JPH0383819A - Production of oxide raw material for ferrite - Google Patents

Production of oxide raw material for ferrite

Info

Publication number
JPH0383819A
JPH0383819A JP1218676A JP21867689A JPH0383819A JP H0383819 A JPH0383819 A JP H0383819A JP 1218676 A JP1218676 A JP 1218676A JP 21867689 A JP21867689 A JP 21867689A JP H0383819 A JPH0383819 A JP H0383819A
Authority
JP
Japan
Prior art keywords
chloride
roasting
waste solution
hydrochloric acid
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1218676A
Other languages
Japanese (ja)
Inventor
Hidetada Yoshimatsu
吉松 秀格
Satoru Narutani
成合 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1218676A priority Critical patent/JPH0383819A/en
Publication of JPH0383819A publication Critical patent/JPH0383819A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make possible to directly produce the desired subject oxide with low temperature roasting even in a case of containing an element having a high vapor pressure by adjusting composition of chloride before roasting in a production roasting ferric chloride in a waste solution of steel stock pickling with hydrochloric acid. CONSTITUTION:Ferrous chloride in a waste solution of steel stock pickling with hydrochloric acid is oxidized to ferric chloride to make the content of trivalent iron in the whole iron component to >=70wt.%. At least one of Zn, Mn, Ni, Cu, Mg and Co in a shape of metal or chloride is added to said waste solution and dissolved, then mixed, thus roasted at <=600 deg.C. By this method, the steel stock is able to be simultaneously roasted at <=600 deg.C even in the presence of the element having high vapor pressure without deviation of composition to afford an oxide magnetic material for soft ferrite in a low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、鉄鋼業における鋼板等の塩酸酸洗の際に生じ
る酸洗廃液中の塩化鉄を利用してソフトフェライト用原
料となる酸化物を製造する方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention utilizes iron chloride in the pickling waste liquid generated during hydrochloric acid pickling of steel plates, etc. in the steel industry to produce an oxide that is a raw material for soft ferrite. The present invention relates to a method for manufacturing.

〔従来の技術1 従来より鉄鋼業においては鋼板等の塩酸酸洗廃液を回収
して濃縮し、これを焙焼することにより酸化鉄を製造し
ている。焙焼方法としては、■ 600〜900℃に保
持した炉内に、炉頂より塩酸酸洗廃液を噴霧し炉内にて
熱分解させ酸化鉄を炉底より取り出す噴霧焙焼法、 ■ 600〜900℃に保持した流動層中に塩酸酸洗廃
液を噴霧し熱分解させ酸化鉄を炉頂より捕集する流動焙
焼法 などが行われている。
[Prior Art 1] Conventionally, in the steel industry, iron oxide has been produced by collecting and concentrating waste liquid from hydrochloric acid pickling of steel plates, etc., and roasting it. Roasting methods include: (1) a spray roasting method in which hydrochloric acid pickling waste is sprayed from the top of a furnace maintained at 600 to 900°C, thermally decomposed in the furnace, and iron oxide is taken out from the bottom of the furnace; A fluidized roasting method is used in which hydrochloric acid pickling waste is sprayed into a fluidized bed maintained at 900°C, thermally decomposed, and iron oxide is collected from the top of the furnace.

ソフトフェライト用原料の製造に関しては、上記の方法
において、塩化鉄溶液の焙焼前に鉄以外のフェライト構
成成分を塩化物又は金属の形態にて溶解混合した後に上
記と同様の焙焼炉にて焙焼する方法が、噴霧焙焼法では
特公昭63−17776号公報に、流動焙焼法では特開
昭63−156017号公報に報告されている。
Regarding the production of raw materials for soft ferrite, in the above method, before roasting the iron chloride solution, ferrite constituents other than iron are dissolved and mixed in the form of chlorides or metals, and then in the same roasting furnace as above. As for the roasting method, the spray roasting method is reported in Japanese Patent Publication No. 17776/1982, and the fluidized roasting method is reported in Japanese Patent Application Laid-Open No. 63-156017.

これらの方法ではフェライト構成成分を塩化物原料にて
混合し焙焼することにより、均一に混合した酸化物が得
られるため、フェライト製造工程中、仮焼、粉砕工程を
省略することができ、かつ工程中の不純物汚染が少なく
なる利点があるとされている。
In these methods, a uniformly mixed oxide is obtained by mixing the ferrite constituents with a chloride raw material and roasting it, so the calcination and crushing steps can be omitted during the ferrite manufacturing process, and It is said to have the advantage of reducing impurity contamination during the process.

しかし、前者については高温にて焙焼するために蒸気圧
の高い塩化亜鉛等は同時に焙焼することが不可能であり
、また後者についても600℃以上の温度にて焙焼する
ために、100mmHgという塩化亜鉛の高い蒸気圧の
ために亜鉛の組成ずれが生じてしまう。
However, since the former is roasted at a high temperature, it is impossible to roast zinc chloride, etc., which has a high vapor pressure, at the same time, and the latter is also roasted at a temperature of 600°C or higher, so the temperature is 100 mmHg. Due to the high vapor pressure of zinc chloride, a compositional shift in zinc occurs.

〔発明が解決しようとする課題J 以上のように従来技術では、塩化亜鉛等の蒸気圧の高い
原料を含む塩化物の混合物を焙焼して所定の組成のソフ
トフェライト用原料酸化物を直接に製造する方法がなか
った。
[Problem to be Solved by the Invention J] As described above, in the prior art, a chloride mixture containing a raw material with a high vapor pressure such as zinc chloride is roasted to directly produce a raw material oxide for soft ferrite with a predetermined composition. There was no way to manufacture it.

[課題を解決するための手段] そこで本発明者は鋭意研究の結果、焙焼前の塩化物の成
分調整を行うことによりこの問題を解決する方法を見出
した。すなわち、鋼材の塩酸酸洗廃液中の塩化第一鉄を
塩化第二鉄に酸化し、全鉄濃度に占める3価鉄濃度を7
0%以上とした後に、ソフトフェライト用原料に必要と
される元素であるMn、Zn、Cu、Ni、Mg及びG
oのうちから選ばれた少なくとも一種を塩化物または金
属の形態にて添加、溶解、混合後に、従来方法よりも低
温である600℃以下の温度にて焙焼することにより、
蒸気圧の高い元素を含んだ場合においても、直接に所望
のソフトフェライト用原料酸化物を製造できることが判
明した。
[Means for Solving the Problem] As a result of intensive research, the present inventor found a method for solving this problem by adjusting the chloride component before roasting. In other words, ferrous chloride in the waste solution from hydrochloric acid pickling of steel materials is oxidized to ferric chloride, and the trivalent iron concentration in the total iron concentration is reduced to 7.
After making it 0% or more, Mn, Zn, Cu, Ni, Mg and G, which are the elements required for the raw material for soft ferrite,
By adding, dissolving, and mixing at least one selected from o in the form of chloride or metal, and then roasting at a temperature of 600 ° C. or less, which is lower than the conventional method,
It has been found that the desired raw material oxide for soft ferrite can be directly produced even when an element with a high vapor pressure is contained.

また、上記工程中、前記ソフトフェライト用原料に必要
とされる元素すなわちMn、Zn。
In addition, in the above process, elements required for the raw material for soft ferrite, namely Mn and Zn.

Cu、Ni、Mg及びCoのうちから選ばれた少なくと
も一種を先に塩酸酸洗廃液に添加、溶解、混合後に、塩
化第一鉄を塩化第二鉄に酸化して焙焼してもよい。
At least one selected from Cu, Ni, Mg, and Co may be added to the hydrochloric acid pickling waste solution, dissolved, and mixed, and then ferrous chloride may be oxidized to ferric chloride and roasted.

〔作用1 本発明に至った基礎実験の結果について次に述べる。試
薬特級のFeCβ2、FeCβ3、M n C!22、
MgCl22、ZnC1;22なる塩化物を2種又は3
種混合して乾燥した試料を作製した。各試料の組成を第
1表に示す。
[Effect 1] The results of the basic experiments that led to the present invention will be described below. Reagent grade FeCβ2, FeCβ3, M n C! 22,
MgCl22, ZnC1; 2 or 3 chlorides
A dried sample was prepared by mixing the seeds. The composition of each sample is shown in Table 1.

これらの8試料を横型管状炉内にて種々の温度にて焼鈍
して、塩化物がすべて酸化物に熱分解する温度(酸化反
応終了温度)を調査した。生成酸化物はX線回折による
定性分析にて行った。その結果を第2表に示す。2価鉄
を3価鉄に置き換えて焙焼した場合には、試料lと2の
比較、試料3と4の比較より、50℃以上低い温度にて
酸化物が生成できることがわかる。そのため、蒸気圧の
高いZncI22を含んでいても、600℃以下の温度
にて焙焼が可能となることが試料5と6の比較、試料7
と8の比較から明らかである。このように塩化第二鉄に
他の金属元素を添加した場合には、低温にて焙焼するこ
とができ、これより蒸気圧の高い元素を含む場合におい
ても酸化焙焼が十分に可能となる。
These eight samples were annealed at various temperatures in a horizontal tubular furnace, and the temperature at which all chlorides were thermally decomposed into oxides (oxidation reaction completion temperature) was investigated. The produced oxide was qualitatively analyzed by X-ray diffraction. The results are shown in Table 2. Comparison of Samples 1 and 2 and Samples 3 and 4 shows that when bivalent iron is replaced with trivalent iron and roasted, oxides can be produced at a temperature lower than 50°C. Therefore, even if it contains ZncI22 with a high vapor pressure, it is possible to roast it at a temperature below 600°C, as compared with Samples 5 and 6, and Sample 7.
It is clear from the comparison between and 8. When other metal elements are added to ferric chloride in this way, roasting can be performed at low temperatures, and even when elements with higher vapor pressures are included, oxidative roasting is fully possible. .

第3表は更に、試料5と6について、酸化焙焼により塩
化物が酸化物になった温度でのFe、Mn及びZnのの
組成を化学分析により求めた結果である。表中の値は、
Fe、Mn、Znの3元素成分の総和が重量%にて10
0%となるように求めた。
Table 3 further shows the results of chemical analysis of the compositions of Fe, Mn, and Zn for Samples 5 and 6 at the temperature at which chlorides became oxides through oxidative roasting. The values in the table are
The total of the three elemental components of Fe, Mn, and Zn is 10% by weight.
It was calculated to be 0%.

この化学分析から、試料6については、510℃、56
0℃においては組成ずれは見られないが、600℃を越
えると亜鉛の蒸発による組成ずれが発生している。試料
Sについては600’C以上にて焙焼しているために亜
鉛の蒸発による組成ずれが顕著に発生゛しているゆこの
ように6oo℃以上での焙焼は組成のずれにより好まし
くない。
From this chemical analysis, for sample 6, 510°C, 56°C
No composition deviation is observed at 0°C, but when the temperature exceeds 600°C, composition deviation occurs due to evaporation of zinc. Sample S was roasted at 600° C. or higher, and as a result, a significant compositional shift occurred due to the evaporation of zinc. As shown in the above, roasting at 600° C. or higher is not preferable due to the compositional shift.

以上の予備実験より、塩化第二鉄とZn及び他のソフト
フェライト原料として必要となるNl。
From the above preliminary experiments, ferric chloride, Zn, and other Nl required as soft ferrite raw materials.

Mg、Mn、Cu等の元素を金属または塩化物の形態に
て混合し、低温にて焙焼することにより、蒸気圧の高い
元素の蒸発を防ぎながらフェライト用原料酸化物を製造
することが可能となることがわかる。
By mixing elements such as Mg, Mn, and Cu in the form of metals or chlorides and roasting them at low temperatures, it is possible to produce raw material oxides for ferrite while preventing evaporation of elements with high vapor pressure. It can be seen that

塩化第一鉄から塩化第二鉄へ酸化する方法としては塩素
ガスを吹き込むことによる塩素酸化が適切であるが、そ
の他の方法としては、酸素の吹き込み、電解酸化、酸化
触媒添加等の酸化方法を用いてもよい。
Chlorine oxidation by blowing chlorine gas is appropriate for oxidizing ferrous chloride to ferric chloride, but other oxidation methods include blowing oxygen, electrolytic oxidation, and adding an oxidation catalyst. May be used.

また、廃液の焙焼方法としては、ロータリーキルン焙焼
、流動層内焙焼、その他の焼成方法を使用することがで
きる。
Further, as a method for roasting the waste liquid, rotary kiln roasting, fluidized bed roasting, and other firing methods can be used.

塩酸酸洗廃液中の3価鉄が全鉄中に占める割合を70%
以上に限定した理由は、これ以下では、低温にて焙焼し
た場合に、未反応にて残留する塩化第一鉄が多量に生じ
、酸化物製造における歩留りが低下してしまう上に組成
ずれの原因になってしまい、効果が少ないからである。
Trivalent iron in hydrochloric acid pickling waste accounts for 70% of total iron
The reason for this limitation is that if the temperature is lower than this, a large amount of unreacted ferrous chloride will be produced when roasting at a low temperature, which will reduce the yield in oxide production and cause a composition shift. This is because it becomes a cause and has little effect.

〔実施例] 以下に実施例に従い本発明内容を詳述する。〔Example] The contents of the present invention will be explained in detail below according to Examples.

実施例1 塩酸酸洗廃液に塩素ガスを吹き込み塩化第一鉄を塩化第
二鉄に酸化した。この廃液を窒素雰囲気のグローボック
ス中にて100℃にて乾燥した。
Example 1 Chlorine gas was blown into the hydrochloric acid pickling waste solution to oxidize ferrous chloride to ferric chloride. This waste liquid was dried at 100° C. in a glow box with a nitrogen atmosphere.

これを化学分析にて組成を調べたところ第4表の結果を
得た。はとんど塩化第二鉄になっていることが確認でき
た。
When the composition of this was investigated by chemical analysis, the results shown in Table 4 were obtained. It was confirmed that most of the material was ferric chloride.

この廃液に塩化亜鉛及び塩化マンガンを組成比にてFe
:Mn:Znが69.3重量%: 22.8重量%ニア
、9重量%となるように混合し、570℃に保持した焙
焼炉内に炉頂より噴霧焙焼し、ソフトフェライト用原料
酸化物を得た。
Zinc chloride and manganese chloride were added to this waste liquid in a composition ratio of Fe.
:Mn:Zn was mixed so that it was 69.3% by weight: 22.8% by weight and 9% by weight, and sprayed from the top of the furnace at 570°C and roasted to obtain a raw material for soft ferrite. An oxide was obtained.

得られた酸化物の平均粒径、は0.5〜1.0μmであ
り、X線回折による定性分析では、Fe2O3、M n
 203、スピネルの3成分が存在し、塩化物の存在は
確認できなかった。
The average particle size of the obtained oxide was 0.5 to 1.0 μm, and qualitative analysis by X-ray diffraction revealed that Fe2O3, Mn
Three components of 203 and spinel were present, and the presence of chloride could not be confirmed.

化学分析から、Fe、Mn、Znの重量組成比は第5表
の通りであり、Znの蒸発による組成ずれは見られない
From the chemical analysis, the weight composition ratios of Fe, Mn, and Zn are as shown in Table 5, and no composition shift due to evaporation of Zn is observed.

比較例1 塩酸酸洗廃液を窒素雰囲気のグローボックス中にて10
0℃にて乾燥した。これを化学分析にて組成を調べたと
ころ第1表の結果を得た。はとんどの成分が2価鉄であ
った。この廃液に塩化亜鉛及び塩化マンガン重量組成比
にてFe:Mn:Znが69.3重量%:22.8重量
%ニア、9重量%となるように混合し、780℃に保持
したルスナー炉内に炉頂より噴霧焙焼し、ソフトフェラ
イト用原料酸化物を得た。
Comparative Example 1 Hydrochloric acid pickling waste liquid was placed in a nitrogen atmosphere glow box for 10 minutes.
It was dried at 0°C. When the composition was investigated by chemical analysis, the results shown in Table 1 were obtained. Most of the components were divalent iron. This waste liquid was mixed with zinc chloride and manganese chloride so that the weight composition ratio of Fe:Mn:Zn was 69.3% by weight: 22.8% by weight, 9% by weight, and the mixture was placed in a Lussner furnace maintained at 780°C. The mixture was then spray roasted from the top of the furnace to obtain a raw material oxide for soft ferrite.

得られた酸化物の平均粒径は0.8〜2.0μmであり
、x11回折による定性分析では、Fe2O3、M n
 20 B、スピネルの3成分が存在し、塩化物の存在
は確認できなかったゆ化学分析から、Fe、Mn、Zn
の重量組成比は第5表のとおりであり、Znの蒸発によ
る組成ずれは非常に大きく、後工程での成分調整が避け
られないことがわかる。
The average particle size of the obtained oxide was 0.8 to 2.0 μm, and qualitative analysis by x11 diffraction revealed that Fe2O3, Mn
20 B, three components of spinel were present, and the presence of chloride could not be confirmed. Chemical analysis revealed that Fe, Mn, and Zn were present.
The weight composition ratios are as shown in Table 5, and it can be seen that the composition deviation due to Zn evaporation is very large, and component adjustment in the subsequent process is unavoidable.

実施例2 塩酸酸洗廃液に塩素ガスを吹き込み塩化第一鉄を塩化第
二鉄に酸化した。この廃液に塩化亜鉛及び塩化マンガン
を重量組成比にてFe : Mn :Znが69.3重
量%:22.8重量%ニア、9重量%となるように混合
した。これを乾燥した後に、乳鉢にて粉末状にし、ロー
タリーキルンを使用して520℃にて焙焼し、ソフトフ
ェライト用原料酸化物を得た。
Example 2 Chlorine gas was blown into the hydrochloric acid pickling waste solution to oxidize ferrous chloride to ferric chloride. Zinc chloride and manganese chloride were mixed into this waste liquid so that the weight composition ratio of Fe:Mn:Zn was 69.3% by weight: 22.8% by weight and 9% by weight. After drying this, it was powdered in a mortar and roasted at 520°C using a rotary kiln to obtain a raw material oxide for soft ferrite.

X線回折による定性分析ではFe2O3、M n 20
3、スピネルの3成分が存在し、塩化物の存在は確認で
きなかった。
In qualitative analysis by X-ray diffraction, Fe2O3, M n 20
3. Three components of spinel were present, and the presence of chloride could not be confirmed.

化学分析から、Fe、Mn、Znの重量組成比は第5表
の通りであり、Znの蒸発による組成ずれは見られない
From the chemical analysis, the weight composition ratios of Fe, Mn, and Zn are as shown in Table 5, and no composition shift due to evaporation of Zn is observed.

比較例2 塩酸酸洗廃液に塩化亜鉛及び塩化マンガンを重量組成比
にてFe:Mn:Znが69.3重量%:22.8重量
%ニア、9重量%となるように混合した。これを乾燥し
た後に、乳鉢にて粉末状にしロータリーキルンを使用し
て620℃にて焙焼し、ソフトフェライト用原料酸化物
を得た。
Comparative Example 2 Zinc chloride and manganese chloride were mixed into a hydrochloric acid pickling waste solution so that the weight composition ratio of Fe:Mn:Zn was 69.3% by weight: 22.8% by weight, near 9% by weight. After drying this, it was made into powder in a mortar and roasted at 620°C using a rotary kiln to obtain a raw material oxide for soft ferrite.

X線回折による定性分析ではFe2O3、M n 20
3、スピネルの3成分が存在し、塩化物の存在は確認で
きなかった。
In qualitative analysis by X-ray diffraction, Fe2O3, M n 20
3. Three components of spinel were present, and the presence of chloride could not be confirmed.

化学分析から、Fe、Mn、Znの重量組成比は第5表
の通りであり、Znの蒸発による組成ずれは相当に大き
いことがわかる。
The chemical analysis shows that the weight composition ratios of Fe, Mn, and Zn are as shown in Table 5, and the composition shift due to Zn evaporation is quite large.

実施例3 塩酸酸洗廃液に塩化亜鉛及び塩化マンガンを重量組成比
にてFe二Mn:Znが69.3重量%:22.8重量
%ニア、9重量%となるように混合した。これに塩素ガ
スを吹き込み塩化第一鉄を塩化第二鉄に酸化した。これ
を乾燥した後に、乳鉢にて粉末状にし、ロータリーキル
ンを使用して520℃にて焙焼し、ソフトフェライト用
原料酸化物を得た。
Example 3 Zinc chloride and manganese chloride were mixed into a hydrochloric acid pickling waste solution so that the weight composition ratio of Fe2Mn:Zn was 69.3% by weight: 22.8% by weight, 9% by weight. Chlorine gas was blown into this to oxidize ferrous chloride to ferric chloride. After drying this, it was powdered in a mortar and roasted at 520°C using a rotary kiln to obtain a raw material oxide for soft ferrite.

X線回折による定性分析ではFe2O3、M n 20
3、スピネルの3成分が存在し、塩化物の存在は確認で
きなかった。
In qualitative analysis by X-ray diffraction, Fe2O3, M n 20
3. Three components of spinel were present, and the presence of chloride could not be confirmed.

化学分析から、 Fe、 M n 。From chemical analysis, Fe, M n .

Znの重量組成比 は第5表の通りであり、 Znの蒸発による組成す れは見られない。Weight composition ratio of Zn is as shown in Table 5, Composition due to evaporation of Zn This cannot be seen.

第 表 単位は重量% 第 表 単位は重量% [発明の効果] 以上のように本発明によれば鋼板の塩酸酸洗廃液中の塩
化第一鉄を塩化第二鉄に酸化した後に、ソフトフェライ
ト用原料として必要な成分元素を金属または塩化物の形
態にて混合し、その後焙焼するので、蒸気圧の低い元素
が存在する場合においても同時に焙焼することが可能と
なり、従来方法と比較して組成ずれがなく、低コストに
てソフトフェライト用酸化物磁性材料を製造することが
可能となる。
The unit in the table is % by weight. [Effect of the invention] As described above, according to the present invention, after oxidizing ferrous chloride in the waste solution of hydrochloric acid pickling of steel sheets to ferric chloride, soft ferrite is produced. Since the component elements required as raw materials are mixed in the form of metals or chlorides and then roasted, it is possible to roast them at the same time even when elements with low vapor pressure are present, compared to conventional methods. Therefore, it becomes possible to produce an oxide magnetic material for soft ferrite at low cost without compositional deviation.

Claims (1)

【特許請求の範囲】 1 鋼材の塩酸酸洗廃液中の塩化第一鉄を塩化第二鉄に
酸化し、全鉄成分中の3価鉄の割合を70%以上とした
後に、該廃液にZn, Mn,Ni,Cu,Mg及びCoから選ばれた少なくと
も一種を金属または塩化物の形態にて添加、溶解、混合
した後、600℃以下の温度にて焙焼することを特徴と
するソフトフェライト用原料酸化物の製造方法。 2 鋼材の塩酸酸洗廃液に、Zn,Mn, Ni,Cu,Mg及びCoから選ばれた少なくとも一種
を金属または塩化物の形態にて添加、溶解、混合した後
、該廃液中の塩化第一鉄を塩化第二鉄に酸化し、全鉄成
分中の3価鉄の割合を70%以上とした後に、600℃
以下の温度にて焙焼することを特徴とするソフトフェラ
イト用原料酸化物の製造方法。
[Scope of Claims] 1. After oxidizing ferrous chloride in the waste solution of hydrochloric acid pickling of steel materials to ferric chloride and making the proportion of trivalent iron in the total iron component 70% or more, Zn is added to the waste solution. , Mn, Ni, Cu, Mg, and Co in the form of a metal or chloride, which is added, dissolved, and mixed, and then roasted at a temperature of 600°C or less. Method for producing raw material oxide for use. 2. After adding, dissolving, and mixing at least one selected from Zn, Mn, Ni, Cu, Mg, and Co in the form of metal or chloride to the waste solution from hydrochloric acid pickling of steel materials, the first chloride in the waste solution is After oxidizing iron to ferric chloride and increasing the proportion of trivalent iron in the total iron component to 70% or more, 600°C
A method for producing a raw material oxide for soft ferrite, which comprises roasting at the following temperature.
JP1218676A 1989-08-28 1989-08-28 Production of oxide raw material for ferrite Pending JPH0383819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1218676A JPH0383819A (en) 1989-08-28 1989-08-28 Production of oxide raw material for ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1218676A JPH0383819A (en) 1989-08-28 1989-08-28 Production of oxide raw material for ferrite

Publications (1)

Publication Number Publication Date
JPH0383819A true JPH0383819A (en) 1991-04-09

Family

ID=16723676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1218676A Pending JPH0383819A (en) 1989-08-28 1989-08-28 Production of oxide raw material for ferrite

Country Status (1)

Country Link
JP (1) JPH0383819A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206445A (en) * 1994-01-06 1995-08-08 Kawasaki Steel Corp Production of oxide as stock of ni-zn ferrite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206445A (en) * 1994-01-06 1995-08-08 Kawasaki Steel Corp Production of oxide as stock of ni-zn ferrite

Similar Documents

Publication Publication Date Title
RU2406593C2 (en) Removal of magnesium from powders recovered by magnesium
CN101341265A (en) Separation of metal values in zinc leaching residues
US5190740A (en) Method producing composite oxides for use as starting materials for producing ferrites
JPH0383819A (en) Production of oxide raw material for ferrite
US4629607A (en) Process of producing synthetic rutile from titaniferous product having a high reduced titanium oxide content
EP0364904A2 (en) Purified solution containing iron and manganese, and method producing thereof
US4517163A (en) Process for making titanium dioxide concentrates
JPH1053414A (en) Production of metal disulfide and formation of bimetal trisulfide by further treatment thereof
JP2746736B2 (en) Method for producing composite oxide for ferrite raw material
JP3638659B2 (en) Method for producing composite oxide powder for soft ferrite
CN107937710A (en) A kind of pyrolusite fire reduction method
JPH0733442A (en) Production of mn-zn ferrite
US591355A (en) Henri moissan
JPS6148506A (en) Refining method of fine particle by gaseous phase process
RU2033448C1 (en) Method of processing of vanadium-containing converter slag
JP2846147B2 (en) Method for producing raw material oxide for soft ferrite
JPH0453207A (en) Manufacture of raw material oxide for soft ferrite
US2427709A (en) Chemical production of oxygen
US2286663A (en) Reduction of inorganic oxidic compounds by silicon monoxide
NL8204778A (en) METHOD FOR PREPARING FERROMAGNETIC OXIDES
JPS6317776B2 (en)
US737059A (en) Art of treating rebellious or refractory ores.
JPS59199505A (en) Purification of solution of metal chloride
CN114854988A (en) By using CO 2 Method for selectively separating vanadium and chromium in vanadium-chromium material
JP2669010B2 (en) Desiliconization method in metal salt solution