JPH0380207A - Absolute single polarization optical fiber - Google Patents

Absolute single polarization optical fiber

Info

Publication number
JPH0380207A
JPH0380207A JP1215970A JP21597089A JPH0380207A JP H0380207 A JPH0380207 A JP H0380207A JP 1215970 A JP1215970 A JP 1215970A JP 21597089 A JP21597089 A JP 21597089A JP H0380207 A JPH0380207 A JP H0380207A
Authority
JP
Japan
Prior art keywords
core
refractive index
polarization
optical fiber
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1215970A
Other languages
Japanese (ja)
Inventor
Hiroshi Suganuma
寛 菅沼
Masahiro Takagi
政浩 高城
Yuji Kubo
祐二 久保
Hiroshi Yokota
弘 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1215970A priority Critical patent/JPH0380207A/en
Publication of JPH0380207A publication Critical patent/JPH0380207A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To eliminate the need for prescribed polarization extracting means, such as analyzer, on a photodetecting side by propagating only one polarization mode of two polarization modes orthogonal with each other. CONSTITUTION:The fiber has a core 11, a 1st clad 12 which is formed on the outer periphery of the core 11 and has the refractive index lower than the refractive index of the core 11 and a 2nd clad 13 which is formed on the outer side of the 1st clad 12, has the refractive index higher than the refractive index of the 1st 12 and has the refractive index lower than the refractive index in the central part of the core 11. The sectional shape of the core 11 is made into a noncircular shape. Since the width of the groove of the 1st 12 varies substantially in two directions, the propagation constant of the one polarization mode of the two polarization modes orthogonal with each other is larger than the propagation constant of the clad and can be propagated. The other polarization mode is smaller or equal in the propagation constant thereof than or to the propagation constant of the clad and the wavelength region to attain the cut off state exists therein. The need for the prescribed polarization extracting means, such as analyzer, is eliminated in this way.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、光フアイバ応用計測器やコヒーレント光伝送
方式等で要求される偏波を、その特性を保持したまま伝
送させる偏波保持ファイバであって、特に単一偏波面の
みが伝搬される波長帯を有する絶対単一偏波光ファイバ
に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is a polarization-maintaining fiber that transmits polarized waves required for optical fiber application measuring instruments, coherent optical transmission systems, etc. while maintaining its characteristics. In particular, it relates to an absolutely single polarization optical fiber having a wavelength band in which only a single plane of polarization is propagated.

〈従来の技術〉 光通信技術の進展に伴い、現在、種々の装置に光ファイ
バが使用されている。その中で、各種通信装置に用いら
れている光集積回路(光IC)では、光ファイバからの
出力が指定された方向の直線偏波であることが前提とさ
れ、また、各種の測定装置では、光ファイバを伝搬する
光が直線偏波であることが要求されている。そこで、偏
波面を保持したまま直線偏波を伝搬させる偏波保持光フ
ァイバが開発されている。
<Background Art> With the progress of optical communication technology, optical fibers are currently used in various devices. Among these, optical integrated circuits (optical ICs) used in various communication devices assume that the output from the optical fiber is linearly polarized in a specified direction, and various measurement devices , it is required that the light propagating through the optical fiber be linearly polarized. Therefore, polarization-maintaining optical fibers have been developed that propagate linearly polarized waves while maintaining the plane of polarization.

第6図及び第7図には、この偏波保持光ファイバの従来
の例を示してあり、第6図及び第7図はそれぞれ楕円コ
アファイバ60及び非軸対称応力付与型ファイバ70の
断面を示す。
FIGS. 6 and 7 show conventional examples of this polarization-maintaining optical fiber, and FIGS. 6 and 7 show cross sections of an elliptical core fiber 60 and a non-axisymmetric stress-applying fiber 70, respectively. show.

第6図に示すように楕円コアファイバ60では、コア6
1の断面が楕円形をしており、電界が長軸に平行(X軸
方向)な場合と、垂直(y軸方向)な場合とで伝搬定数
が異なり、これら2方向の間の複屈折率Bは、 3oc(楕円偏平率)×(比屈折率Δ)2という関係を
有する。但し、比屈折率Δはコア51の屈折率nl及び
クラッド52の屈折率n、により、 の式で表わされる。
As shown in FIG. 6, in the elliptical core fiber 60, the core 6
1 has an elliptical cross section, and the propagation constant is different when the electric field is parallel to the long axis (X-axis direction) and perpendicular to the long axis (Y-axis direction), and the birefringence between these two directions is B has the following relationship: 3oc (elliptic oblateness)×(relative refractive index Δ)2. However, the relative refractive index Δ is expressed by the following formula using the refractive index nl of the core 51 and the refractive index n of the cladding 52.

したがって、楕円コアファイバ60では、コア61とク
ラッド62との屈折率n、、n。
Therefore, in the elliptical core fiber 60, the refractive indexes of the core 61 and the cladding 62 are n, , n.

並びにコア61の楕円掃平率を操作することにより、高
い複屈折率Be得てXpY2方向のI交偏波に複屈折性
を与え、これらのエネルギー結合を抑制することができ
る。
In addition, by manipulating the elliptic sweep factor of the core 61, a high birefringence Be can be obtained, giving birefringence to the I-cross polarized waves in the XpY2 direction, and suppressing the energy coupling thereof.

一方、第7図に示す非軸対称応力付与型ファイバ70で
は、コア71の断面は円形であるが、クラッド72中に
設けた一対の応力付与部材73によってコア71に一方
向(X軸方向)の応力が加えられており、これによって
コア71の内部に歪が生じて本来は等方性の物体であっ
たコア71が異方性となり、上記楕円コアファイバ60
のコア61と同様に高い複屈折率を得るものである。
On the other hand, in the non-axisymmetric stress-applying fiber 70 shown in FIG. A stress of
Similar to the core 61 of , a high birefringence is obtained.

このように従来の偏波保持ファイバは、縮退している2
つの直交偏波モードHEi、”及びHEl、Fに対して
複屈折性を与え、これらのモード間のエネルギー結合を
抑制することにより、唯一っの偏波面を保存するもので
あり、一般に複屈折ファイバと呼ばれている。
In this way, conventional polarization-maintaining fibers have degenerate 2
By imparting birefringence to the two orthogonal polarization modes HEi,'' and HEI,F and suppressing the energy coupling between these modes, only one plane of polarization is preserved.Generally, birefringent fibers It is called.

〈発明が解決しようとする課題〉 しかし、前述したような従来の複屈折率ファイバでは所
定の偏波が保存されると共に、この偏波とは直交する偏
波が速度、損失等で異なる状態ではあるが同時に伝搬さ
れる。したがって、かかる複屈折率ファイバを例えば測
定装置として適用するには、不必要な直交偏波成分を除
去して所定の偏波成分のみを抽出するための検光子等が
必要となるという問題がある。
<Problems to be Solved by the Invention> However, in the conventional birefringent fiber as described above, a predetermined polarization is preserved, and if the polarization orthogonal to this polarization differs due to speed, loss, etc. However, they are propagated at the same time. Therefore, in order to apply such a birefringence fiber as a measurement device, for example, there is a problem that an analyzer or the like is required to remove unnecessary orthogonal polarization components and extract only a predetermined polarization component. .

本発明はこのような事情に鑑み、受光側に検光子などの
所定偏波抽出手段を必要としないように、直交する2つ
の偏波モードのうち一方の偏波モードのみを伝搬させる
絶対単一偏波光ファイバを提供することを目的とする。
In view of these circumstances, the present invention provides an absolute single polarization system that propagates only one polarization mode out of two orthogonal polarization modes, so that a predetermined polarization extraction means such as an analyzer is not required on the light receiving side. The purpose is to provide polarized optical fiber.

く課題を解決するための手段〉 前記目的を達成する本発明にかかる絶対単一偏波光ファ
イバは、コアと、このコアの外周に形成されて当該コア
よりも低屈折率の第1クラッドと、この第1クラッドの
外側に形成されて当該第1クラッドよりも高屈折率であ
り且つ前記コアの中心部よりも低屈折率である第2クラ
ッドとを備える光ファイバであって、前記コアの断面形
状が非円形であることを特徴とする。
Means for Solving the Problems> The absolute single polarization optical fiber according to the present invention that achieves the above object includes a core, a first cladding formed around the outer periphery of the core and having a refractive index lower than that of the core; an optical fiber comprising a second cladding formed outside the first cladding and having a higher refractive index than the first cladding and a lower refractive index than the central portion of the core, the optical fiber comprising: It is characterized by a non-circular shape.

ここで、非円形とは円を一方向に偏平にした円、長円、
楕円、2つの円弧を合せた形状など、少なくとも直交す
る2軸について対称な形状をいい、その例を第1図に示
す。第1図(a)に示すように、光ファイバ10は図中
横方向に長い非円形のコア11の回りに、多少図中縦方
向に長い第1のクラッド12及び第2のクラッド13を
有するものであり、第1図(blに示す光ファイバ10
A【よ非円形のコア11Aの同りに円形の第1のクラッ
ド12A及び第2のクラッド13Aを有するものである
。また、第1図(0)に示すように図中横方向に長いコ
アIIBと同様な方向に長い第1のクラッド12Bを有
し、その周囲に第2のクラッド13Bを有する光ファイ
バIOBなども考えられる。
Here, non-circular means a circle made flat in one direction, an ellipse,
It refers to a shape that is symmetrical about at least two orthogonal axes, such as an ellipse or the shape of two circular arcs, an example of which is shown in FIG. As shown in FIG. 1(a), the optical fiber 10 has a first cladding 12 and a second cladding 13, which are somewhat longer in the vertical direction in the figure, around a non-circular core 11 that is long in the horizontal direction in the figure. The optical fiber 10 shown in FIG.
A has a non-circular core 11A and a circular first cladding 12A and a second circular cladding 13A. In addition, as shown in FIG. 1(0), there is also an optical fiber IOB having a first cladding 12B long in the same direction as the core IIB which is long in the horizontal direction in the figure, and a second cladding 13B around the first cladding 12B. Conceivable.

また、第2図(a)、 (b)に本発明に係る絶対単一
偏波光ファイバの屈折率分布の例を示す。
Further, FIGS. 2(a) and 2(b) show examples of the refractive index distribution of the absolute single polarization optical fiber according to the present invention.

第2図(a)に示すように、中心から半径aの部分のコ
ア21はn、の屈折率を有し、その外側の半径すまでの
部分の第1のクラッド22はnoより小さいn、の屈折
率を有し、さらにその外側の第2クラッド23はやはり
、nより小さいがnlより大きいn2の屈折率を有して
いればよい。また、第2図(b)に示すように、コア2
1の屈折率が中心をnoとして外方向に亘って漸小する
ようなものでもよい。
As shown in FIG. 2(a), the core 21 at the radius a from the center has a refractive index of n, and the first cladding 22 at the outer radius has a refractive index of n, which is smaller than no. It is sufficient that the second cladding 23 on the outside has a refractive index of n2, which is smaller than n but larger than nl. In addition, as shown in FIG. 2(b), the core 2
It may be one in which the refractive index of 1 is set at the center and gradually decreases outward.

このような屈折率分布を有する二重クラッド構造の単一
モードファイバでは、コア21中の電磁界エネルギーが
内側の第1クラッド22及び外側の第2クラッド23に
漏れやすく、コア21と第1クラッド22との外径比a
/b並びにコア21.第1クラッド22及び第2クラッ
ド23の屈折率n、、n1n3間の比屈折率差により決
まる波長においては、HE、、モードも漏れモードにな
り、カットオフ状態となる。
In a single mode fiber with a double clad structure having such a refractive index distribution, the electromagnetic field energy in the core 21 easily leaks to the inner first clad 22 and the outer second clad 23, and the core 21 and the first clad Outer diameter ratio a with 22
/b and core 21. At a wavelength determined by the relative refractive index difference between the refractive indexes n, .

そして、かかる二重クラッド構造の単一モードファイバ
のコアを非円形とし、コア21に高い複屈折性を持たせ
ると、二重クラッド構造における第1クラッドの溝の幅
が実質的に2方向で異なるため、直交する2つの偏波モ
ード、すなわちHE、、”モードとHE、1yモードと
のうち、一方の偏波モードはその伝搬定数がクラッドの
伝搬定数よりも大きくなり伝搬可能であるが、他方の偏
波モードはその伝搬定数がクラッドの伝搬定数よりも小
さいか等しくなってカットオフ状態となるような波長域
が存在するようになる。また、この作用は、第2図(b
)のように、コア21の屈折率が中心から外方向に漸小
する分布を有するものであっても同様に得ることができ
る。
If the core of the single mode fiber with such a double clad structure is made non-circular and the core 21 is made to have high birefringence, the width of the groove of the first clad in the double clad structure is substantially equal to that in two directions. Therefore, among the two orthogonal polarization modes, namely the HE,,'' mode and the HE,1y mode, one polarization mode has a propagation constant larger than that of the cladding and can be propagated. The other polarization mode has a wavelength range in which its propagation constant is smaller than or equal to the propagation constant of the cladding, resulting in a cutoff state.This effect is also shown in Figure 2 (b).
), the refractive index of the core 21 can be obtained in the same manner even if it has a distribution that gradually decreases outward from the center.

本発明に係る絶対単一傷波光ファイバは、例えばコ12
1をGe$加の石英ガラス、第1クラッド22をF添加
石英ガラス、第2クラッドを石英ガラスで構成すること
により実現される。
The absolutely single-fault optical fiber according to the present invention is, for example,
This is realized by composing the first cladding 22 with Ge$-doped quartz glass, the first cladding 22 with F-doped silica glass, and the second cladding with quartz glass.

く実 施 例〉 以下、本発明を実施例に基づいて説明する。Example of implementation Hereinafter, the present invention will be explained based on examples.

(実施例1) 第1図に示す構成と同様の単一偏波光ファイバを製造し
た。
(Example 1) A single polarization optical fiber having the same configuration as shown in FIG. 1 was manufactured.

本実施例では、コア11を屈折率1.473のG a 
O2−S i O,、このコア11の内包する第1クラ
ッド12を屈折率1.449のSiO□−Fガラス、第
1クラッド12を内包する第2クラッド13が屈折率1
.458のS i O。
In this example, the core 11 is made of Ga having a refractive index of 1.473.
O2-S i O, the first cladding 12 included in this core 11 is SiO□-F glass with a refractive index of 1.449, and the second cladding 13 including the first cladding 12 has a refractive index of 1.
.. 458 S i O.

ガラスでぞれぞれ構成されている。Each one is made of glass.

かかる単一偏波光ファイバを製造方法を第3図(al、
(b)に基づいて説明する。
A method of manufacturing such a single polarization optical fiber is shown in FIG.
The explanation will be based on (b).

まず、直径3.2■のGoo2−8in、ガラス層31
、このガラス層31を内包する直径9.6amのS i
 O,−Fガラス層32及びこのガラス層32を内包す
る直径80n*のS i O。
First, Goo2-8in with a diameter of 3.2cm, glass layer 31
, S i with a diameter of 9.6 am that includes this glass layer 31
O, -F glass layer 32 and S i O with a diameter of 80n* that includes this glass layer 32 .

ガラス層33からなるガラスロッド34をVAD法で形
成する(第3図(a)参照)。そして、第3図(b)に
示すように、その横断面において直径上で中心から4.
8閣の2点A。
A glass rod 34 made of a glass layer 33 is formed by the VAD method (see FIG. 3(a)). As shown in FIG. 3(b), in the cross section, the diameter is 4.5 mm from the center.
2 points A of 8 cabinets.

Bをそれぞれ中心とする直径5■の孔35a。Holes 35a each have a diameter of 5 cm and are centered at B.

35bを穿設する。この母材36をカーボン抵抗炉を用
いて、温度約2000℃、線連約50m/seeで、外
径125 μmに線引きした。このとき各ガラス層は、
表面張力及び各層の粘度差により変形し、第1図に示し
た断面構造を有するファイバが得られた。
35b. This base material 36 was drawn to an outer diameter of 125 μm at a temperature of about 2000° C. and a wire speed of about 50 m/see using a carbon resistance furnace. At this time, each glass layer is
The fiber was deformed due to the surface tension and the viscosity difference between the layers, and a fiber having the cross-sectional structure shown in FIG. 1 was obtained.

とのようにして作成された偏波保持ファイバは、波長0
.85μmに対する複屈折率Bが3 X 10−’であ
り、波長1.55μmに対するHE、、”モードの漏れ
損失が1dB/km。
The polarization-maintaining fiber created as follows has a wavelength of 0.
.. The birefringence B for 85 μm is 3×10−′, and the leakage loss of the HE mode for a wavelength of 1.55 μm is 1 dB/km.

HE Fモードの漏れ損失が20 dB / k+mで
あった。そして、この偏波保持ファイバは、第4図に示
すような損失波長特性を有している。
The leakage loss in HE F mode was 20 dB/k+m. This polarization maintaining fiber has a loss wavelength characteristic as shown in FIG.

このように、本実施例の偏波保持ファイハハ、)I E
、1’% −F ノ漏れ損失力HE、、”モードに比べ
て明らかに大きく、単一偏波光ファイバであることが判
かる。
In this way, the polarization maintaining function of this embodiment, )IE
, 1'% -F leakage loss power HE is clearly larger than the ``mode'', indicating that it is a single polarization optical fiber.

(実施例2) 第5図に示すよに、VAD法によって得られたSiO−
Goo Oラド(外径10mφ。
(Example 2) As shown in FIG. 5, SiO-
Goo Orad (outer diameter 10mφ.

S i Oglとの比屈折率差0.3%)をSiO□−
Fパイプ(外径30鵬φ、内径11φ■φ。
SiO□-
F pipe (outer diameter 30φ, inner diameter 11φ■φ.

SiOとの比屈折率差0.3%)に挿入し、H210□
炎を用いて加熱一体化し、外径28mφ(S i O,
−G e O2部分の径10■φ)の口ラド51を得た
(第5図(al参照)。このロッド51を平面研削機に
より厚さl1m。
H210□
Heated and integrated using flame to create an outer diameter of 28 mφ (S i O,
A rod 51 with a diameter of -G e O2 portion of 10 mm was obtained (see Fig. 5 (al)). This rod 51 was ground to a thickness of l1 m using a surface grinder.

輻28mの平板52に加工しく第5図(b)参照)、こ
の平板52を抵抗炉(約200℃)を用いて4.8閣φ
に延伸し、SiO−Go。
(Refer to Fig. 5 (b))) This flat plate 52 was heated to a diameter of 4.8 mm using a resistance furnace (approximately 200°C).
Stretched into SiO-Go.

部分が図中縦長形状の楕円であるロッド53を得た(第
5図((11参照)。
A rod 53 having a vertically elongated elliptical portion in the figure was obtained (see FIG. 5 ((11)).

とのロッド53を外径40mφ、内径5醜φのS i 
O2パイプに挿入して加熱一体化し、プリフォーム54
を得た(第5図(d)参照)。
The rod 53 with an outer diameter of 40 mφ and an inner diameter of 5 mm
The preform 54 is inserted into an O2 pipe, heated and integrated.
was obtained (see Figure 5(d)).

このプリフォーム54を抵抗炉(約2000℃)で線速
1GGm/分で外径125μmに線引きして第1図(b
)に示すような楕円コアの光ファイバを得た。
This preform 54 was drawn in a resistance furnace (approximately 2000° C.) at a drawing speed of 1 GGm/min to an outer diameter of 125 μm, as shown in FIG.
An optical fiber with an elliptical core as shown in ) was obtained.

特性は波長1.30μmの光に対する複屈折率が3X1
0−’、波長1.55μmに対するH E、、” −1
−−Fノmtttjj失#f O,8d B/km。
The characteristic is that the birefringence for light with a wavelength of 1.30 μm is 3X1.
0-', H E for wavelength 1.55 μm, ”-1
--Fnomtttjj loss #f O, 8d B/km.

HE、、yモードの漏れ損失が20 d B/に量であ
った。
HE, y-mode leakage losses amounted to 20 dB/.

〈発明の効果〉 以上説明したように、本発明にかかる絶対単一傷波光フ
ァイバは、HE、、”モードとHE、、’モードの何れ
か一方がカットオフ状態となる波長域を有し、この波長
域において唯一の偏波モードのみを伝搬することができ
るので例えばファイバセンサに適用されると非常に感度
を高め、さらに受光側に検光子などの所定偏波抽出手段
が不必要となり、計測、光通信などの分野で非常に有用
である。
<Effects of the Invention> As explained above, the absolutely single-flaw optical fiber according to the present invention has a wavelength range in which either the HE mode or the HE mode is in a cut-off state, Since only one polarization mode can be propagated in this wavelength range, when applied to a fiber sensor, for example, the sensitivity will be greatly increased, and furthermore, a predetermined polarization extraction means such as an analyzer on the light receiving side will be unnecessary, making measurement , very useful in fields such as optical communications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(0)は本発明にかかる単一偏波光ファ
イバの例を示す断面図、第2図(a) 、 (b)はそ
れぞれ屈折率分布の例を示す説明図、第3図(a)。 (blは一実施例にかかる単一偏波光ファイバの製造工
程を示す説明図、第4図は実施例にかかる単一偏波光フ
ァイバの損失波長特性を示すグラフ、第5図(a)〜(
dlは他の実施例に係る単一偏波光ファイバの製造工程
を示す説明図、第6図及び第7図はそれぞれ従来技術に
かかる偏波保持ファイバを示す断面図である。 図面中、 11、IIA、IIBはコア、 12.12A、12Bは第1クラツ 13.13A、13Bは第2クラツ 31はGaO2−8in、ガラス層、 32はS i O,−Fガラス層、 33はS i O,ガラス層、 35 a、 35 bは孔である。 ド、 ド、
FIGS. 1(a) to (0) are cross-sectional views showing examples of single polarization optical fibers according to the present invention, FIGS. 2(a) and (b) are explanatory views showing examples of refractive index distribution, and FIGS. Figure 3(a). (bl is an explanatory diagram showing the manufacturing process of the single polarization optical fiber according to one example, FIG. 4 is a graph showing the loss wavelength characteristics of the single polarization optical fiber according to the example, and FIGS. 5(a) to (
dl is an explanatory diagram showing the manufacturing process of a single polarization optical fiber according to another embodiment, and FIGS. 6 and 7 are cross-sectional views each showing a polarization-maintaining fiber according to the prior art. In the drawings, 11, IIA, IIB are cores, 12. 12A, 12B are first glasses 13. 13A, 13B are second glasses 31, GaO2-8in, glass layer, 32, SiO, -F glass layer, 33 is S i O, a glass layer, and 35 a and 35 b are holes. Do, do,

Claims (1)

【特許請求の範囲】[Claims] コアと、このコアの外周に形成されて当該コアよりも低
屈折率の第1クラッドと、この第1クラッドよりも高屈
折率であり且つ前記コアの中心部よりも低屈折率である
第2クラッドとを備える光ファイバであって、前記コア
の断面形状が非円形であることを特徴とする絶対単一偏
波光ファイバ。
a core, a first cladding formed around the outer periphery of the core and having a lower refractive index than the core; and a second cladding having a higher refractive index than the first cladding and a lower refractive index than the center of the core. 1. An absolutely single polarization optical fiber comprising a cladding, wherein the core has a non-circular cross-sectional shape.
JP1215970A 1989-08-24 1989-08-24 Absolute single polarization optical fiber Pending JPH0380207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1215970A JPH0380207A (en) 1989-08-24 1989-08-24 Absolute single polarization optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1215970A JPH0380207A (en) 1989-08-24 1989-08-24 Absolute single polarization optical fiber

Publications (1)

Publication Number Publication Date
JPH0380207A true JPH0380207A (en) 1991-04-05

Family

ID=16681257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1215970A Pending JPH0380207A (en) 1989-08-24 1989-08-24 Absolute single polarization optical fiber

Country Status (1)

Country Link
JP (1) JPH0380207A (en)

Similar Documents

Publication Publication Date Title
Simpson et al. A single-polarization fiber
Kaminow Polarization in optical fibers
US7177512B2 (en) Solid type polarization maintaining fiber and apparatus
JPH02108010A (en) Polarizing-state maintaining optical fiber for manufacturing coupler
EP1486804B1 (en) Polarization preserving optical fiber
AU774273B2 (en) Polarization-maintaining optical fiber and polarization- maintaining optical fiber component
US6580860B1 (en) Method for making shaped highly birefringent optical fibers
KR20010020930A (en) Method of manufacturing polarization-maintaining optical fiber coupler
US20180088360A1 (en) Polarization Maintaining Optical Fiber With Non-Symmetric Stress Applying Parts
JPH0380207A (en) Absolute single polarization optical fiber
JPS61267707A (en) Side tunnel type constant polarization optical fiber
JPH0350505A (en) Single polarization optical fiber
JPH0627010B2 (en) Method of manufacturing polarization-maintaining optical fiber
JPS61200509A (en) Constant polarization fiber with absolute single polarization band
JPH03206405A (en) Absolute single polarization fiber
JPH0350506A (en) Absolute single-polarization optical fiber
JPS61228404A (en) Optical fiber for constant polarized wave
JPH02187706A (en) Single polarization optical fiber
JPH04119937A (en) Production of absolute single polarization fiber
JPH04119938A (en) Production of absolute single polarization fiber
JPH0223306A (en) Polarization maintaining optical fiber
JPH0225806A (en) Polarization maintaining optical fiber and manufacture thereof
Nolan et al. New single polarization fiber with high extinction ratio
JP2003084160A (en) Polarization maintaining optical fiber
JP2003029072A (en) Plane-of-polarization preservation type optical fiber