JPH02133929A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH02133929A
JPH02133929A JP28907088A JP28907088A JPH02133929A JP H02133929 A JPH02133929 A JP H02133929A JP 28907088 A JP28907088 A JP 28907088A JP 28907088 A JP28907088 A JP 28907088A JP H02133929 A JPH02133929 A JP H02133929A
Authority
JP
Japan
Prior art keywords
insulating film
field insulating
film
conductivity type
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28907088A
Other languages
Japanese (ja)
Inventor
Shunichi Yamaki
八巻 俊一
Takeshi Matsutani
松谷 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP28907088A priority Critical patent/JPH02133929A/en
Publication of JPH02133929A publication Critical patent/JPH02133929A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To enhance an element characteristic by a method wherein an impurity region, of a different conductivity type, coming into contact with a side end of a field insulating film comes into contact with the field insulating film in the side end part and is stretched down to a depth of the field insulating film. CONSTITUTION:Before a field insulating film 2 is formed, an ion of an impurity used to form an impurity region 10, of a different conductivity type, coming into contact with a side end of the field insulating film 2 is implanted. Then, the field insulating film 2 is formed; after that, an ion of an impurity to be used as a channel cut layer 3 is implanted into the whole surface after it has been permeated through the field insulating film 2 and an oxidation-preventing film 12; a heat treatment is executed; the impurity region 10 of the different conductivity type is formed at the side end part of the field insulating film 2 and, at the same time, the channel cut layer 3 is formed on the bottom of the field insulating film. Thereby, a structure where the impurity region 10, of the different conductivity type, coming into contact with the side end of the field insulating film is stretched down to a depth of the field insulating film 2 is constituted. Accordingly, a crystal defect part causing a junction leak is included in the impurity region 10 of the different conductivity type; a crystal defect is not caused in a depletion layer; as a result, the junction leak is eliminated; thereby an element characteristic is enhanced.

Description

【発明の詳細な説明】 〔概 要〕 LOCO3法による絶縁膜からなる素子間分離領域の形
成方法に関し、 フィールド絶縁膜の側端部における欠陥によって生じる
ソース、ドレインの接合リークを抑制して素子特性を向
上させることを目的とし、構造は、一導電型シリコン基
板に設けたフィールド絶縁膜によって素子分離される構
造の半導体装置において、前記フィールド絶縁膜の側端
部に接する異種導電型不純物領域が該側端部において前
記フィールド絶縁膜に接して該フィールド絶縁膜の深さ
まで延在した構成にする。
[Detailed Description of the Invention] [Summary] Regarding a method for forming an isolation region made of an insulating film using the LOCO3 method, the device characteristics can be improved by suppressing source/drain junction leakage caused by defects at the side edges of a field insulating film. In a semiconductor device having a structure in which elements are isolated by a field insulating film provided on a silicon substrate of one conductivity type, an impurity region of a different conductivity type in contact with a side edge of the field insulating film is The side end portion is in contact with the field insulating film and extends to the depth of the field insulating film.

製造方法は、一導電型シリコン基板に酸化シリコン膜を
介して酸化防止膜のパターンを形成し、該酸化防止膜を
マスクとして前記酸化シリコン膜を透過させて異種導電
型不純物イオンを注入する工程と、次いで、酸化防止膜
をマスクとして熱酸化してフィールド絶縁膜を生成し、
前記酸化防止膜およびフィールド絶縁膜を透過させて全
面に一導電型不純物イオンを注入し、次いで、熱処理し
て前記フィールド絶縁膜の側端部に異種導電型不純物領
域、フィールド絶縁膜の底面に一導電型不純物領域を形
成する工程とが含まれてなることを特徴とする。
The manufacturing method includes forming an anti-oxidation film pattern on a silicon substrate of one conductivity type via a silicon oxide film, and implanting impurity ions of a different conductivity type through the silicon oxide film using the anti-oxidation film as a mask. Then, a field insulating film is generated by thermal oxidation using the anti-oxidation film as a mask,
Impurity ions of one conductivity type are implanted into the entire surface through the oxidation prevention film and the field insulating film, and then heat treatment is performed to form impurity regions of a different conductivity type at the side edges of the field insulating film and at the bottom of the field insulating film. The method is characterized in that it includes a step of forming a conductive type impurity region.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法にかかり、特にLOCO
3法による絶縁膜からなる素子量分#領域の形成方法に
関する。
The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device.
The present invention relates to a method for forming a # region of an element amount consisting of an insulating film using three methods.

〔従来の技術〕[Conventional technology]

従来よりLSIなどの半導体装置における素子間分離(
アイソレーション; 1solation )方法とし
てLOCO3法と呼ばれる選択酸化法が重用されている
が、このLOCO3法によるフィールド絶縁膜は素子間
分離を完全にして界面リークを防止するために、フィー
ルド絶縁膜に接する半導体基板面に高不純物濃度層から
なるチャネルカット層を設ける構造が採られている。
Conventionally, isolation between elements in semiconductor devices such as LSI (
A selective oxidation method called the LOCO3 method is widely used as an isolation (1solation) method.The field insulating film using the LOCO3 method is designed to completely isolate devices and prevent interfacial leakage between semiconductors in contact with the field insulating film. A structure is adopted in which a channel cut layer made of a high impurity concentration layer is provided on the substrate surface.

第3図(、;)、 (b)は従来のMO3型半導体装置
の断面図で、同図(a)は−殻構造のMO3型半導体装
置。
3(a) and 3(b) are cross-sectional views of a conventional MO3 type semiconductor device, and FIG. 3(a) is an MO3 type semiconductor device with a -shell structure.

同図(blはL D D (Lightly Dope
d Drain )構造のMO3型半導体装置であって
、後者のLDD構造は公知のようにショートチャネル効
果を抑制するために考案された構造である。図中の記号
1はp型シリコン基板、2は酸化シリコン(SiOz)
膜からなるフィールド絶縁膜、3はp+型チャネルカッ
ト層、4はゲート絶縁膜、5はゲート電極。
The same figure (bl is L D D (Lightly Dope
d Drain ) structure, and the latter LDD structure is a structure devised to suppress the short channel effect as is well known. Symbol 1 in the figure is a p-type silicon substrate, 2 is silicon oxide (SiOz)
3 is a p+ type channel cut layer, 4 is a gate insulating film, and 5 is a gate electrode.

6はn型のソース領域どドレイン領域、7はLDDi造
に特有のn−型のソース領域、ドレイン領域である。
Reference numeral 6 indicates an n-type source region and drain region, and 7 indicates an n-type source region and drain region specific to the LDDi structure.

第4図(al〜ff)は−殻構造のMO3型半導体装置
の従来の形成方法の工程順断面図を示しており、その概
要を説明すると、 第4図(al参照;まず、p型シリコン基板1上に薄い
SiO□膜11全11化して生成し、その上に化学気相
成長(CVD)法によツ7 S i :l N <膜1
2を被着する。
FIG. 4 (al to ff) shows a step-by-step cross-sectional view of a conventional method for forming an MO3 type semiconductor device with a -shell structure, and the outline thereof is as follows. A thin SiO□ film 11 is formed on the substrate 1, and a thin SiO□ film 11 is formed on the substrate 1 by chemical vapor deposition (CVD).
2.

第4図(bl参照;次いで、上面にレジスト膜パターン
13を選択的に形成し、それをマスクにしてSi3N4
膜12をエツチングして素子形成領域上のみに5i3N
a膜12を残存させる。
FIG. 4 (see BL; next, a resist film pattern 13 is selectively formed on the upper surface, and using it as a mask, Si3N4
The film 12 is etched to form 5i3N only on the element forming area.
The a film 12 is left.

第4図(C1参照;次いで、5i3Na膜12およびレ
ジスト膜パターン13のマスク部分を除いた5iozl
li11の露出面にSiO□膜11全11させて硼素(
B”)をイオン注入する。
FIG. 4 (see C1; next, the 5i3Na film 12 and the masked portion of the resist film pattern 13 are removed.
Boron (
B'') is ion-implanted.

第4図fdl参照;次いで、レジスト膜パターン13を
除去した後、1000℃以上の高温度で熱酸化してSi
O□膜からなるフィールド絶縁膜2を生成し、且つ、p
゛型チャネルカット層3を活性化して画定する。
See FIG. 4 fdl; Next, after removing the resist film pattern 13, thermal oxidation is performed at a high temperature of 1000° C. or higher to form a Si
A field insulating film 2 made of O□ film is produced, and p
A type channel cut layer 3 is activated and defined.

第4図tel参照;次いで、素子形成領域を被覆してい
るSing膜11およびSi、 N、膜12を除去し、
新たなSin、膜を生成して、その上にCVD法によっ
て多結晶シリコン膜を被着し、これをレジスト膜パター
ン14を用いてパターンニングして5iOz膜からなる
ゲート絶縁膜4と多結晶シリコン膜からなるゲート電極
5を形成する。
Refer to FIG. 4 (tel); Next, the Sing film 11 and the Si, N, film 12 covering the element formation region are removed.
A new Sin film is generated, a polycrystalline silicon film is deposited on it by the CVD method, and this is patterned using a resist film pattern 14 to form a gate insulating film 4 made of a 5iOz film and polycrystalline silicon. A gate electrode 5 made of a film is formed.

第4図(fl参照;次いで、n型のソース領域、ドレイ
ン領域6を形成するために、砒素(As” )をイオン
注入する。
4 (see fl; see FIG. 4; next, arsenic (As'') is ion-implanted to form n-type source and drain regions 6.

しかる後、熱処理してn型ソース領域、n型ドレイン領
域6を画定して第3図(a)のように完成させる。
Thereafter, heat treatment is performed to define an n-type source region and an n-type drain region 6 to complete the structure as shown in FIG. 3(a).

なお、第3図(blに示すLDD構造のMO3型半導体
装置は工程途中(第4図telと第4図if)の間)に
n−型のソース領域、ドレイン領域7の形成工程とサイ
ドウオールとなる絶縁膜をゲート電極4の周囲に形成す
る工程が追加されるが、他は上記の形成方法と同様であ
る。
Note that the MO3 type semiconductor device with the LDD structure shown in FIG. 3 (bl) has an n-type source region and drain region 7 formed during the process (between FIG. 4 tel and FIG. 4 if) and a side wall. A step of forming an insulating film around the gate electrode 4 is added, but the other steps are the same as the above-described forming method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、従前はソース領域、ドレイン領域がフィール
ド絶縁膜の深さに近い厚みにまで形成していたために余
り問題にはならなかったが、最近、微細化されてソース
領域、ドレイン領域の厚みが浅くなり、しかも、それに
比例してフィールド絶縁膜の厚さは余り浅くならないた
めに、フィールド絶縁膜の側端部においてフィールド絶
縁膜とソース領域、ドレイン領域との深さが大きく相違
して、半導体装置の動作時にソース、ドレイン領域周囲
に発生する空乏層がフィールド絶縁膜の側端に生じてい
る結晶欠陥部の中に形成され、その結果、ソース、ドレ
インの接合リークが発生して特性劣化をきたすことが問
題になってきた。
However, in the past, this did not pose much of a problem because the source and drain regions were formed to a thickness close to the depth of the field insulating film, but recently, with miniaturization, the thickness of the source and drain regions has become shallower. Moreover, since the thickness of the field insulating film does not become very shallow in proportion to this, the depths of the field insulating film and the source and drain regions are greatly different at the side edges of the field insulating film, causing a semiconductor device During operation, a depletion layer that occurs around the source and drain regions is formed in the crystal defects that occur at the side edges of the field insulating film, resulting in junction leakage between the source and drain, resulting in characteristic deterioration. This has become a problem.

このようなフィールド絶縁膜の側端部における結晶欠陥
(第3図にX印で示す)はシリコンを熱酸化してSiO
□膜を生成した際、Sin、膜の膨張によってシリコン
に歪みを与えて発生するもので、これを回避することは
困難である。
Such crystal defects at the side edges of the field insulating film (indicated by
□When a film is formed, the expansion of the film causes strain on the silicon, and it is difficult to avoid this.

本発明はこのような問題点を解消させ、フィールド絶縁
膜の側端部における欠陥によって生じるソース、ドレイ
ンの接合リークを抑制して素子特性を向上させることを
目的とした半導体装置の構造と製造方法を提案するもの
である。
The present invention solves these problems and provides a structure and manufacturing method for a semiconductor device, which aims to improve device characteristics by suppressing source/drain junction leakage caused by defects at the side edges of a field insulating film. This is what we propose.

〔課題を解決するための手段〕[Means to solve the problem]

その課題は、第1図の実施例図に示すように、一導電型
シリコン基板1上に設けたフィールド絶縁膜2の側端部
に接する異種導電型不純物領域10が該側端部において
前記フィールド絶縁膜に接して該フィールド絶縁膜の深
さまで延在している構造を有する半導体装置によって解
決される。
The problem is that, as shown in the embodiment diagram of FIG. The problem is solved by a semiconductor device having a structure in contact with an insulating film and extending to the depth of the field insulating film.

その製造方法は、第2図に示すように、−i電型シリコ
ン基板1上にSiO□膜11を介してSi、 N4膜な
どの酸化防止膜12をパターンニングし、該酸化防止膜
をマスクとして5iOz膜を透過させて異種導電型不純
物イオンを注入する工程と、次いで、前記酸化防止膜を
マスクとして熱酸化してフィールド絶縁膜2を生成する
工程と、次いで、前記酸化防止膜およびフィールド絶縁
膜を透過させて全面に一導電型不純物イオンを注入し、
熱処理して前記フィールド絶縁膜の側端部に異種導電型
不純物領域10.フィールド絶縁膜の底面に一導電型不
純物領域3を同時に形成する工程とが含まれることを特
徴としている。
As shown in FIG. 2, the manufacturing method involves patterning an oxidation prevention film 12 such as a Si or N4 film on a -i type silicon substrate 1 through a SiO□ film 11, and masking the oxidation prevention film. a step of implanting impurity ions of a different conductivity type through a 5iOz film, a step of thermally oxidizing the field insulating film 2 using the anti-oxidation film as a mask, and then a step of implanting impurity ions of a different conductivity type through the 5iOz film; Impurity ions of one conductivity type are implanted into the entire surface through the membrane,
A heat treatment is performed to form impurity regions 10 of different conductivity type on the side edges of the field insulating film. It is characterized in that it includes a step of simultaneously forming an impurity region 3 of one conductivity type on the bottom surface of the field insulating film.

〔作 用〕[For production]

即ち、本発明はフィールド絶縁膜を生成する前に、フィ
ールド絶縁膜側端に接する異種導電型(基板とは異種導
電型のこと)不純物領域を形成するための不純物をイオ
ン注入し、次いで、フィールド絶縁膜を生成した後に、
フィールド絶縁膜および酸化防止膜を透過させて全面に
チャネルカット層となるための不純物イオンを注入し、
熱処理してフィールド絶縁膜の側端部に異種導電型不純
物領域、フィールド絶縁膜の底面にチャネルカット層を
同時に形成する。かくして、フィールド絶縁膜側端に接
する異種導電型不純物領域がフィールド絶縁膜の深さま
で延在している構造に構成にする。
That is, in the present invention, before forming a field insulating film, impurity ions are implanted to form an impurity region of a different conductivity type (different conductivity type than the substrate) in contact with the side edge of the field insulating film. After generating the insulating film,
Impurity ions are implanted to form a channel cut layer on the entire surface by penetrating the field insulating film and anti-oxidation film.
Heat treatment is performed to simultaneously form impurity regions of different conductivity types on the side edges of the field insulating film and a channel cut layer on the bottom surface of the field insulating film. In this way, a structure is created in which the impurity region of different conductivity type in contact with the side edge of the field insulating film extends to the depth of the field insulating film.

そうすれば、接合リークを生じる結晶欠陥部分は異種導
電型不純物領域に含まれ、空乏層には結晶欠陥がなくな
り、そのため、接合リークがなくなって素子特性が向上
する。
By doing so, the crystal defect portion that causes junction leakage is included in the different conductivity type impurity region, and the depletion layer is free of crystal defects, thereby eliminating junction leakage and improving device characteristics.

〔実施例〕〔Example〕

以下、図面を参照して実施例によって詳細に説明する。 Hereinafter, embodiments will be described in detail with reference to the drawings.

第1図(a)、 (blは本発明にかかるMO3型半導
体装置の断面図で、同図(a)は−殻構造のMO3型半
導体装置、同図(blはLDD構造のMO3型半導体装
置であり、図中の記号は第3図と同一部位に同一記号が
付けであるが、その他の10がフィールド絶縁膜の側端
部に設けたn型のソース領域とドレイン領域である。こ
のようなn型ソース領域、ドレイン領域10が結晶欠陥
部分を包含して、空乏層に結晶欠陥をなくし、その結果
、接合リークがなくなって素子特性が改善される。
FIGS. 1(a) and (bl are cross-sectional views of an MO3 type semiconductor device according to the present invention; FIG. 1(a) is a cross-sectional view of an MO3 type semiconductor device with a -shell structure; The symbols in the figure are the same parts as in Figure 3, and the other 10 are the n-type source and drain regions provided at the side edges of the field insulating film. The n-type source and drain regions 10 include crystal defect portions to eliminate crystal defects in the depletion layer, and as a result, junction leakage is eliminated and device characteristics are improved.

次に、第2図(al〜(glは本発明にかかる形成方法
の工程順断面図で、順を追って説明する。
Next, FIGS. 2A to 2G are cross-sectional views showing the steps of the forming method according to the present invention, which will be explained step by step.

第2図(a)参照:従来法と同様に、p型シリコン基板
1上に薄いSin、膜11を熱酸化して生成し、その上
にCVD法によって5i3Na膜12(酸化防止膜)を
被着する。
Refer to FIG. 2(a): Similar to the conventional method, a thin Sin film 11 is formed on a p-type silicon substrate 1 by thermal oxidation, and a 5i3Na film 12 (antioxidation film) is coated thereon by the CVD method. wear it.

第2図(bl参照:更に従来と同しく、レジスト膜パタ
ーン13を形成し、それをマスクにしてSi、 N4膜
12をエツチング除去して素子形成領域のみにSi3N
、膜12を残存させる。
FIG. 2 (see BL: Further, as in the conventional method, a resist film pattern 13 is formed, and using this as a mask, the Si and N4 films 12 are etched away, and Si3N is etched only in the element formation region.
, leaving the membrane 12 remaining.

第2図(C)参照;次いで、5izN4膜12およびレ
ジスト膜パターン13のマスク部分を除いたSiO□膜
11膜上1面にS i Oz膜11を透過させて砒素(
^S゛)をイオン注入する。イオン注入条件は加速電圧
60KeV、ドーズ量5 ×1011〜5 X 10I
z/ cnl程度とする。
Refer to FIG. 2(C); Next, arsenic (
^S゛) is ion-implanted. The ion implantation conditions were an acceleration voltage of 60 KeV and a dose of 5 × 1011 to 5 × 10I.
It should be about z/cnl.

第2図(dl参照:次いで、レジスト膜パターン13を
除去した後、1000℃以上の高温度で熱酸化してSi
O2膜からなるフィールド絶縁膜2(膜厚5000人)
を生成する。その時、フィールド絶縁膜2の底部を含む
周囲部分に砒素イオン注入によるn型領域10(フィー
ルド絶縁膜の側端部のn型ソース領域、ドレイン領域に
なる)が活性化され画定される。
FIG. 2 (see dl: Next, after removing the resist film pattern 13, Si is thermally oxidized at a high temperature of 1000°C or more.
Field insulating film 2 made of O2 film (thickness: 5000)
generate. At this time, n-type regions 10 (which will become n-type source and drain regions at the side edges of the field insulating film) are activated and defined by arsenic ion implantation in the peripheral portion including the bottom of the field insulating film 2.

第2図(el参照:次いでフィールド絶縁膜2とSi3
N、膜12. Si 02膜11とを透過させて全面に
硼素(B+)をシリコン基板1の深くまでイオン注入す
る。この時、硼素はシリコン基板内部に深く注入されて
、素子形成領域にも注入される。この時のイオン注入条
件は加速電圧150〜200KeV、  ドーズ量2 
XIO”/ crl程度にする。
FIG. 2 (see el: Next, field insulating film 2 and Si3
N, membrane 12. Boron (B+) is ion-implanted to the entire surface of the silicon substrate 1 by penetrating the Si 0 2 film 11 to the depth of the silicon substrate 1 . At this time, boron is implanted deeply into the silicon substrate and also into the element formation region. The ion implantation conditions at this time were an acceleration voltage of 150 to 200 KeV, and a dose of 2.
XIO”/crl.

第2図(f)参照;次いで、素子形成領域を被覆してい
るSiO□膜11膜上1Si3N、膜12を除去し、新
たなSin、膜を生成し、その上にCVD法によって多
結晶シリコン膜を被着し、これをレジスト膜パターン1
4を用いてパターンニングして5in2膜からなるゲー
ト絶縁膜4と多結晶シリコン膜からなるゲート電漸5 
(幅5000〜6000人)を形成する。
Refer to FIG. 2(f); Next, the 1Si3N film 12 on the SiO□ film 11 covering the element formation region is removed, a new Sin film is formed, and polycrystalline silicon is deposited on it by CVD. Deposit a film and apply this as resist film pattern 1
A gate insulating film 4 made of a 5in2 film and a gate electric potential 5 made of a polycrystalline silicon film are patterned using
(width 5,000 to 6,000 people).

第4図(gl参照;次いで、n型のソース領域、ドレイ
ン領域6を形成するために、砒素(As” )をイオン
注入する。
FIG. 4 (see gl) Next, arsenic (As'') ions are implanted to form n-type source and drain regions 6.

しかる後、熱処理してn型ソース領域、n型ドレイン領
域6 (深さ1000〜2000人)およびp゛型チャ
ネルカット層3を活性化して画定し、第1図(alのよ
うに完成する。
Thereafter, a heat treatment is performed to activate and define the n-type source region, the n-type drain region 6 (depth 1000 to 2000 mm), and the p'-type channel cut layer 3, and the device is completed as shown in FIG. 1 (al).

なお、第1図(blに示すLDD構造のMO3型半導体
装置も上記の形成方法と同様にして形成される。
Incidentally, an MO3 type semiconductor device having an LDD structure shown in FIG.

上記のような形成方法によれば、接合リークを生じるフ
ィールド絶縁膜2の側端部の結晶欠陥部分はn゛型ソー
ス領域、ドレイン領域10に含まれるために、動作時に
発生する空乏層には結晶欠陥がなくなり、リーク特性が
改善されて、素子特性が向上する。
According to the above-described formation method, since the crystal defect portion at the side edge of the field insulating film 2 that causes junction leakage is included in the n-type source region and drain region 10, the depletion layer generated during operation is Crystal defects are eliminated, leakage characteristics are improved, and device characteristics are improved.

なお、上記の実施例はMO3型半導体装置で説明してい
るが、バイポーラ型など他の半導体装置にも適用できる
ことは当然である。
Note that although the above embodiment has been described using an MO3 type semiconductor device, it is of course applicable to other semiconductor devices such as a bipolar type.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によればリーク
電流が小さく素子特性の良い微細な半導体装置を実現す
ることができる。
As is clear from the above description, according to the present invention, a fine semiconductor device with low leakage current and good device characteristics can be realized.

且つ、本発明によればチャネルカット層となる不純物が
シリコン基板全面の深くに注入されてシリコン基板が高
濃度になるためにα線のような放射線に強い構造の半導
体装置になる利点もある。
In addition, according to the present invention, impurities forming a channel cut layer are implanted deep into the entire surface of the silicon substrate, resulting in a high concentration of the silicon substrate, which has the advantage of providing a semiconductor device with a structure that is resistant to radiation such as alpha rays.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (b)は本発明にかかるMO3型半導
体装置の断面図、 第2図(al〜(aは本発明にかかる形成方法の工程順
断面図、 第3図は従来のMO3型半導体装置の断面図、第4図f
8)〜(f)は従来の形成方法の工程順断面図である。 図において、 1はp型シリコン基板、 2はフィールド絶縁膜、 3はp+型チャネルカット層、 4はゲート絶縁膜、 5はゲート電極、 6はn型のソース領域、ドレイン領域、7はn−型のソ
ース領域、ドレイン領域、10はフィールド絶縁膜の側
端部のn型のソース領域、ドレイン領域、 11はSin、膜、 12はSt、 N4膜(酸化防止膜)、13、14はレ
ジスト膜パターン を示している。 不発明1:t)’tP3阿aSを十導確ス1褐鈴而図第
1図 、j2 S+3N4月粟
1(a) and (b) are cross-sectional views of an MO3 type semiconductor device according to the present invention, FIG. Cross-sectional view of MO3 type semiconductor device, Figure 4f
8) to (f) are step-by-step sectional views of the conventional forming method. In the figure, 1 is a p-type silicon substrate, 2 is a field insulating film, 3 is a p+ type channel cut layer, 4 is a gate insulating film, 5 is a gate electrode, 6 is an n-type source region and drain region, and 7 is an n- 10 is an n-type source region and drain region at the side edge of the field insulating film, 11 is a Sin film, 12 is St, N4 film (antioxidation film), 13 and 14 are resists. The membrane pattern is shown. Non-invention 1: t)'t

Claims (2)

【特許請求の範囲】[Claims] (1)一導電型シリコン基板に設けたフィールド絶縁膜
によつて素子分離される構造の半導体装置において、 前記フィールド絶縁膜の側端部に接する異種導電型不純
物領域が該側端部において前記フィールド絶縁膜に接し
て該フィールド絶縁膜の深さまで延在していることを特
徴とする半導体装置。
(1) In a semiconductor device having a structure in which elements are isolated by a field insulating film provided on a silicon substrate of one conductivity type, an impurity region of a different conductivity type in contact with a side edge of the field insulating film is connected to the field at the side edge. A semiconductor device characterized in that the semiconductor device is in contact with an insulating film and extends to the depth of the field insulating film.
(2)一導電型シリコン基板の表面を酸化して酸化シリ
コン膜を生成し、該酸化シリコン膜上に酸化防止膜を形
成する工程と、 次いで、酸化防止膜をパターンニングし、該酸化防止膜
をマスクとして前記酸化シリコン膜を透過させて異種導
電型不純物イオンを注入する工程と、次いで、前記酸化
防止膜をマスクとして熱酸化してフィールド絶縁膜を生
成する工程と、 次いで、前記酸化防止膜およびフィールド絶縁膜を透過
させて全面に一導電型不純物イオンを注入する工程と、 次いで、熱処理して前記フィールド絶縁膜の側端部に異
種導電型不純物領域を形成し、同時にフィールド絶縁膜
の底面に一導電型不純物領域を形成する工程とが含まれ
てなることを特徴とする半導体装置の製造方法。
(2) A step of oxidizing the surface of a silicon substrate of one conductivity type to generate a silicon oxide film, and forming an oxidation prevention film on the silicon oxide film, and then patterning the oxidation prevention film, and forming the oxidation prevention film on the silicon oxide film. implanting impurity ions of a different conductivity type through the silicon oxide film using as a mask, then thermally oxidizing the silicon oxide film as a mask to generate a field insulating film; and implanting impurity ions of one conductivity type into the entire surface through the field insulating film, and then performing heat treatment to form impurity regions of a different conductivity type at the side edges of the field insulating film, and at the same time implanting impurity ions of one conductivity type into the bottom surface of the field insulating film. 1. A method of manufacturing a semiconductor device, comprising the steps of: forming an impurity region of one conductivity type.
JP28907088A 1988-11-15 1988-11-15 Semiconductor device and its manufacture Pending JPH02133929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28907088A JPH02133929A (en) 1988-11-15 1988-11-15 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28907088A JPH02133929A (en) 1988-11-15 1988-11-15 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH02133929A true JPH02133929A (en) 1990-05-23

Family

ID=17738437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28907088A Pending JPH02133929A (en) 1988-11-15 1988-11-15 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH02133929A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152324A (en) * 1991-11-26 1993-06-18 Sharp Corp Manufacture of semiconductor device
DE4325348A1 (en) * 1992-08-03 1994-02-10 Mitsubishi Electric Corp Semiconductor device with p=n junction, e.g n=channel transistor - has impurity diffusion region between first impurity region and impurity concentration peak
US5529948A (en) * 1994-07-18 1996-06-25 United Microelectronics Corporation LOCOS technology with reduced junction leakage
US5623154A (en) * 1994-10-25 1997-04-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having triple diffusion

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152324A (en) * 1991-11-26 1993-06-18 Sharp Corp Manufacture of semiconductor device
DE4325348A1 (en) * 1992-08-03 1994-02-10 Mitsubishi Electric Corp Semiconductor device with p=n junction, e.g n=channel transistor - has impurity diffusion region between first impurity region and impurity concentration peak
US5440165A (en) * 1992-08-03 1995-08-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with means for suppressing electric fields
US5635413A (en) * 1992-08-03 1997-06-03 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing field effect transistor
US5529948A (en) * 1994-07-18 1996-06-25 United Microelectronics Corporation LOCOS technology with reduced junction leakage
US5668393A (en) * 1994-07-18 1997-09-16 United Microelectronics Corporation Locos technology with reduced junction leakage
US5623154A (en) * 1994-10-25 1997-04-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having triple diffusion

Similar Documents

Publication Publication Date Title
US4258465A (en) Method for fabrication of offset gate MIS device
JP2008235927A (en) Process for doping two levels of double poly bipolar transistor after formation of second poly layer
EP0459398A2 (en) Manufacturing method of a channel in MOS semiconductor devices
JPH0348459A (en) Semiconductor device and manufacture thereof
JPH02133929A (en) Semiconductor device and its manufacture
JPS6360549B2 (en)
JPH09312397A (en) Semiconductor device and method of fabricating the same
JPS57134956A (en) Manufacture of semiconductor integrated circuit
JP2988067B2 (en) Manufacturing method of insulated field effect transistor
JPH0472770A (en) Manufacture of semiconductor device
JP3344162B2 (en) Method for manufacturing field effect semiconductor device
JP3228246B2 (en) Method for manufacturing semiconductor device
JPH0349236A (en) Manufacture of mos transistor
JPH0358430A (en) Semiconductor device and manufacture thereof
JP3297102B2 (en) Method of manufacturing MOSFET
JPS62273774A (en) Manufacture of field-effect transistor
JPS62272569A (en) Manufacture of semiconductor device
JPS6310574A (en) Manufacture of high withstanding semiconductor element
JPH06104276A (en) Semiconductor device and manufacture thereof
JPS59150477A (en) Manufacture of semiconductor device
JPH0527995B2 (en)
JPH06338609A (en) Manufacture of semiconductor device
JPS6345831A (en) Manufacture of semiconductor device
JPH053210A (en) Manufacture of semiconductor device
JPH04237168A (en) Manufacture of mis type semiconductor device