
0.4%を超えてCrを含有させると溶体化処理後にも
未固溶Crが母材中に残留するようになって導電率およ
び加工性を著しく低下させることから、Cr含有量は
0.05〜0.4%と定めた。
[Cr] Cr has an effect of improving the strength and heat resistance of the alloy by precipitating in the master alloy alone when the alloy is aged, but its content is 0.05%.
If less than 0.4%, the desired effect due to the above action cannot be expected. On the other hand, if more than 0.4% of Cr is contained, undissolved Cr remains in the base material even after the solution treatment, resulting in conductivity and processing. Therefore, the Cr content is determined to be 0.05 to 0.4%.

【0012】〔Zr〕Zrには、時効処理によりCuと
化合物を形成して母材中に析出しこれを強化する作用が
あるが、その含有量が0.03%未満では前記作用によ
る所望の効果が得られず、一方0.25%を超えてZr
を含有させると、溶体化処理後にも未固溶Zrが母材中
に残留するようになって導電率及び加工性の著しい低下
を招くことから、Zr含有量は0.03〜0.25%と
定めた。
[Zr] Zr has a function of forming a compound with Cu by aging treatment to precipitate in the base material and strengthen it. However, if the content thereof is less than 0.03%, the desired effect due to the above-mentioned effect is exerted. No effect, on the other hand, exceeding 0.25% Zr
If Zr is contained, undissolved Zr will remain in the base material even after solution treatment, resulting in a significant decrease in conductivity and workability. Therefore, the Zr content is 0.03 to 0.25%. I decided.

【0013】〔Zn〕Znは、半田の耐熱剥離性を向上
させる作用を有しているため添加される成分であるが、
その含有量が0.06%未満では前記作用による所望の
効果が得られず、一方2.0%を超えてZnを含有させ
ると導電率並びに応力緩和特性が劣化することから、Z
n含有量は0.06〜2.0%と定めた。
[Zn] Zn is a component added because it has an effect of improving the heat-resistant peeling property of solder,
If the content is less than 0.06%, the desired effect due to the above-mentioned action cannot be obtained, while if the content of Zn exceeds 2.0%, the electrical conductivity and stress relaxation characteristics are deteriorated.
The n content was set to 0.06 to 2.0%.

【0014】〔Ti及びFe〕Ti及びFeは、合金を
時効処理した時に母相中にTiとFeとの金属間化合物
を形成し、その結果として合金強度をさらに向上させる
作用を発揮するが、これらの含有量がそれぞれ0.1%
未満では前記作用による所望の効果が得られない。一
方、Ti含有量が0.8%を超えたり、Fe含有量が
1.80%を超える場合には、TiとFeを主成分とす
る未溶解介在物が5μm以上の大きさとなって導電性及
び加工性を著しく阻害する。
[Ti and Fe] Ti and Fe form an intermetallic compound of Ti and Fe in the matrix when the alloy is aged, and as a result, exert an action of further improving the alloy strength. Each of these contents is 0.1%
If it is less than the above range, the desired effect due to the above action cannot be obtained. On the other hand, when the Ti content exceeds 0.8% or the Fe content exceeds 1.80%, the undissolved inclusions containing Ti and Fe as main components have a size of 5 μm or more, and the conductivity is increased. And significantly impairs workability.

【0015】〔Ni、Sn、In、Mn、P、Mgおよ
びSi〕これらの成分は、何れも合金の導電性を大きく
低下させずに主として固溶強化により強度を向上させる
作用を有しており、従って必要により1種または2種以
上の添加がなされるが、その含有量が総量で0.01重
量%未満であると前記作用による所望の効果が得られ
ず、一方、総量で1.0重量%を超える含有量になると
合金の導電性および加工性を著しく劣化する。このた
め、単独添加或いは2種以上の複合添加がなされるN
i、Sn、In、Mn、P、MgおよびSiの含有量は
総量で0.01〜1.0重量%と定めた。
[Ni, Sn, In, Mn, P, Mg and Si] Each of these components has the effect of improving strength mainly by solid solution strengthening without greatly reducing the conductivity of the alloy. Therefore, if necessary, one kind or two or more kinds are added, but if the total amount is less than 0.01% by weight, the desired effect due to the above action cannot be obtained, while the total amount is 1.0 If the content is more than wt%, the conductivity and workability of the alloy will be significantly deteriorated. Therefore, N added alone or in combination of two or more kinds
The total content of i, Sn, In, Mn, P, Mg and Si was set to 0.01 to 1.0% by weight.

【0016】〔溶体化処理〕溶体化処理を行うのは、後
の時効処理で高強度の材料を得るためである。処理温度
が高いほうがCrおよびZrのマトリックス中へ固溶量
が増し、時効後の強度が高くなる。処理温度を700℃
以上とするのは、処理温度が700℃未満ではこのよう
な強度の上昇が期待できないためである。結晶粒径を4
0μm以下とするのは、結晶粒径が40μmを超えると
曲げ加工を受けたときに曲げ部に肌荒れが発生するため
である。結晶粒径は5〜40μmの範囲をとるように調
整される。また、溶体化処理の際、冷却速度は速いほど
高強度が得られやすく、具体的には水冷を行うことが望
ましい。
[Solution Treatment] The solution treatment is performed in order to obtain a high-strength material in the subsequent aging treatment. The higher the treatment temperature, the higher the amount of solid solution in the matrix of Cr and Zr, and the higher the strength after aging. Processing temperature is 700 ℃
The reason for the above is that such an increase in strength cannot be expected when the treatment temperature is lower than 700 ° C. Crystal grain size is 4
The reason why the grain size is 0 μm or less is that when the crystal grain size exceeds 40 μm, roughening occurs in the bent portion when subjected to bending. The crystal grain size is adjusted to be in the range of 5 to 40 μm. Further, in the solution treatment, the higher the cooling rate, the higher the strength is likely to be obtained. Specifically, it is desirable to perform water cooling.

【0017】〔冷間圧延〕溶体化処理後に冷間圧延を行
うのは、加工硬化と、時効工程での析出物の析出の促進
により、高強度を得るためである。冷間圧延の加工度を
20%以上とするのは、20%未満では上述の効果が不
十分となり、所望の強度が得られないためである。ま
た、加工度を60%以下とするのは、60%を超えると
では曲げ加工の際、 曲げ部に肌荒れが発生するためであ
る。
[Cold Rolling] Cold rolling is performed after the solution treatment in order to obtain high strength by work hardening and promotion of precipitation of precipitates in the aging step. The workability of cold rolling is set to 20% or more because if the content is less than 20%, the above-described effect becomes insufficient and desired strength cannot be obtained. Further, the workability is set to 60% or less because if it exceeds 60%, roughening occurs at the bent portion during bending.

【0018】〔時効処理〕時効処理は、強度及び導電性
を向上させるために必要であるが、時効処理温度を30
0〜700℃とする理由は、300℃未満では時効処理
に時間がかかり経済的ではなく、他方700℃を超える
と、CrおよびZrが固溶してしまい、時効硬化型の合
金の特徴である強度および導電性が得られないためであ
る。
[Aging Treatment] The aging treatment is necessary to improve strength and conductivity, but the aging treatment temperature is 30
The reason why the temperature is set to 0 to 700 ° C. is that it is not economical because the aging treatment takes time if it is less than 300 ° C. On the other hand, if it exceeds 700 ° C., Cr and Zr become a solid solution, which is a characteristic of the age hardening alloy. This is because strength and conductivity cannot be obtained.

【0019】〔冷間圧延〕時効処理後の冷間圧延は、加
工硬化と析出物の微細化によりさらに著しい強度上昇が
起こるためである。この際の加工度を30%以下とする
のは、30%を超えると、曲げ加工の際曲げ部に肌荒れ
が発生するためである。
[Cold Rolling] This is because cold rolling after aging treatment causes a further remarkable increase in strength due to work hardening and refinement of precipitates. The reason why the workability at this time is 30% or less is that if the workability exceeds 30%, roughening occurs in the bent portion during bending.

【0020】〔歪取焼鈍〕歪取焼鈍には、ばね性を向上
させる効果と延性を回復させる効果がある。焼鈍温度を
350℃〜700℃とした理由は、350℃未満では十
分なばね性と延性が得られないためであり、700℃を
超えると析出物の再固溶が生じ、強度が著しく低下する
ためである。
[Strain relief annealing] The strain relief annealing has an effect of improving the spring property and an effect of recovering the ductility. The reason for setting the annealing temperature to 350 ° C. to 700 ° C. is that sufficient spring properties and ductility cannot be obtained at less than 350 ° C., and if it exceeds 700 ° C., re-dissolution of precipitates occurs and the strength decreases significantly. This is because.

【0021】なお、本発明の製造条件の規定は、溶体化
処理以降の工程に関してのものであり、それ以前の工
程、製造条件は任意のものでかまわない。すなわち、溶
体化処理の直前の溶体化処理以前に行なう溶体化処理、
熱間圧延、中間焼鈍、冷間圧延といった工程について、
本発明方法はなんら規定しない。
The definition of the manufacturing conditions of the present invention relates to the steps after the solution treatment, and the steps and the manufacturing conditions before that may be arbitrary. That is, the solution treatment performed before the solution treatment immediately before the solution treatment,
Regarding processes such as hot rolling, intermediate annealing, cold rolling,
The method of the invention is not specified in any way.

【0022】半田付け性及びめっき性は表面の酸化皮膜
の厚さにより影響を受けるが、その膜厚が20Åを超え
ると、半田付け性及びめっき性が劣化することから、用
途及び状況によっては材料表面の酸化膜厚を20Å以下
に調整することが好ましい場合がある。材料表面の酸化
膜厚を20Å以下に調整するためには、まず熱処理後の
酸化膜を除去することが必要である。熱間圧延後には、
片面0.3mm以上の面削を行い、また溶体化処理後及
び時効後にはそれぞれ適当な酸を用いた酸洗と研磨布を
用いた研磨を行って酸化膜の除去処理を行う。次に、最
終の歪取焼鈍時には雰囲気の調整が必要であり、焼鈍炉
内の酸素濃度を20ppm以下とする必要がある。この
両者を行うことにより酸化膜厚を調整することができ
る。
Solderability and platability are influenced by the thickness of the oxide film on the surface, but if the thickness exceeds 20Å, the solderability and platability will deteriorate, so depending on the application and situation, the material may be different. It may be preferable to adjust the surface oxide film thickness to 20 Å or less. In order to adjust the oxide film thickness on the material surface to 20 Å or less, it is first necessary to remove the oxide film after the heat treatment. After hot rolling,
One surface is cut by 0.3 mm or more, and after the solution treatment and after aging, pickling with an appropriate acid and polishing with a polishing cloth are performed to remove the oxide film. Next, it is necessary to adjust the atmosphere during the final strain relief annealing, and it is necessary to set the oxygen concentration in the annealing furnace to 20 ppm or less. By performing both of these, the oxide film thickness can be adjusted.

【0023】[0023]

【実施例】続いて、本発明の効果を実施例及び比較例に
より更に具体的に説明する。
EXAMPLES Next, the effects of the present invention will be described more specifically with reference to Examples and Comparative Examples.

【0024】まず、電気銅あるいは無酸素銅を原料と
し、高周波溶解炉にて表1(本発明合金)及び表2(比
較例合金)に示す各種成分組成の銅合金インゴット(厚
さ30mm)を真空中あるいはAr雰囲気中で溶製し
た。次に、これら各インゴットを熱間加工あるいは冷間
加工により所定の厚さにした後、表中の結晶粒径に調整
するための溶体化処理、冷間圧延、時効処理、最終の冷
間圧延、歪取焼鈍を順次行い、0.25mmの板とし
た。そして、得られた板材から各種の試験片を採取して
材料試験を行ない、電子機器材料としての特性を評価し
た。
First, electrolytic copper or oxygen-free copper was used as a raw material, and copper alloy ingots (thickness 30 mm) of various composition shown in Table 1 (inventive alloy) and Table 2 (comparative example alloy) were prepared in a high frequency melting furnace. It was melted in a vacuum or in an Ar atmosphere. Next, after making each of these ingots a predetermined thickness by hot working or cold working, solution treatment for adjusting the crystal grain size in the table, cold rolling, aging treatment, final cold rolling Then, strain relief annealing was sequentially performed to obtain a 0.25 mm plate. Then, various test pieces were sampled from the obtained plate material and a material test was performed to evaluate the characteristics as an electronic device material.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】評価した特性は「強度」、「伸び」、「導
電性」、「ばね性」、「曲げ性」、「応力緩和特性」及
び「半田耐熱剥離性」である。「強度」並びに「伸び」
は引張試験により測定し、「導電性」は導電率(%IA
CS)を測定して求めた。また、「ばね性」については
ばね限界値(Kb)を測定した。「曲げ性」について
は、W曲げ試験機によって曲げ加工を施し、その曲げ部
を目視観察することにより「肌荒れの程度」および「割
れの有無」を調査して評価した。なお、評価結果は、
「○:肌荒れおよび割れの発生なし」、そして「×:肌
荒れまたは割れが発生あり」で表示した。「応力緩和特
性」については、短冊状試験片の一端を固定すると共に
他端に応力を負荷して曲げ応力を加え、この状態で15
0℃に1000時間保持した後、応力を開放した際にも
なお残留する歪を測定した。「半田耐熱剥離性」の調査
は、素材に5μm厚の半田(90%Sn−10%Pb)
めっきを施した後、150℃の高温槽に1000時間ま
で保持し、この間100時間毎に取り出して90°曲げ
往復1回を施して半田剥離の開始時間を調べる方法によ
った。なお1000時間まで剥離のなかったものは調査
結果を「1000h」と表示した。これらの調査結果を
表3に示す。
The evaluated properties are "strength", "elongation", "conductivity", "spring property", "bendability", "stress relaxation property" and "solder heat resistance peeling property". "Strength" and "Elongation"
Is measured by a tensile test, and "conductivity" means conductivity (% IA
CS) was measured and determined. As for the "spring property", the spring limit value (Kb) was measured. The "bendability" was evaluated by conducting a bending process with a W bending tester and visually observing the bent portion to examine the "degree of rough skin" and "presence of cracks". The evaluation results are
"○: No rough skin and cracks were generated", and "x: Rough skin or cracks were generated" were displayed. Regarding the “stress relaxation characteristics”, one end of a strip-shaped test piece was fixed and a stress was applied to the other end to apply bending stress.
After holding at 0 ° C. for 1000 hours, the strain still remaining when the stress was released was measured. "Soldering heat resistance peeling resistance" was investigated by using 5 μm thick solder (90% Sn-10% Pb) as the material.
After plating, it was kept in a high temperature tank at 150 ° C. for up to 1000 hours, taken out every 100 hours during this time, and subjected to 90 ° bending reciprocation once to examine the start time of solder peeling. If the peeling did not occur for 1000 hours, the result of the examination was displayed as "1000h". Table 3 shows the results of these investigations.

【0028】[0028]

【表3】 [Table 3]

【0029】表3に示される結果からは次のことが明ら
かである。即ち、本発明合金「1〜16」は、いずれも
強度、電導性、曲げ性、応力緩和特性が共に優れてお
り、また、その他の特性についても充分に良好な評価が
得られるものである。これに対し、比較合金「17」は
Cr含有量が充分でないため強度が劣っており、また比
較合金「18、19」はZr、Cr含有量がそれぞれ上
限値を超えているため導電性および曲げ性が劣ってい
る。次に、比較合金「20」はZn含有量が上限値を超
えているため、応力緩和特性および導電性が劣ってい
る。比較合金「21」は溶体化処理後の結晶粒径が上限
値を超えているために、比較合金「22」は1回目の冷
間圧延の加工度が上限値を超えているために、また比較
合金「24」は最終の冷間圧延の加工度が上限値を超え
ているために曲げ性が劣っている。比較合金「23」は
1回目の冷間圧延の加工度が下限値を超えているため
に、比較合金「25」は、歪取焼鈍の温度が上限値を超
えているために、強度が劣っている例である。比較合金
「26、27」は、結晶粒径が大きいので曲げ性が悪く
なっている。
From the results shown in Table 3, the following is clear. That is, the alloys of the present invention "1-16" are all excellent in strength, electrical conductivity, bendability, and stress relaxation characteristics, and sufficiently good evaluations of other characteristics are obtained. On the other hand, the comparative alloy “17” is inferior in strength because the Cr content is not sufficient, and the comparative alloys “18, 19” have Zr and Cr contents exceeding the upper limits, respectively, and thus the electrical conductivity and the bending are small. The sex is inferior. Next, since the Zn content of the comparative alloy “20” exceeds the upper limit, the stress relaxation characteristics and the conductivity are inferior. Comparative alloy “21” has a crystal grain size after solution treatment exceeding the upper limit value, and Comparative alloy “22” has a workability of the first cold rolling exceeding the upper limit value. Comparative alloy "24" is inferior in bendability because the final cold-rolling workability exceeds the upper limit. The comparative alloy “23” has a workability of the first cold rolling exceeding the lower limit value, and the comparative alloy “25” has a poor strength because the strain relief annealing temperature exceeds the upper limit value. It is an example. The comparative alloys "26, 27" have a large crystal grain size and thus have poor bendability.

【0030】[0030]

【発明の効果】本発明の製造方法を採用することによ
り、強度、導電性、曲げ性、半田耐熱剥離性、および応
力緩和特性の良好な銅合金を得ることが可能となり、電
子機器類の小型化、薄肉化に大きく寄与し得るなど、産
業上極めて有用な効果がもたらされる。
By adopting the manufacturing method of the present invention, it becomes possible to obtain a copper alloy having excellent strength, conductivity, bendability, solder heat-resistant peeling property, and stress relaxation characteristics, which makes it possible to reduce the size of electronic devices. Which is extremely useful in industry, such as making a great contribution to reduction in thickness and thickness.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量割合にて、Cr:0.05〜0.4
%、Zr:0.03〜0.25%、及びZn:0.06
〜2.0%を含有し、残部がCuおよび不可避的不純物
からなる銅合金材料に対して、(イ)結晶粒径を40μ
m以下に調整する、700℃以上の温度での溶体化処理
段階と、(ロ)加工度20〜60%の冷間圧延段階と、
(ハ)300〜700℃の温度での時効処理段階と、
(ニ)加工度30%以下の冷間圧延段階と、(ホ)35
0〜700℃の温度での歪取焼鈍段階とを順次行うこと
を特徴とする電子機器用銅合金の製造方法。
1. Cr: 0.05 to 0.4 in weight ratio.
%, Zr: 0.03 to 0.25%, and Zn: 0.06.
To a copper alloy material containing 2.0% by weight and the balance Cu and inevitable impurities.
a solution heat treatment step at a temperature of 700 ° C. or higher, which is adjusted to m or less, and (b) a cold rolling step with a workability of 20 to 60%,
(C) an aging treatment stage at a temperature of 300 to 700 ° C.,
(D) Cold rolling step with a workability of 30% or less, and (e) 35
A method for producing a copper alloy for electronic devices, which comprises sequentially performing a strain relief annealing step at a temperature of 0 to 700 ° C.
【請求項2】 重量割合にて、Cr:0.05〜0.4
%、Zr:0.03〜0.25%、及びZn:0.06
〜2.0%を含有すると共に、Ni、Sn、In、M
n、P、MgおよびSiの1種以上:総量で0.01〜
1.0%をも含有し、残部がCuおよび不可避的不純物
からなる銅合金材料に対して、(イ)結晶粒径を40μ
m以下に調整する、700℃以上の温度での溶体化処理
段階と、(ロ)加工度20〜60%の冷間圧延段階と、
(ハ)300〜700℃の温度での時効処理段階と、
(ニ)加工度30%以下の冷間圧延段階と、(ホ)35
0〜700℃の温度での歪取焼鈍段階とを順次行うこと
を特徴とする電子機器用銅合金の製造方法。
2. Cr: 0.05 to 0.4 in weight ratio.
%, Zr: 0.03 to 0.25%, and Zn: 0.06.
~ 2.0%, Ni, Sn, In, M
One or more of n, P, Mg and Si: 0.01 to total amount
With respect to a copper alloy material containing 1.0% and the balance Cu and unavoidable impurities, (a) the crystal grain size is 40 μm.
a solution heat treatment step at a temperature of 700 ° C. or higher, which is adjusted to m or less, and (b) a cold rolling step with a workability of 20 to 60%,
(C) an aging treatment stage at a temperature of 300 to 700 ° C.,
(D) Cold rolling step with a workability of 30% or less, and (e) 35
A method for producing a copper alloy for electronic devices, which comprises sequentially performing a strain relief annealing step at a temperature of 0 to 700 ° C.
【請求項3】 重量割合にて、Cr:0.05〜0.4
%、Zr:0.03〜0.25%、及びZn:0.05
〜2.0%を含有すると共に、更にFe:0.1〜1.
8%、Ti:0.1〜0.8%をも含有し、残部がCu
および不可避的不純物からなる銅合金材料に対して、
(イ)結晶粒径を40μm以下に調整する、700℃以
上の温度での溶体化処理段階と、(ロ)加工度20〜6
0%の冷間圧延段階と、(ハ)300〜700℃の温度
での時効処理段階と、(ニ)加工度30%以下の冷間圧
延段階と、(ホ)350〜700℃の温度での歪取焼鈍
段階と、を順次行うことを特徴とする電子機器用銅合金
の製造方法。
3. Cr: 0.05 to 0.4 in weight ratio.
%, Zr: 0.03 to 0.25%, and Zn: 0.05
.About.2.0% and further Fe: 0.1-1.
8%, Ti: 0.1 to 0.8% is also contained, and the balance is Cu
And for copper alloy materials consisting of inevitable impurities,
(A) A solution treatment step at a temperature of 700 ° C. or higher for adjusting the crystal grain size to 40 μm or less, and (b) a workability of 20 to 6
At 0% cold rolling stage, (C) aging treatment stage at a temperature of 300 to 700 ° C., (D) cold rolling stage at a workability of 30% or less, and (E) at a temperature of 350 to 700 ° C. The method for producing a copper alloy for electronic devices, which comprises sequentially performing the stress relief annealing step of 1.
【請求項4】 重量割合にて、Cr:0.05〜0.4
%、Zr:0.03〜0.25%、及びZn:0.05
〜2.0%を含有すると共に、更にFe:0.1〜1.
8%、Ti:0.1〜0.8%を含有し、更に加えてN
i、Sn、In、Mn、P、MgおよびSiの1種以
上:総量で0.01〜1.0%をも含有し、残部がCu
および不可避的不純物からなる銅合金材料に対して、
(イ)結晶粒径を40μm以下に調整する、700℃以
上の温度での溶体化処理段階と、(ロ)加工度20〜6
0%の冷間圧延段階と、(ハ)300〜700℃の温度
での時効処理段階と、(ニ)加工度30%以下の冷間圧
延段階と、(ホ)350〜700℃の温度での歪取焼鈍
段階とを順次行うことを特徴とする電子機器用銅合金の
製造方法。
4. Cr: 0.05 to 0.4 by weight ratio.
%, Zr: 0.03 to 0.25%, and Zn: 0.05
.About.2.0% and further Fe: 0.1-1.
8%, Ti: 0.1 to 0.8%, and further N
One or more of i, Sn, In, Mn, P, Mg, and Si: 0.01 to 1.0% in total is also contained, and the balance is Cu.
And for copper alloy materials consisting of inevitable impurities,
(A) A solution treatment step at a temperature of 700 ° C. or higher for adjusting the crystal grain size to 40 μm or less, and (b) a workability of 20 to 6
At 0% cold rolling stage, (C) aging treatment stage at a temperature of 300 to 700 ° C., (D) cold rolling stage at a workability of 30% or less, and (E) at a temperature of 350 to 700 ° C. The method for producing a copper alloy for electronic devices, which comprises sequentially performing the strain relief annealing step of 1.
JP27207595A 1995-09-27 1995-09-27 Production of copper alloy for electronic equipment Withdrawn JPH0987814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27207595A JPH0987814A (en) 1995-09-27 1995-09-27 Production of copper alloy for electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27207595A JPH0987814A (en) 1995-09-27 1995-09-27 Production of copper alloy for electronic equipment

Publications (1)

Publication Number Publication Date
JPH0987814A true JPH0987814A (en) 1997-03-31

Family

ID=17508750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27207595A Withdrawn JPH0987814A (en) 1995-09-27 1995-09-27 Production of copper alloy for electronic equipment

Country Status (1)

Country Link
JP (1) JPH0987814A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344171B1 (en) 1999-08-25 2002-02-05 Kobe Steel, Ltd. Copper alloy for electrical or electronic parts
JP2003025078A (en) * 2001-07-10 2003-01-28 Dowa Mining Co Ltd Copper, copper-base alloy and method of manufacturing the same
JP2007016304A (en) * 2005-06-10 2007-01-25 Dowa Holdings Co Ltd Cu-NI-SI-ZN-BASE ALLOY
JP2007270171A (en) * 2006-03-30 2007-10-18 Dowa Holdings Co Ltd High-conductivity copper-based alloy with excellent bendability, and its manufacturing method
JP2007270286A (en) * 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Cu-Ni-Si-Zn BASED COPPER ALLOY
US7338631B2 (en) 2004-04-14 2008-03-04 Mitsubishi Shindoh Co., Ltd. Copper alloy and method of manufacturing the same
WO2012141047A1 (en) * 2011-04-15 2012-10-18 株式会社小松ライト製作所 Thermal protector and battery using same
JP2013129889A (en) * 2011-12-22 2013-07-04 Furukawa Electric Co Ltd:The Copper alloy material and method for producing the same
JP2013190262A (en) * 2012-03-13 2013-09-26 Auto Network Gijutsu Kenkyusho:Kk Evaluation method of spring material for connector terminal

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344171B1 (en) 1999-08-25 2002-02-05 Kobe Steel, Ltd. Copper alloy for electrical or electronic parts
JP2003025078A (en) * 2001-07-10 2003-01-28 Dowa Mining Co Ltd Copper, copper-base alloy and method of manufacturing the same
US7338631B2 (en) 2004-04-14 2008-03-04 Mitsubishi Shindoh Co., Ltd. Copper alloy and method of manufacturing the same
US7485200B2 (en) 2004-04-14 2009-02-03 Mitsubishi Shindoh Co., Ltd. Copper alloy and method of manufacturing the same
JP2007016304A (en) * 2005-06-10 2007-01-25 Dowa Holdings Co Ltd Cu-NI-SI-ZN-BASE ALLOY
JP2007270171A (en) * 2006-03-30 2007-10-18 Dowa Holdings Co Ltd High-conductivity copper-based alloy with excellent bendability, and its manufacturing method
JP2007270286A (en) * 2006-03-31 2007-10-18 Dowa Holdings Co Ltd Cu-Ni-Si-Zn BASED COPPER ALLOY
WO2012141047A1 (en) * 2011-04-15 2012-10-18 株式会社小松ライト製作所 Thermal protector and battery using same
JP5148023B2 (en) * 2011-04-15 2013-02-20 株式会社小松ライト製作所 Thermal protector and battery using the same
JP2013062256A (en) * 2011-04-15 2013-04-04 Komatsulite Mfg Co Ltd Thermal protector, and battery using the same
JP2013129889A (en) * 2011-12-22 2013-07-04 Furukawa Electric Co Ltd:The Copper alloy material and method for producing the same
JP2013190262A (en) * 2012-03-13 2013-09-26 Auto Network Gijutsu Kenkyusho:Kk Evaluation method of spring material for connector terminal

Similar Documents

Publication Publication Date Title
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
KR20010080447A (en) Stress relaxation resistant brass
JP2006283120A (en) Cu-Ni-Si-Co-Cr BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND ITS PRODUCTION METHOD
JPH0841612A (en) Copper alloy and its preparation
JP2006009137A (en) Copper alloy
JPWO2008123433A1 (en) Cu-Ni-Si alloy for electronic materials
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP3800279B2 (en) Copper alloy sheet with excellent press punchability
JP2004315940A (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JP2007126739A (en) Copper alloy for electronic material
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
JP2790238B2 (en) Method for producing titanium copper alloy excellent in bending property and stress relaxation property
JP4259828B2 (en) Manufacturing method of high strength copper alloy
JPH0987814A (en) Production of copper alloy for electronic equipment
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPH06207232A (en) Copper alloy for electronic and electrical equipment and its production
JP2000144284A (en) High-strength and high-conductivity copper-iron alloy sheet excellent in heat resistance
JPH0718355A (en) Copper alloy for electronic appliance and its production
JPH07258804A (en) Production of copper alloy for electronic equipment
JP4175920B2 (en) High strength copper alloy
JPH10287939A (en) Copper alloy for electric and electronic equipment, excellent in punchability
JP4130593B2 (en) High strength and high conductivity copper alloy with excellent fatigue and intermediate temperature characteristics

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203