JPH0380544A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0380544A
JPH0380544A JP21630189A JP21630189A JPH0380544A JP H0380544 A JPH0380544 A JP H0380544A JP 21630189 A JP21630189 A JP 21630189A JP 21630189 A JP21630189 A JP 21630189A JP H0380544 A JPH0380544 A JP H0380544A
Authority
JP
Japan
Prior art keywords
collector
region
insulating film
substrate
isolation insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21630189A
Other languages
Japanese (ja)
Inventor
Yoshimi Yamashita
良美 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21630189A priority Critical patent/JPH0380544A/en
Publication of JPH0380544A publication Critical patent/JPH0380544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To reduce collector resistance and collector parasitic capacitance, and realize an element capable of high speed operation, by arranging a collector region, an element isolation insulating film and a collector leading-out region on a substrate having step-difference on the surface, and connecting the collector region with the substrate surface under the step-difference. CONSTITUTION:A collector region 2, an element isolation insulating film 3 and a collector leading-out region 4 are formed on a p-Si substrate 1 having step-difference on the surface. The collector region 2 is composed of an n-Si epitaxial layer in contact with the substrate surface under the step-difference, and in the inside, a conductivity type emitter region 8 and an opposite conductivity type base region 6 are formed in order from the surface. The collector leading-out region 4 is composed of a high concentration N-type poly Si layer formed on the element isolation insulating film 3 under the step-difference so as to be in contact with the side surface of the collector region 2. Since, in this structure, a buried layer is not present, and the collector is directly led out from the side surface of the collector region 2, the collector resistance can be reduced. The collector leading-out region 4 exists on a thick insulating film, so that the collector parasitic capacitance is reduced, thereby realizing the high speed operation of an element.

Description

【発明の詳細な説明】 〔概要〕 バイポーラトランジスタを有する半導体装置に関し。[Detailed description of the invention] 〔overview〕 Regarding a semiconductor device having a bipolar transistor.

埋込領域を有しない新規の構造を提案して、バイポーラ
トランジスタの動作速度を向上させることを目的とし。
We aim to improve the operating speed of bipolar transistors by proposing a new structure without buried regions.

表面に段差を持つ基板上に、コレクタ領域と素子分離絶
縁膜とコレクタ引出領域とを有し、コレクタ領域は段差
下の基板表面に接続する一導電型半導体層からなり、内
部にその表面より順次一導電型エミッタ領域、・反対導
電型ベース領域が形成されており、素子分離絶縁膜はコ
レクタ領域の周縁に接して段差に沿って基板表面に形成
されており、コレクタ引出領域はコレクタ領域の側面に
接して段差下の素子分離絶縁膜上に形成された一導電型
半導体層からなるように構成する。
A substrate with a step on its surface has a collector region, an element isolation insulating film, and a collector lead-out region. An emitter region of one conductivity type and a base region of an opposite conductivity type are formed, an element isolation insulating film is formed on the substrate surface along the step in contact with the periphery of the collector region, and a collector lead-out region is formed on the side surface of the collector region. The structure is made up of a semiconductor layer of one conductivity type formed on the element isolation insulating film in contact with and under the step.

〔産業上の利用分野〕[Industrial application field]

本発明はバイポーラトランジスタを有する半導体装置に
関する。
The present invention relates to a semiconductor device having a bipolar transistor.

バイポーラトランジスタは高速集積回路の構成素子とし
て広く用いられている。
Bipolar transistors are widely used as components of high speed integrated circuits.

〔従来の技術〕[Conventional technology]

バイポーラトランジスタの基本構造は周知のように基板
上に高濃度埋込領域を形成し、その上にコレクタ領域と
なるエビ層を基板上全面に形成し。
As is well known, the basic structure of a bipolar transistor is to form a highly doped buried region on a substrate, and then form a shrimp layer, which will become a collector region, over the entire surface of the substrate.

埋込領域上のエビ層内に順次ベース領域、エミッタ領域
を形成した構造である。
It has a structure in which a base region and an emitter region are sequentially formed in the shrimp layer above the buried region.

第3図は従来例によるバイポーラトランジスタの断面図
である。
FIG. 3 is a sectional view of a conventional bipolar transistor.

図において、21はp型の半導体基板、22はn1型の
高不純物濃度埋込領域、23はn型エピタキシャル戒長
層でコレクタを構成し、24はp型の素子分離領域、2
5はp型の不純物導入層でベースを構威し、26はn0
型の不純物導入層でエミッタを構威し、27はn3型の
コレクタ電極引出し領域、28゜29、30は導電層よ
りなり、それぞれコレクタ、ベース、工ξツタ電極を構
威し、31はフィールド絶縁層である。
In the figure, 21 is a p-type semiconductor substrate, 22 is an n1-type buried region with high impurity concentration, 23 is an n-type epitaxial layer forming a collector, 24 is a p-type element isolation region, 2
5 is a p-type impurity-introduced layer that forms the base, and 26 is n0.
A type impurity-introduced layer constitutes an emitter, 27 is an n3 type collector electrode extraction region, 28, 29, and 30 are conductive layers, each forming a collector, a base, and an ivy electrode, and 31 is a field. It is an insulating layer.

このような構造のトランジスタにおいては、ベース電極
29と工ξツタ電極30間の絶縁距離を確保するため、
ベース領域25はエミッタ領域26よりかなり大きくし
なければならない。しかしトランジスタ作用にあずかる
動作領域はエミッタ領域26の直下の領域のみで、それ
以外の領域はベース電極引出し用のものであり、その大
きさはできるだけ小さいことが望ましい。
In a transistor having such a structure, in order to ensure an insulating distance between the base electrode 29 and the ivy electrode 30,
Base region 25 must be significantly larger than emitter region 26. However, the operating region that takes part in the transistor action is only the region immediately below the emitter region 26, and the other region is for drawing out the base electrode, and it is desirable that the size of the region be as small as possible.

従来例によるバイポーラトランジスタにおいては、動作
領域を機能的に必要とする大きさより大きくしなければ
ならず、集積度を向上する制約となり、さらに動作速度
を制限するという欠点があった。
Conventional bipolar transistors have disadvantages in that the operating area must be made larger than functionally necessary, which limits the degree of integration and further limits the operating speed.

近年、デバイスの高速化、高集積化の要請によりベース
の引き出し方法については種々な工夫がなされ、多くの
提案がなされている。
In recent years, in response to demands for higher speed and higher integration of devices, various methods of extracting the base have been devised and many proposals have been made.

コレクタの引き出しについては、埋込領域から基板表面
に引き出しているのが一般的である。
The collector is generally drawn out from the buried region to the substrate surface.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

コレクタの引き出しに埋込領域を用いた場合はコレクタ
の寄生容量が大きく、コレクタ抵抗は埋込領域を経由す
る分だけ大きくなるため、素子特性を阻害していた。
When a buried region is used to lead out the collector, the parasitic capacitance of the collector is large, and the collector resistance increases by the amount that passes through the buried region, which impairs device characteristics.

本発明は埋込領域を有しない新規の構造を提案して、バ
イポーラトランジスタの動作速度を向上させることを目
的とする。
The present invention aims to improve the operating speed of bipolar transistors by proposing a new structure without buried regions.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決は9表面に段差を持つ基板上に。 The above problem was solved on a substrate with steps on the surface.

コレクタ領域と素子分離絶縁膜とコレクタ引出領域とを
有し、コレクタ領域は段差下の基板表面に接続する一導
電型半導体層からなり、内部にその表面より順次一導電
型エミッタ領域2戻対導電型ベース領域が形成されてお
り、素子分離絶縁膜はコレクタ領域の周縁に接して段差
に沿って基板表面に形成されており、コレ−フタ引出領
域はコレクタ領域の側面に接して段差下の素子分離絶縁
膜上に形成された一導電型半導体層からなる半導体装置
にまり達成される。
It has a collector region, an element isolation insulating film, and a collector lead-out region, and the collector region is made of a one-conductivity type semiconductor layer connected to the substrate surface under the step, and one-conductivity type emitter region 2 is returned to the inside from the surface in order. A mold base region is formed, an element isolation insulating film is formed on the substrate surface along the step in contact with the periphery of the collector region, and a collector lead-out region is formed in contact with the side surface of the collector region to protect the elements below the step. This is achieved in a semiconductor device consisting of a semiconductor layer of one conductivity type formed on an isolation insulating film.

〔作用〕[Effect]

本発明は、埋込領域がなくコレクタ領域の側面から直接
コレクタを引き出しているためコレクタ抵抗を低減し、
更にコレクタ引き出し領域が厚い分離絶縁膜上にあるた
めコレクタの寄生容量を低減して、素子の高速化をはか
ったものである。
The present invention has no embedded region and draws out the collector directly from the side of the collector region, reducing collector resistance.
Furthermore, since the collector lead-out region is located on a thick isolation insulating film, the parasitic capacitance of the collector is reduced, thereby increasing the speed of the device.

〔実施例〕〔Example〕

第1図は本発明の一実施例を説明する一部断面を示す斜
視図である。
FIG. 1 is a partially sectional perspective view illustrating an embodiment of the present invention.

図において、lはp−St基板、 ICはチャネルカッ
ト領域、2はコレクタ領域でn−3i工ビ層、3は素子
分離絶縁膜でSi0g膜、4はコレクタ引出領域、5は
眉間絶縁膜、6はp型ベース領域、7は眉間絶縁膜、8
はn・型工aツタ領域、Eは工電ツタ電極、Bはベース
電極、Cはコレクタ電極である。
In the figure, l is a p-St substrate, IC is a channel cut region, 2 is a collector region with an n-3i bilayer, 3 is an element isolation insulating film and is a Si0g film, 4 is a collector lead-out region, 5 is an insulating film between the eyebrows, 6 is a p-type base region, 7 is an insulating film between the eyebrows, 8
is an n-type vine area, E is a vine electrode, B is a base electrode, and C is a collector electrode.

この実施例の構造は次のようである。The structure of this embodiment is as follows.

表面に段差を持つp−5i基板lに、コレクタ領域2と
素子分離絶縁膜3とコレクタ引出領域4とを有し。
A p-5i substrate 1 having a step on its surface has a collector region 2, an element isolation insulating film 3, and a collector lead-out region 4.

コレクタ領域2は段差下の基板表面に接続するn−5t
工ビ層からなり、内部にその表面より順次一導電型王政
ツタ領域89反対導電型ベース領域6が形威されており
Collector region 2 is n-5t connected to the substrate surface under the step.
It consists of a vinyl layer, and inside thereof, a monarch ivy region 89 of one conductivity type and a base region 6 of the opposite conductivity type are formed sequentially from the surface.

素子分離絶縁膜3はコレクタ領域2の周縁に接して段差
に沿って基板表面に形威されており。
The element isolation insulating film 3 is formed on the substrate surface in contact with the periphery of the collector region 2 and along the steps.

コレクタ引出領域4はコレクタ領域2の側面に接して段
差下の素子分離絶縁膜3上に形威された高濃度のn型ポ
リSi層からなっている。
The collector lead-out region 4 is made of a highly concentrated n-type poly-Si layer formed on the element isolation insulating film 3 under the step in contact with the side surface of the collector region 2.

次に実施例の半導体装置の製造工程の概略を説明する。Next, the outline of the manufacturing process of the semiconductor device of the example will be explained.

第2図(1)〜(6)は実施例の製造工程を説明する断
面図である。
FIGS. 2(1) to 2(6) are cross-sectional views illustrating the manufacturing process of the embodiment.

第2図(1)において、 p−Si基板1上全面に厚さ
0.5〜1.0 amのn−3i エビ層2と厚さ50
00人の気相成長(CVD)−SiOz膜21を成長す
る。
In FIG. 2 (1), there is an n-3i layer 2 with a thickness of 0.5 to 1.0 am on the entire surface of the p-Si substrate 1 and a layer 2 with a thickness of 50 am.
A SiOz film 21 is grown by chemical vapor deposition (CVD).

次にエビ層2を積んだ基板の表面に段差(溝)を形成す
る。
Next, steps (grooves) are formed on the surface of the substrate on which the shrimp layer 2 is laminated.

エビ層2のコレクタ領域の周囲に幅1〜2μmの溝22
を形成する。溝22の深さはp−3i基板が7000〜
12000人くぼむように形成する。
A groove 22 with a width of 1 to 2 μm is formed around the collector region of the shrimp layer 2.
form. The depth of the groove 22 is 7000 mm for the p-3i substrate.
It will be formed to hold 12,000 people.

溝の形成は、まずSing膜21をバターニングして溝
の形成部を開口し、開口されたSiO□膜21をマスク
にした反応性イオンエツチング(RIE)により行う。
The grooves are formed by first buttering the Sing film 21 to open the groove forming portions, and then performing reactive ion etching (RIE) using the opened SiO□ film 21 as a mask.

RIBは1例えば、平行平板型装置でCIZガスを用い
、これを0.1 Torrに減圧して13.56 MH
zの電力を基板当たり200 II印加して行う。
RIB is 1. For example, using CIZ gas in a parallel plate type device, the pressure is reduced to 0.1 Torr to 13.56 MH.
This is done by applying a power of 200 II per substrate.

溝の内側のエビ層2がコレクタ領域となる。The shrimp layer 2 inside the groove becomes the collector region.

第2図(2)において、熱酸化により、溝内面に厚さ5
00 AのパッドSiO!膜23を形成し、この層を通
して硼素イオン(B+)を注入して 、 +型のチャネ
ルカッ) 6N域ICを形成する。
In Fig. 2 (2), due to thermal oxidation, the inner surface of the groove has a thickness of 5 mm.
00 A pad SiO! A film 23 is formed, and boron ions (B+) are implanted through this layer to form a 6N region IC with a + type channel.

B1の注入条件は エネルギー80 KeV、  ドー
ズ量5X10′3〜2X10”cm−”である。
The implantation conditions for B1 are as follows: energy: 80 KeV; dose: 5×10'3 to 2×10"cm-".

第2図(3)において9通常のりソゲラフイエ程を用い
て溝22の内側側面に厚さ1000人の5izN4膜2
4を形威する。
In Fig. 2 (3), a 5izN4 film 2 with a thickness of 1000 mm is applied to the inner side surface of the groove 22 using 9 ordinary glue steps.
Express 4.

溝22の内側側面のみに5L3N、膜24を形成するに
は例えば次のようにする。
To form the film 24 of 5L3N only on the inner side surface of the groove 22, for example, the following procedure is performed.

まず、溝内部(側面、底面)を覆って基板全面にSi3
N4膜を気相成長し、 RIEによる異方性エツチング
により基板表面及び溝底面の5iJa膜を除去して、溝
の内側側面と外側側面のSi、N、膜を残す。次に、溝
内部を覆って基板全面にレジストを塗布し9通常のりソ
ゲラフイエ程を用いて溝22の内側側面のみに5t3N
a膜24を残すようにバターニングする。
First, Si3 was applied to the entire surface of the substrate, covering the inside of the groove (side and bottom surfaces).
A N4 film is grown in a vapor phase, and the 5iJa film on the substrate surface and the groove bottom is removed by anisotropic etching using RIE, leaving the Si, N, and N films on the inner and outer sides of the groove. Next, apply resist to the entire surface of the substrate, covering the inside of the groove, and apply 5t3N to only the inner side surface of the groove 22 using a normal glue soger coating.
Buttering is performed so that the a film 24 remains.

第2図(4)において、 Sl、Na膜膜種4耐酸化マ
スクにして1分離絶縁膜としてウェット酸化による厚さ
4000〜5000人のSing膜3を形成する。この
際。
In FIG. 2(4), a Sing film 3 having a thickness of 4,000 to 5,000 wafers is formed by wet oxidation as an isolation insulating film using an oxidation-resistant mask of 4 types of Sl and Na films. On this occasion.

5iO1膜3はコレクタ領域上にも戒長される。The 5iO1 film 3 is also formed on the collector region.

次いで、 Si3N、膜24及びパッドSi0g膜23
を除去する。
Next, Si3N film 24 and pad Si0g film 23
remove.

第2図(5)において、厚さ7000〜12000人の
n゛型ポリSt層を基板全面に戒長し、エッチバックし
て溝内にn+型のポリStからなるコレクタ引出領域4
を形成する。ここで、ポリStのドープは成長後に行っ
てもよい。
In FIG. 2 (5), an n-type polySt layer with a thickness of 7,000 to 12,000 layers is deposited over the entire surface of the substrate, etched back, and a collector lead-out region 4 made of n+-type polySt is formed in the groove.
form. Here, doping with polySt may be performed after growth.

次に、コレクタ引出領域4の表面に熱酸化5iOz膜2
5を形威し、その後熱処理により、コレクタ引出領域4
からコレクタ領域2に不純物を拡散させる。その結果、
コレクタ領域2の界面より内側はn゛型になりコンタク
ト抵抗を下げる役目をすることになる。
Next, a thermally oxidized 5iOz film 2 is applied to the surface of the collector lead-out region 4.
5 and then heat-treated to form the collector draw-out area 4.
Then, impurities are diffused into the collector region 2. the result,
The area inside the interface of the collector region 2 becomes n-type and serves to lower the contact resistance.

次に、厚さ4000〜5000人(7) CV D −
S i Oz膜26を基板全面に成長する。
Next, thickness 4000-5000 people (7) CV D −
A SiOz film 26 is grown over the entire surface of the substrate.

第2図(6)において、コレクタ領域2上のSin、膜
26及び3を開口してp型の不純物を導入してベース領
域6を形成する。
In FIG. 2(6), the base region 6 is formed by opening the Sin films 26 and 3 on the collector region 2 and introducing p-type impurities.

次に、開口内に順次p゛型のポリSiからなるベース電
極B、被覆絶縁膜261層間絶縁膜としてのSiO□膜
7を形成する。
Next, a base electrode B made of p-type poly-Si, a covering insulating film 261, and a SiO□ film 7 as an interlayer insulating film are sequentially formed in the opening.

この工程の詳細は9例えば、 SiO□膜26及び3の
開口を覆って基板全面にベース電極B形成用のp゛型の
ポリSt層を戒長し、これをバターニングしてベース電
極Bを形威し、被覆絶縁膜26を基板全面に成長する。
For details of this process, see 9. For example, a p-type polySt layer for forming the base electrode B is formed on the entire surface of the substrate, covering the openings of the SiO□ films 26 and 3, and this is patterned to form the base electrode B. As a result, a covering insulating film 26 is grown over the entire surface of the substrate.

エミッタ領域形成部の被覆絶縁膜26とベース電極Bを
開口する。眉間絶縁膜として、開口内のベース電極Bの
表面に熱酸化SiO2膜7を形成する。開口内にSiO
□膜7を介してn゛型のポリSiからなるエミッタ電極
を形成する。
The coating insulating film 26 and the base electrode B in the emitter region forming portion are opened. A thermally oxidized SiO2 film 7 is formed on the surface of the base electrode B within the opening as an insulating film between the eyebrows. SiO inside the opening
□ An emitter electrode made of n-type poly-Si is formed via the film 7.

次に、工ごツタ電極Eから不純物を拡散させてn+型の
工逅ツタ領域8を形成する。又、エミッタ領域8は電極
形成前にイオン注入により形成してもよい。
Next, impurities are diffused from the ivy electrode E to form an n+ type ivy region 8. Further, the emitter region 8 may be formed by ion implantation before forming the electrode.

以上で、バイポーラトランジスタの要部が形成される。With the above steps, the main part of the bipolar transistor is formed.

実施例は集積回路のその他の素子形成工程と組み合わせ
て適用することができる。
The embodiments can be applied in combination with other integrated circuit device formation processes.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、埋込領域を有しな
い新規の構造により、バイポーラトランジスタの動作速
度を向上させることができた。
As described above, according to the present invention, the operating speed of a bipolar transistor can be improved by using a novel structure that does not have a buried region.

例えば、動作領域が同一寸法の場合について。For example, when the operating areas have the same dimensions.

埋込領域を持つ構造の従来例と埋込領域を持たない実施
例を比較すると次のようになる。
A comparison between a conventional structure having a buried region and an embodiment without a buried region is as follows.

従来例 実施例 コレクタ抵抗(Ω)84 コレクタ容量(pF/200 u m ”)  0.1
5  0.05−スピード (pS)        
  1.2   0.2
Conventional example Example Collector resistance (Ω) 84 Collector capacitance (pF/200 um”) 0.1
5 0.05-Speed (pS)
1.2 0.2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明する一部断面を示す斜
視図。 第2図(1)〜(6)は実施例の製造工程を説明する断
面図。 第3図は従来例によるバイポーラトランジスタの断面図
である。 図において。 1はp−3t基板。 ICはチャネルカット領域。 2はコレクタ領域でn−Si エビ層。 3は素子分離絶縁膜でSi0g膜。 4はコレクタ引出領域。 釧2ρb膜。 6はp型ベース領域。 7は眉間絶縁膜。 8はn型工逅ツタ領域。 Eはエミッタ電極、Bはベース電極。 Cはコレクタ電極 実拒4P1の一舟F#面乏示す♀斗4足図第 1 目 実羽1イクリのaFol○色] 第20(イの1) 実施例の断面積 冨2配偕/)2)
FIG. 1 is a partially sectional perspective view illustrating an embodiment of the present invention. FIGS. 2(1) to 2(6) are cross-sectional views illustrating the manufacturing process of the embodiment. FIG. 3 is a sectional view of a conventional bipolar transistor. In fig. 1 is a p-3t substrate. IC is a channel cut area. 2 is the n-Si shrimp layer in the collector region. 3 is an element isolation insulating film, which is a Si0g film. 4 is the collector drawer area. Sen2ρb membrane. 6 is a p-type base region. 7 is the glabellar insulating membrane. 8 is the n-type industrial area. E is the emitter electrode, B is the base electrode. C is the collector electrode actual rejection 4P1 one ship F# surface deficiency ♀ 4-legged diagram 1st aFol○ color of 1 grain of grain] 20th (A-1) Example cross-sectional area depth 2 distribution/) 2)

Claims (1)

【特許請求の範囲】 表面に段差を持つ基板(1)上に、コレクタ領域(2)
と素子分離絶縁膜(3)とコレクタ引出領域(4)とを
有し、 コレクタ領域は段差下の基板表面に接続する一導電型半
導体層からなり、内部にその表面より順次一導電型エミ
ッタ領域(8)、反対導電型ベース領域(6)が形成さ
れており、 素子分離絶縁膜はコレクタ領域の周縁に接して段差に沿
って基板表面に形成されており、 コレクタ引出領域はコレクタ領域の側面に接して段差下
の素子分離絶縁膜上に形成された一導電型半導体層から
なることを特徴とする半導体装置。
[Claims] A collector region (2) on a substrate (1) having a step on its surface.
, an element isolation insulating film (3), and a collector lead-out region (4), the collector region is made of a semiconductor layer of one conductivity type connected to the surface of the substrate under the step, and an emitter region of one conductivity type is formed inside the layer sequentially from the surface. (8), a base region (6) of the opposite conductivity type is formed, an element isolation insulating film is formed on the substrate surface along the step in contact with the periphery of the collector region, and a collector lead-out region is formed on the side surface of the collector region. 1. A semiconductor device comprising a semiconductor layer of one conductivity type formed on an element isolation insulating film in contact with and under a step.
JP21630189A 1989-08-23 1989-08-23 Semiconductor device Pending JPH0380544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21630189A JPH0380544A (en) 1989-08-23 1989-08-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21630189A JPH0380544A (en) 1989-08-23 1989-08-23 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0380544A true JPH0380544A (en) 1991-04-05

Family

ID=16686383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21630189A Pending JPH0380544A (en) 1989-08-23 1989-08-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0380544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809909B1 (en) * 2007-03-07 2008-03-06 주식회사 케이디파워 Apparatus of door

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809909B1 (en) * 2007-03-07 2008-03-06 주식회사 케이디파워 Apparatus of door

Similar Documents

Publication Publication Date Title
US5084402A (en) Method of fabricating a semiconductor substrate, and semiconductor device, having thick oxide films and groove isolation
US4794445A (en) Semiconductor device
JPS60117664A (en) Bipolar semiconductor device
JP2001284587A (en) Semiconductor device and method of manufacturing the same
JPH0380544A (en) Semiconductor device
JPH0252858B2 (en)
JP2538077B2 (en) Method for manufacturing semiconductor device
JPS5940571A (en) Semiconductor device
JPH11204541A (en) Manufacture of combined substrate and semiconductor device
JP2633411B2 (en) Method for manufacturing semiconductor device
JPH0128507B2 (en)
JPH02133929A (en) Semiconductor device and its manufacture
JPH0778833A (en) Bipolar transistor and its manufacture
JPS6158981B2 (en)
JPH0252859B2 (en)
JPS62183558A (en) Manufacture of bipolar transistor
JP2794571B2 (en) Manufacturing method of bipolar transistor
JP2604550B2 (en) Semiconductor device
JPS634664A (en) Manufacture of semiconductor device
JPH10150108A (en) Semiconductor device and its manufacture
JPH081927B2 (en) Method for manufacturing substrate structure of semiconductor device
JPH02246223A (en) Manufacture of semiconductor device
JPH04352478A (en) Variable capacity diode
JPH03109738A (en) Manufacture of semiconductor device
JPH03159167A (en) Manufacture of semiconductor integrated circuit