JPS6317776B2 - - Google Patents

Info

Publication number
JPS6317776B2
JPS6317776B2 JP54049715A JP4971579A JPS6317776B2 JP S6317776 B2 JPS6317776 B2 JP S6317776B2 JP 54049715 A JP54049715 A JP 54049715A JP 4971579 A JP4971579 A JP 4971579A JP S6317776 B2 JPS6317776 B2 JP S6317776B2
Authority
JP
Japan
Prior art keywords
chloride
ferrite
roasting
product
roasted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54049715A
Other languages
Japanese (ja)
Other versions
JPS55144421A (en
Inventor
Katsunobu Okuya
Teruo Mori
Masatake Masuda
Yukio Hirose
Nobuo Kaihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP4971579A priority Critical patent/JPS55144421A/en
Publication of JPS55144421A publication Critical patent/JPS55144421A/en
Publication of JPS6317776B2 publication Critical patent/JPS6317776B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、フエライトの製造方法に関するもの
であり、特にはソフトフエライトを始めとするフ
エライトを構成する金属の塩化物混合溶液を原料
としてフエライトを製造する方法における改善に
関するものである。 フエライトの工業的製造方法は、フエライトを
構成する金属の酸化物あるいは加熱により容易に
金属酸化物に変化する金属炭酸塩等の化合物を所
定のモル比に混合し、800〜1000℃の温度で仮焼
(予備焼成)し、粉砕し、成型し、そして焼成す
るのがもつとも一般的である。しかしながら、こ
の方法には、800〜1000℃という比較的高温での
長時間にわたる仮焼段階が必要とされ、仮焼生成
物の粉砕が容易でなく、微視的に見た場合に製品
に不均一性が認められることが多く、製造時に不
純物が混入しやすく、更には製造に長時間を要す
ると云つた多くの欠点が認識されている。特に、
仮焼段階は、均質化および固相反応の促進を意図
して行われるものであるが、原料の化学的および
物理的性質によりその反応状態は著しく影響を受
け、最終的にはフエライト磁気特性にかなりの変
動を及ぼすに加えて、この段階の所要エネルギー
コストがフエライト製造コストに占める比率も大
きい。更に、フエライト原料中大半を占める
Fe2O3粉の出所源は現在製鉄所の圧延工程におけ
る酸洗い廃液中の塩化鉄(FeCl2)が主流であ
り、フエライト原料として用いる為にこれを酸化
焙焼しているのが実情であるが、この操作も余計
な手間をかける。 上記方法に代るフエライト製造方法として多く
の試みがあるが、その一つにフエライトを構成す
る金属の塩化物混合溶液を出発原料とする提案が
ある。この技術は金属塩化物を原料とするため上
述した酸洗い廃液中の塩化鉄をそのまま使用しう
る点でも有利である。これと関連して、本件出願
人は先に、特公昭47−11550号において、フエラ
イト構成金属の塩化物混合溶液を原料とし、これ
を噴射焙焼法によりフエライト微粉末を製造する
方法を開示した。ここには、工程中で生じる廃ガ
ス中の塩化水素を循環使用することも併せて開示
されている。この方法は主に塩化物の蒸気圧の小
さい金属から構成されるフエライトを対象とした
ものであり、その後の検討の結果、亜鉛のような
塩化物蒸気圧の高い元素を組込んだフエライトの
製造のために、この方法を使用した場合の最大の
難点は、金属塩化物原料中蒸気圧の高いものが揮
散してしまう事実にあることが判明した。例えば
ソフトフエライトの場合を例にとると、ソフトフ
エライトとして工業的に量産されているものの大
部分はFe2O3:70重量%M2+O(MはMn、Ni、
Cu、Mg等):15〜30重量%およびZnO:0〜15
重量%として構成されるが、出発原料をすべて金
属塩化物の形で使用すると、塩化亜鉛のような蒸
気圧の高い金属塩化物は焙焼中揮散し、最終製品
における目標濃度を大巾に下回ることになる。も
ちろん、ソフトフエライトの場合に限らず、その
他のフエライトについても原料たる金属塩化物の
うちに蒸気圧の高いものが含まれる場合にはすべ
て同じ事態が生ずる。 そこで、本発明者は、特公昭47−11550号の方
法を塩化物の蒸気圧の高い元素をも構成要素とす
る各種フエライトの製造に拡大して応用しうるよ
うフエライトを構成する金属の塩化物を原料とし
たフエライトを製造するに当つて、塩化物の蒸気
圧が低い金属元素は塩化物混合溶液の形であらか
じめ所定のモル比で混合を行い、塩化物混合溶液
を酸化焙焼して金属酸化物を形成し、次いで上記
以外の、塩化物の蒸気圧が比較的高い金属元素の
酸化物を添加し、然かる後粉砕、成型および焼結
という所定の処理を行うことにより上記問題の解
決を計つた。塩化物混合物を酸化焙焼して得られ
た生成物は非常に表面活性が強く、そして後に混
合される酸化亜鉛を代表とする、塩化物の形では
蒸気圧の高いフエライト構成元素の酸化物は他成
分との反応性が強い上添加量も最大限15%程度で
あるから、後者を塩化物焙焼後に添加しても、焼
結後に得られる製品の品質に全く弊害を与えない
ことが判明した。事実、この方法によれば焼結最
高温度を酸化物を原料として仮焼後に焼結を行う
一般方法に較べて50〜100℃低くしても少く共同
等の品質の製品が得られる。斯様に、あらかじめ
塩化物を焙焼して形成される酸化物と後添加され
る酸化物とがきわめて効果的に相互反応すること
もうまく利用することによつて、本発明は前述し
た金属塩化物の一部の揮発問題に対する解決策を
与えたものである。 本発明をソフトフエライトの製造を例にとつて
具体的に説明すると、ソフトフエライトとしては
周知の通り、民生機器用、磁気ヘツド用等の用途
に応じてMn−Zn系、Ni−Zn系、Cu−Zn系等の
多種類のものが製造されている。一般的には、先
にも触れたように、70重量%前後のFe2O3と、15
〜30重量%のM2+O(M=Mn、Ni、Cu、Mg…)
と、0〜15重量%のZnOとから構成されるものと
みることができる。 フエライトの構成元素のうち鉄の塩化物
(FeCl2)は蒸気圧が低いので焙焼しても差支え
ない。塩化マンガン(MnCl2)、塩化マグネシウ
ム(MgCl2)および塩化ニツケル(NiCl2)もそ
の蒸気圧は低く、従つて酸化焙焼を実施しうる。
塩化亜鉛(ZnCl2)等は蒸気圧が高いので酸化焙
焼することはできない。この他BaCO3、SrCO3
CaCO3のような炭酸塩の形で一般に入手される
原料成分の一部は焙焼後にそのままの形で加えれ
ばよい。 従つて、製鉄所酸洗い廃液等の塩化鉄を含有す
る液を精製後、そこに塩化マンガン、塩化マグネ
シウムおよび塩化ニツケルのうち製造を意図する
フエライトに応じて所望のものが所定のモル比の
下に混入される。もちろん、これら金属塩化物が
固体の形で入手される場合にはそれらを水に溶解
して所定の濃度の金属塩化物水溶液を調製しても
よいし、金属元素の形でこれらフエライト構成成
分が入手される場合には塩酸に溶かした溶液の形
で使用すればよい。溶媒としてはアルコール等も
使用しうるが、工業的には水で充分である。いず
れにせよ、塩化物の蒸気圧が低いフエライト構成
金属元素の所定比の塩化物溶液が先ず調製され
る。 次いで、この金属塩化物混合溶液が450〜900℃
の温度で焙焼され、金属酸化物の形に変換され
る。焙焼は、該溶液を乾固したものを酸化雰囲気
の炉内に置いて為しうるし、あるいは溶液を所定
の温度および酸化雰囲気に保たれた室内に噴霧す
ることによりまた同心管の中央から溶液をそして
外周から火炎を噴出する設備を利用する火炎噴射
焙焼法によつても実施されうる。焙焼後、金属酸
化物の混合体が形成される。混合体は乾固後炉内
で焙焼した場合には軟質のバルクとして得られ、
これはきわめて崩れやすい性質のものである。噴
霧法あるいは火炎噴射法の場合には細い粉末の形
態で得られる。焙焼の際発生する塩酸は水に吸収
させて塩酸水溶液を回収し、必要なら、原料調製
に再使用される。 焙焼生成物にはZnOが所定量混合される。炭酸
塩の形のCaCO3、BaCO3、SrCO3等の添加が所
望される場合には、これらも同時に混合される。
最終組成が目標値に一致するようFe2O3あるいは
Mn3O4で若干の補正を行いつつこれら混合物は
粉砕処理を施される。粉砕処理は湿式ボールミル
によるものが好ましい。 粉砕品は、一般フエライト製造法と同様に、乾
燥、顆粒形成、トロイダル等の所望の形状への成
型の各工程を経て焼結される。焼結は前述したよ
うに一般法より50〜100℃低い1270〜1360℃の最
大温度で実施することができ、これは焼成炉の寿
命、窯用具の寿命延長に大きく寄与する。焼結の
初期段階でZnOとFe2O3とが固相反応を起して
ZnO・Fe2O3を生成する際、膨脹が生じる。この
膨脹は、それが材料全体の焼結による収縮分によ
り相殺されるよう焼結促進の為の添加剤を加えた
りあるいは体積の収縮を生じる他の固相反応によ
り緩和されるよう添加金属元素形態を選定するこ
とによつて実質上排徐もしくは最小限に緩和する
ことができる。 生成された焼結製品は、目標とする組成に合致
ししかも均質性にも秀れており、後に実施例に示
す通り従来製品と少く共同等の磁気特性を持つ満
足すべき性能のものである。 以上説明したように、本発明は、Fe2O3源とし
てFeCl2を含む酸洗い廃液をそのまま利用しそし
て従来からの一般法で必要とされた仮焼を排除し
うる点で利益の大きい塩化物混合溶液を出発原料
とするフエライト製造法において、一部の塩化物
が焙焼中に揮散を生じるという問題を製品の品質
に何等悪影響を与えずむしろ製品の品質を高めて
克服したものであり、この方法の対象とするフエ
ライトの分野の拡大を可ならしめそして目標組成
と一致する最終組成の製品をきわめて容易に製造
することを可能ならしめた点で工業的意義はきわ
めて大きい。更に、本発明によれば最高焼結温度
を従来からの一般法より50〜100℃下げても高品
質の製品が製造されることが促証され、これは炉
および備品の寿命を2〜3倍にも延長しうる点で
有益である。 以下本発明の実施例を述べる。 実施例 1 FeCl2・7H2O735.7gおよびMnCl2
4H2O26.43gを秤取して純水500ml中に溶解せし
めた。この水溶液を乾固後、12#金網を通過させ
そして後石英炉心管内に置いた。炉は300℃/時
間の昇温速度で750℃迄昇温した。炉雰囲気とし
て100℃から水蒸気および空気の混合ガスを連続
的に多量に送入した。焙焼生成物は茶黒色の軟質
のバルクであり、容易に崩れる状態のものであつ
た。 この焙焼生成物に7.0重量%のZnOと0.1重量%
のCaCO3を添加した後、湿式ボールミル粉砕を
行つた。粉砕品を通常の方法によつてトロイダル
に成型後、下記に示す2種の最高焼結温度におい
て焼結した。焼結体の磁気特性を下記に示す:
The present invention relates to a method for producing ferrite, and in particular to an improvement in a method for producing ferrite using a mixed solution of metal chlorides constituting ferrite, including soft ferrite, as a raw material. The industrial method for producing ferrite is to mix metal oxides constituting ferrite or compounds such as metal carbonates that can easily be converted into metal oxides by heating at a predetermined molar ratio, and temporarily heat the mixture at a temperature of 800 to 1000°C. It is common practice to bake (pre-fire), crush, mold, and then fire. However, this method requires a long calcination step at a relatively high temperature of 800 to 1000°C, and the calcination product is not easy to crush, resulting in microscopic defects in the product. Many drawbacks have been recognized, such as the fact that uniformity is often observed, impurities are likely to be mixed in during production, and furthermore, production takes a long time. especially,
The calcination step is carried out with the intention of homogenizing and promoting the solid phase reaction, but the reaction state is significantly affected by the chemical and physical properties of the raw materials, and ultimately the ferrite magnetic properties are affected. In addition to causing considerable variation, the energy costs required at this stage also account for a large proportion of the ferrite production costs. Furthermore, it accounts for the majority of ferrite raw materials.
Currently, the main source of Fe 2 O 3 powder is iron chloride (FeCl 2 ) in the pickling waste liquid in the rolling process of steel mills, which is oxidized and roasted to be used as a ferrite raw material. However, this operation also requires extra effort. There have been many attempts to produce ferrite as an alternative to the above method, one of which is a proposal to use a mixed solution of chlorides of metals constituting ferrite as a starting material. Since this technique uses metal chlorides as raw materials, it is also advantageous in that the iron chloride in the pickling waste liquid mentioned above can be used as is. In connection with this, the applicant previously disclosed in Japanese Patent Publication No. 47-11550 a method for producing fine ferrite powder by an injection roasting method using a mixed solution of chlorides of ferrite constituent metals as a raw material. . This document also discloses that the hydrogen chloride in the waste gas generated during the process can be recycled and used. This method was mainly aimed at ferrite composed of metals with low chloride vapor pressure, and as a result of subsequent studies, it was found that ferrite incorporating elements with high chloride vapor pressure, such as zinc, was manufactured. Therefore, it has been found that the greatest difficulty in using this method lies in the fact that metal chloride raw materials with high vapor pressures volatilize. For example, in the case of soft ferrite, most of the industrially mass-produced soft ferrite is Fe 2 O 3 : 70% by weight M 2+ O (M is Mn, Ni,
Cu, Mg, etc.): 15-30% by weight and ZnO: 0-15
If all starting materials are used in the form of metal chlorides, metal chlorides with high vapor pressure, such as zinc chloride, will volatilize during roasting and will be significantly below the target concentration in the final product. It turns out. Of course, the same situation occurs not only in the case of soft ferrite, but also in other ferrites when metal chlorides as raw materials include those with high vapor pressure. Therefore, the present inventor has developed a method for manufacturing various ferrites containing elements with high chloride vapor pressure by expanding the method disclosed in Japanese Patent Publication No. 47-11550. When producing ferrite using raw materials, metal elements with low chloride vapor pressure are mixed in advance in the form of a chloride mixed solution at a predetermined molar ratio, and the chloride mixed solution is oxidized and roasted to form metal elements. The above problem can be solved by forming an oxide, then adding an oxide of a metal element other than the above, which has a relatively high chloride vapor pressure, and then carrying out the prescribed treatments of crushing, molding, and sintering. I measured. The product obtained by oxidative roasting of the chloride mixture has a very strong surface activity, and the oxides of ferrite constituent elements that have a high vapor pressure in the chloride form, typically zinc oxide, are mixed later. Since it is highly reactive with other components and the maximum amount added is around 15%, it has been found that even if the latter is added after chloride roasting, it will not have any adverse effects on the quality of the product obtained after sintering. did. In fact, according to this method, products of comparable quality can be obtained even if the maximum sintering temperature is lowered by 50 to 100°C compared to the general method in which oxides are used as raw materials and sintering is performed after calcination. In this way, by making good use of the fact that the oxide formed by roasting the chloride in advance and the oxide added later react with each other very effectively, the present invention This provides a solution to the problem of volatilization of parts of objects. To specifically explain the present invention using the production of soft ferrite as an example, as is well known, soft ferrites are Mn-Zn based, Ni-Zn based, Cu based, etc. -Many types of materials such as Zn-based materials are manufactured. Generally, as mentioned earlier, Fe 2 O 3 of around 70% by weight and 15
~30% by weight M 2+ O (M = Mn, Ni, Cu, Mg…)
and 0 to 15% by weight of ZnO. Among the constituent elements of ferrite, iron chloride (FeCl 2 ) has a low vapor pressure, so it can be roasted. Manganese chloride (MnCl 2 ), magnesium chloride (MgCl 2 ) and nickel chloride (NiCl 2 ) also have low vapor pressures and can therefore be subjected to oxidative roasting.
Zinc chloride (ZnCl 2 ) and the like have a high vapor pressure, so they cannot be oxidized and roasted. In addition, BaCO 3 , SrCO 3 ,
Some raw ingredients commonly available in carbonate form, such as CaCO 3 , may be added in neat form after roasting. Therefore, after refining a liquid containing iron chloride such as iron pickling waste liquid, a desired one of manganese chloride, magnesium chloride, and nickel chloride is added to it in a predetermined molar ratio depending on the ferrite intended to be produced. mixed into the Of course, if these metal chlorides are obtained in solid form, they may be dissolved in water to prepare a metal chloride aqueous solution with a predetermined concentration, or these ferrite constituents may be obtained in the form of metal elements. If available, it may be used in the form of a solution dissolved in hydrochloric acid. Although alcohol and the like may be used as the solvent, water is sufficient industrially. In any case, a chloride solution having a predetermined ratio of ferrite constituent metal elements in which the vapor pressure of the chloride is low is first prepared. Next, this metal chloride mixed solution is heated to 450-900℃.
It is roasted and converted to the metal oxide form at a temperature of . Roasting can be accomplished by drying the solution and placing it in a furnace with an oxidizing atmosphere, or by spraying the solution into a chamber maintained at a predetermined temperature and an oxidizing atmosphere, or by pouring the solution from the center of a concentric tube. It can also be carried out by a flame injection roasting method that uses equipment that jets flame from the outer periphery. After roasting, a mixture of metal oxides is formed. When the mixture is roasted in a furnace after drying, it is obtained as a soft bulk,
This property is extremely fragile. In the case of atomization or flame injection methods, it is obtained in the form of a fine powder. Hydrochloric acid generated during roasting is absorbed into water to recover an aqueous solution of hydrochloric acid, which can be reused for raw material preparation if necessary. A predetermined amount of ZnO is mixed into the roasted product. If it is desired to add CaCO 3 , BaCO 3 , SrCO 3 etc. in carbonate form, these are also mixed at the same time.
Fe 2 O 3 or
These mixtures are subjected to a grinding process with some correction with Mn 3 O 4 . The pulverization treatment is preferably performed using a wet ball mill. The pulverized product is sintered through the steps of drying, granule formation, and molding into a desired shape such as toroidal, as in the general ferrite manufacturing method. As mentioned above, sintering can be carried out at a maximum temperature of 1270 to 1360°C, which is 50 to 100°C lower than the general method, and this greatly contributes to extending the life of the firing furnace and the life of the kiln tools. At the initial stage of sintering, ZnO and Fe 2 O 3 undergo a solid phase reaction.
Expansion occurs when producing ZnO Fe 2 O 3 . This expansion can be mitigated by the addition of sintering-promoting additives so that it is offset by the shrinkage of the overall material due to sintering, or by other solid-state reactions that cause volumetric contraction in the form of added metal elements. By selecting the following, it is possible to substantially eliminate or minimize the risk. The produced sintered product meets the target composition and has excellent homogeneity, and as shown in the examples later, it has satisfactory performance with magnetic properties that are slightly similar to conventional products. . As explained above, the present invention utilizes the pickling waste solution containing FeCl 2 as a source of Fe 2 O 3 and is advantageous in that it can eliminate the calcination required in conventional general methods. In the ferrite manufacturing method using a mixed solution of ferrite as a starting material, the problem of some chlorides volatilizing during roasting has been overcome by improving the quality of the product without having any negative impact on the quality of the product. This method is of great industrial significance in that it has made it possible to expand the field of ferrites that are subject to this method, and it has made it possible to extremely easily produce products with a final composition that matches the target composition. Furthermore, the present invention facilitates the production of high quality products even when the maximum sintering temperature is lowered by 50 to 100 degrees Celsius compared to the conventional general method, which reduces the lifespan of the furnace and equipment by 2 to 3 degrees. It is advantageous in that it can be extended to double the length. Examples of the present invention will be described below. Example 1 FeCl27H2O735.7g and MnCl2
26.43 g of 4H 2 O was weighed out and dissolved in 500 ml of pure water. After the aqueous solution was dried, it was passed through a 12# wire gauze and then placed in a quartz furnace tube. The furnace was heated to 750°C at a heating rate of 300°C/hour. A large amount of a mixed gas of water vapor and air was continuously introduced from 100°C to the furnace atmosphere. The roasted product was a brownish-black soft bulk that easily crumbled. This torrefaction product contains 7.0 wt% ZnO and 0.1 wt%
of CaCO 3 was added, followed by wet ball milling. The pulverized product was formed into a toroidal shape by a conventional method and then sintered at the two maximum sintering temperatures shown below. The magnetic properties of the sintered body are shown below:

【表】 上記値からわかるように、本方法は一般法によ
る材料に較べ低温で焼結しうるだけでなく、良好
な磁芯特性を示す。 比較例として、ZnCl2を最初から出発原料水溶
液中に溶かして上記と同じ条件で実験を行つたと
ころ、ZnCl2は焙焼中ほとんど蒸発してしまつ
た。
[Table] As can be seen from the above values, this method not only enables sintering at a lower temperature than materials produced by conventional methods, but also exhibits better magnetic core properties. As a comparative example, when ZnCl 2 was dissolved in the starting material aqueous solution from the beginning and an experiment was conducted under the same conditions as above, most of the ZnCl 2 evaporated during roasting.

Claims (1)

【特許請求の範囲】 1 フエライトを構成する金属のうちその塩化物
の蒸気圧が低い金属を塩化物混合溶液として所定
のモル比で混合し、塩化物混合溶液を酸化焙焼し
て金属酸化物を形成し、フエライト構成元素のう
ち上記以外の塩化物としての蒸気圧が高い金属の
酸化物を前記焙焼生成物に添加し、然かる後焼結
を行うことを特徴とするフエライト製造方法。 2 フエライトがソフトフエライトであり、塩化
鉄と、塩化マンガン、塩化マグネシウムおよび塩
化ニツケルのうちの少く共1種とが酸化焙焼さ
れ、そして後酸化亜鉛が焙焼生成物に添加される
特許請求の範囲1項記載の方法。 3 溶液が水溶液である特許請求の範囲1項記載
の方法。 4 酸化焙焼が塩化物混合溶液を乾固後酸素含有
雰囲気の炉内での加熱により実施される特許請求
の範囲1項記載の方法。 5 酸化焙焼が噴霧あるいは噴射焙焼法により実
施される特許請求の範囲1項記載の方法。 6 フエライト構成金属のうち鉄の出発原料が塩
化鉄含有塩酸溶液である特許請求の範囲1項記載
の方法。 7 炭酸塩の形で入手されるフエライト構成元素
化合物が焙焼生成物に添加される特許請求の範囲
1項記載の方法。
[Claims] 1. Among the metals constituting ferrite, metals whose chlorides have low vapor pressures are mixed in a predetermined molar ratio as a chloride mixed solution, and the chloride mixed solution is oxidized and roasted to produce metal oxides. A method for producing ferrite, which comprises adding to the roasted product an oxide of a metal having a high vapor pressure as a chloride among the ferrite constituent elements other than those mentioned above, and then sintering the product. 2. A patent claim in which the ferrite is a soft ferrite, iron chloride and at least one of manganese chloride, magnesium chloride, and nickel chloride are oxidized and roasted, and post-roasting zinc oxide is added to the roasted product. The method described in Scope 1. 3. The method according to claim 1, wherein the solution is an aqueous solution. 4. The method according to claim 1, wherein the oxidative roasting is carried out by drying the chloride mixed solution and then heating it in a furnace in an oxygen-containing atmosphere. 5. The method according to claim 1, wherein the oxidative roasting is carried out by spraying or injection roasting. 6. The method according to claim 1, wherein the starting material for iron among the ferrite constituent metals is a hydrochloric acid solution containing iron chloride. 7. Process according to claim 1, in which a ferrite constituent compound obtained in the form of a carbonate is added to the torrefaction product.
JP4971579A 1979-04-24 1979-04-24 Manufacture of ferrite Granted JPS55144421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4971579A JPS55144421A (en) 1979-04-24 1979-04-24 Manufacture of ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4971579A JPS55144421A (en) 1979-04-24 1979-04-24 Manufacture of ferrite

Publications (2)

Publication Number Publication Date
JPS55144421A JPS55144421A (en) 1980-11-11
JPS6317776B2 true JPS6317776B2 (en) 1988-04-15

Family

ID=12838876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4971579A Granted JPS55144421A (en) 1979-04-24 1979-04-24 Manufacture of ferrite

Country Status (1)

Country Link
JP (1) JPS55144421A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156017A (en) * 1986-07-26 1988-06-29 Kemiraito Kogyo Kk Production of powdery compound oxide for raw material of ferrite
JPH03196602A (en) * 1989-12-26 1991-08-28 Taiyo Yuden Co Ltd Manufacture of ni-zn ferrite
EP0562566A1 (en) * 1992-03-23 1993-09-29 Nkk Corporation Method of manufacturing composite ferrite
US5688430A (en) * 1993-02-23 1997-11-18 Nippon Steel Corporation Soft ferrite raw material powder, its sintered body, and their production method and apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FERRITES PROCEEDINGS OFTHE INTERNATIONAL CONFERENCE=1970 *

Also Published As

Publication number Publication date
JPS55144421A (en) 1980-11-11

Similar Documents

Publication Publication Date Title
US2702425A (en) Bonding materials and method of making the same
KR960010091B1 (en) Method for producing composite oxides for use as starting materials for ferrites
JPS6317776B2 (en)
JPS58140324A (en) Manufacture of ferrite as starting material
US3438724A (en) Manufacture of chromium spinels
JP2852151B2 (en) Method for producing raw material oxide for soft ferrite
JP2746736B2 (en) Method for producing composite oxide for ferrite raw material
WO1994019283A1 (en) Soft ferrite raw material powder and sintered body thereof, and method for producing the same
JP2846147B2 (en) Method for producing raw material oxide for soft ferrite
JP2849207B2 (en) Method for producing raw material oxide for soft ferrite
JP3397421B2 (en) Method for producing Ni-Zn ferrite raw material oxide
JPH05198417A (en) Manufacture of soft ferrite powder
JPH04219321A (en) Zinc raw material for soft ferrite and production of oxide raw material for soft ferrite using the same
US2077096A (en) Manufacture of chromates
JPH0397625A (en) Production of raw oxide for soft ferrite
JPH0453207A (en) Manufacture of raw material oxide for soft ferrite
JPH07211533A (en) Method of manufacturing oxide magnetic material
JPH0594911A (en) Manufacture of raw oxide for ferrite
JPH06215924A (en) Manufacture of magnetic oxide fine particles
JPH0742114B2 (en) Vanadium lower oxide manufacturing method
KR0145815B1 (en) Manufacturing method of ferrite powder
JP2933763B2 (en) Method for producing raw material oxide for soft ferrite
JPH0620821A (en) Manufacture of mn-zn ferrite raw oxide
JP3653638B2 (en) Raw material iron oxide powder for soft ferrite production and method for producing soft ferrite
JPH06196311A (en) Manufacture of composite oxide material for ferrite