JPH0627010B2 - Method of manufacturing polarization-maintaining optical fiber - Google Patents

Method of manufacturing polarization-maintaining optical fiber

Info

Publication number
JPH0627010B2
JPH0627010B2 JP60055397A JP5539785A JPH0627010B2 JP H0627010 B2 JPH0627010 B2 JP H0627010B2 JP 60055397 A JP60055397 A JP 60055397A JP 5539785 A JP5539785 A JP 5539785A JP H0627010 B2 JPH0627010 B2 JP H0627010B2
Authority
JP
Japan
Prior art keywords
optical fiber
polarization
stress
fiber preform
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60055397A
Other languages
Japanese (ja)
Other versions
JPS61215225A (en
Inventor
浩司 岡村
誠 塚本
正司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60055397A priority Critical patent/JPH0627010B2/en
Publication of JPS61215225A publication Critical patent/JPS61215225A/en
Publication of JPH0627010B2 publication Critical patent/JPH0627010B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • C03B2203/31Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres by use of stress-imparting rods, e.g. by insertion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、偏波面保存光ファイバの製造方法の改良に関
する。
TECHNICAL FIELD The present invention relates to an improvement in a method of manufacturing a polarization-maintaining optical fiber.

光集積回路,光素子アレイ等の入出力伝送路として、基
板(例えばガリウム砒素等)の表面に光導波路を設けた
ものが広く使用されている。
As an input / output transmission line for an optical integrated circuit, an optical element array, etc., a substrate (for example, gallium arsenide) provided with an optical waveguide is widely used.

この光導波路は、光ガイド基板の表面に、光ガイド基板
の屈折率よりも大きい屈折率の帯状の光学膜を形成した
り、或いは光ガイド基板の表面を金属拡散,イオン交換
法等の手段により光ガイド基板の屈折率よりも大きい屈
折率の帯状の線路を形成したものである。
This optical waveguide is formed by forming a band-shaped optical film having a refractive index higher than that of the light guide substrate on the surface of the light guide substrate, or by diffusing metal on the surface of the light guide substrate by a method such as an ion exchange method. A band-shaped line having a refractive index higher than that of the light guide substrate is formed.

このような光導波路は、平面型光回路であって、光軸に
対して対称でなく、一軸結晶等の異方性材料上に設けら
れることが多い。よって、この光導波路によって伝送さ
れる光信号は、伝搬方向に直交するX軸,Y軸のいずれ
かの軸方向に偏波している。即ち、光導波路は偏波面保
存性を有し、このことが光素子を有効に励振するために
必要である。
Such an optical waveguide is a planar optical circuit, is not symmetrical about the optical axis, and is often provided on an anisotropic material such as a uniaxial crystal. Therefore, the optical signal transmitted by this optical waveguide is polarized in either the X-axis or the Y-axis direction orthogonal to the propagation direction. That is, the optical waveguide has a polarization plane preserving property, which is necessary for effectively exciting the optical element.

したがって、これらの光導波路、或いは光素子に光接続
される光ファイバにも、偏波面保存性が要求される。
Therefore, polarization preserving properties are also required for these optical waveguides or optical fibers optically connected to the optical elements.

この偏波面保存光ファイバの製造にあたっては、製造が
容易で、且つ光伝送損失の小さいことの要望が強い。
In manufacturing the polarization-maintaining optical fiber, there is a strong demand for easy manufacture and low optical transmission loss.

〔従来の技術〕[Conventional technology]

第5図の(a),(b),(c)はそれぞれ従来の製造過程を示
す光ファイバ母材の斜視図であり、第6図は従来方法に
より得られた偏波面保存光ファイバの断面図である。
5 (a), (b), and (c) are perspective views of an optical fiber preform showing a conventional manufacturing process, and FIG. 6 is a cross section of a polarization-maintaining optical fiber obtained by a conventional method. It is a figure.

従来の偏波面保存光ファイバの製造方法は、第5図(a)
に示す軸心にコア部2が形成され、外周部にコア部2の
屈折率より小さい屈折率のクラッド部3を有する円柱状
の石英系の光ファイバ母材1を使用して、第5図(b)に
示すように、クラッド部3に、コア部2に対して対称
に、平行した一対の貫通孔4を孔あけ加工している。
A conventional method for manufacturing a polarization-maintaining optical fiber is shown in Fig. 5 (a).
A cylindrical silica-based optical fiber preform 1 having a core portion 2 formed on the axis and having a clad portion 3 having a refractive index smaller than that of the core portion 2 on the outer peripheral portion is used as shown in FIG. As shown in (b), a pair of through holes 4 that are parallel to and symmetrical with respect to the core portion 2 are drilled in the cladding portion 3.

次に、この一対の貫通孔4のそれぞれに、第5図(c)の
如くに、ガラスロッド5を挿入して、偏波面保存光ファ
イバ用の孔ファイバ母材1Aを製造している。
Next, as shown in FIG. 5C, the glass rod 5 is inserted into each of the pair of through holes 4 to manufacture the hole fiber preform 1A for the polarization-maintaining optical fiber.

このガラスロッド5は、クラッド部3よりも熱膨張係数
の大きいガラスロッドであって、例えばB2O3が添加され
たSiO2ガラスである。
The glass rod 5 is a glass rod having a thermal expansion coefficient larger than that of the cladding portion 3, and is, for example, SiO 2 glass to which B 2 O 3 is added.

この光ファイバ母材1Bを、紡糸用加熱炉内に垂直に吊し
て送り込み、加熱溶融して、光ファイバ母材1Bの下先端
より所望の外径の糸状の偏波面保存光ファイバ10を紡糸
している。
This optical fiber preform 1B is vertically hung in a heating furnace for spinning and fed, heated and melted, and a filament-shaped polarization-maintaining optical fiber 10 with a desired outer diameter is spun from the lower end of the optical fiber preform 1B. is doing.

このようにして得られた偏波面保存光ファイバ10は、第
6図に示すような断面で、コア12の外周にクラッド13が
形成され、クラッド13には、コア12を中心にして例えば
X軸方向に一対の応力付与ガラス部14が設けられてい
る。
The polarization-maintaining optical fiber 10 thus obtained has a cross section as shown in FIG. 6, and a clad 13 is formed on the outer periphery of a core 12, and the clad 13 is centered on the core 12 and is, for example, the X-axis. A pair of stress imparting glass portions 14 are provided in the direction.

この応力付与ガラス部14は、光ファイバ母材1Aのガラス
ロッド5が変形したものである。よって応力付与ガラス
部14の熱膨張係数はクラッド13の熱膨張係数よりも大き
い。
The stress-applying glass portion 14 is formed by deforming the glass rod 5 of the optical fiber preform 1A. Therefore, the thermal expansion coefficient of the stress-applying glass portion 14 is larger than that of the clad 13.

したがって、紡糸後の冷却過程において、クラッド13よ
りも大きく収縮し、X軸方向に対向して応力をコア12に
付与している。
Therefore, in the cooling process after spinning, the core 12 contracts more than the clad 13 and applies stress to the core 12 so as to face the X-axis direction.

よって、コア12は、光弾性効果により、X軸方向の屈折
率が、Y軸方向の屈折率よりも小となり、偏波面保存特
性を有する。
Therefore, the core 12 has a refractive index in the X-axis direction smaller than that in the Y-axis direction due to the photoelastic effect, and has a polarization plane preservation characteristic.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら上記従来の製造方法は、光ファイバ母材
に、小径で長い貫通孔を高精度に孔あけすることが困難
であるという問題点と、挿入したガラスロッドと貫通孔
の間に空隙が生じ、このことに起因して紡糸後の偏波面
保存光ファイバのクラッド部分に気泡が混入され、光伝
送損失が大きくなるという問題点がある。
However, the above-mentioned conventional manufacturing method, in the optical fiber preform, a problem that it is difficult to punch a long through hole with a small diameter with high accuracy, and a gap is generated between the inserted glass rod and the through hole, Due to this, air bubbles are mixed in the clad portion of the polarization-maintaining single-mode optical fiber after spinning, resulting in a large optical transmission loss.

〔問題点を解決するための手段〕[Means for solving problems]

上記従来の問題点を解決するため本発明は、石英系光フ
ァイバ母材の側面に、該光ファイバ母材の軸心に対称に
平行した2条の溝を設け、外付気相堆積法により該溝
を、該光ファイバ母材の熱膨張係数とは異なる熱膨張係
数を有する応力付与ガラスで埋めた後、該光ファイバ母
材を紡糸して、偏波面保存光ファイバを形成するように
したものである。
In order to solve the above-mentioned conventional problems, the present invention provides two grooves that are symmetrically parallel to the axis of the optical fiber preform on the side surface of the silica optical fiber preform, and uses the external vapor deposition method. After filling the groove with a stress-applying glass having a coefficient of thermal expansion different from that of the optical fiber preform, the optical fiber preform is spun to form a polarization-maintaining optical fiber. It is a thing.

〔作用〕[Action]

上記本発明の手段によれば、応力付与ガラス部を設ける
溝は、光ファイバ母材の外周面に例えば研削加工手段に
より設けることができるので、高精度で、且つ加工が容
易である。
According to the above-mentioned means of the present invention, the groove in which the stress-applying glass portion is provided can be provided in the outer peripheral surface of the optical fiber preform by, for example, grinding means, so that the groove is highly accurate and easy to process.

応力付与ガラスを溝に埋める手段は、外付気相堆積法に
より溝内に応力付与ガラススートを層状に形成するの
で、紡糸された偏波面保存光ファイバには気泡が含有さ
れない。よって光伝送損失が小さい。
Since the means for burying the stress-applying glass in the groove forms the stress-applying glass soot in the groove by the external vapor deposition method, the spun polarization-maintaining optical fiber contains no bubbles. Therefore, the optical transmission loss is small.

〔実施例〕〔Example〕

以下図示実施例により、本発明を具体的に説明する。な
お、全図を通じて同一符号は同一対象物を示す。
The present invention will be specifically described below with reference to illustrated embodiments. The same reference numerals denote the same objects throughout the drawings.

第1図の(a),(b),(c)はそれぞれ本発明の1実施例の
製造過程を示す光ファイバ母材の斜視図であり、第2図
は紡糸工程の斜視図、第3図は本発明の1実施例により
得られた偏波面保存光ファイバの断面図、第4図は他の
実施例により得られた偏波面保存光ファイバの屈折率分
布図で、(a)はX軸断面、(b)はY軸断面を示す。
1 (a), (b), and (c) are perspective views of the optical fiber preform showing the manufacturing process of one embodiment of the present invention, and FIG. 2 is a perspective view of the spinning process, and FIG. FIG. 4 is a cross-sectional view of a polarization-maintaining single-mode optical fiber obtained according to one embodiment of the present invention, and FIG. 4 is a refractive index distribution map of a polarization-maintaining single-mode optical fiber obtained according to another embodiment. An axial section, (b) shows a Y-axis section.

第1図(a)に示す光ファイバ母材1は、軸心にコア部2
(例えば外径が1.25mm)が形成され、外周部にコア部2
の屈折率よりも小さい屈折率のクラッド部3(例えば外
径が11.5mm)を有する円柱状の石英系の光ファイバ母材
である。
The optical fiber preform 1 shown in FIG. 1 (a) has a core portion 2 at the axial center.
(For example, the outer diameter is 1.25 mm) is formed, and the core portion 2 is formed on the outer peripheral portion.
It is a cylindrical silica-based optical fiber preform having a clad portion 3 (for example, an outer diameter of 11.5 mm) having a refractive index smaller than the refractive index of the above.

コア部2の成分は、GeO2−SiO2であり、クラッド部3の
成分はSiO2である。
The component of the core portion 2 is GeO 2 —SiO 2 , and the component of the cladding portion 3 is SiO 2 .

このような光ファイバ母材1を素材として、第1図(b)
に示すように、光ファイバ母材1の軸心に対称に平行し
た2条の溝7を研削加工して設けている。この溝7は例
えば深さが4mm、幅が2.5mmである。
Using such an optical fiber preform 1 as a material, FIG. 1 (b)
As shown in FIG. 2, two grooves 7 symmetrically parallel to the axis of the optical fiber preform 1 are provided by grinding. The groove 7 has a depth of 4 mm and a width of 2.5 mm, for example.

次に第1図(c)のように外付気相堆積法により原料ガス
として、SiCl4 ガス、BBr3ガスを使用して酸水素バーナ
8により、溝7内にB2O3が添加された応力付与ガラスス
ート9Aを堆積せしめて埋めて光ファイバ母材1Bとする。
Next, as shown in FIG. 1 (c), B 2 O 3 is added into the groove 7 by the oxyhydrogen burner 8 using SiCl 4 gas and BBr 3 gas as source gases by the external vapor deposition method. The stress-applied glass soot 9A is deposited and embedded to form the optical fiber preform 1B.

そしてこの光ファイバ母材1BをCl2 雰囲気の電気炉に投
入し、脱水ガラス化して応力付与ガラススート9Aを応力
付与ガラス部9Bとする。この応力付与ガラス部9Bは、B2
O3が含有されていることにより、コア部2,クラッド部
3の熱膨張係数よりも所望に熱膨張係数が大きい。
Then, the optical fiber preform 1B is put into an electric furnace in a Cl 2 atmosphere and dehydrated and vitrified to form the stress-applying glass soot 9A as a stress-applying glass portion 9B. This stress-applying glass portion 9B is B 2
Since O 3 is contained, the coefficient of thermal expansion is desirably larger than the coefficient of thermal expansion of the core portion 2 and the cladding portion 3.

その後、第2図の如くに、コア比調整のため、クラッド
部3と同成分の中空の調整石英管15内に光ファイバ母材
1Bを挿入した状態で、紡糸用加熱炉16内に垂直に吊して
送り込み、加熱溶融して、光ファイバ母材1Bの下先端よ
り所望の形状の糸状の偏波面保存光ファイバ20を紡糸し
ている。
After that, as shown in FIG. 2, in order to adjust the core ratio, the optical fiber preform is placed in the hollow adjusted quartz tube 15 having the same composition as the cladding part 3.
With 1B inserted, it is vertically hung in the heating furnace for spinning 16 and fed, heated and melted, and the filament-shaped polarization-maintaining optical fiber 20 of a desired shape is spun from the lower end of the optical fiber preform 1B. ing.

この偏波面保存光ファイバ20は、第3図に示すように、
外径が9.5μmのコア12の周囲に、コア12の屈折率よ
りも小さい屈折率の外径が125 μmのクラッド13が形成
されている。
The polarization-maintaining optical fiber 20 is, as shown in FIG.
Around the core 12 having an outer diameter of 9.5 μm, a cladding 13 having an outer diameter of 125 μm and having a refractive index smaller than that of the core 12 is formed.

そしてクラッド13部分に、コア12に対称に、例えばX軸
方向に一対の応力付与ガラス部24が設けられている。
A pair of stress-applying glass portions 24 are provided in the clad 13 portion symmetrically to the core 12, for example, in the X axis direction.

この応力付与ガラス部24は、光ファイバ母材1Bの応力付
与ガラス部9Bが変形したものである。よって応力付与ガ
ラス部24の熱膨張係数はクラッド13の熱膨張係数よりも
大きい。
The stress-applying glass portion 24 is a deformation of the stress-applying glass portion 9B of the optical fiber preform 1B. Therefore, the thermal expansion coefficient of the stress-applying glass portion 24 is larger than that of the clad 13.

したがって、紡糸後の冷却過程において、クラッド13よ
りも大きく収縮し、X軸方向に対向して応力をコア12に
付与している。
Therefore, in the cooling process after spinning, the core 12 contracts more than the clad 13 and applies stress to the core 12 so as to face the X-axis direction.

よってコア12は、光弾性効果により、X軸方向の屈折率
が、Y軸方向の屈折率よりも小で、偏波面保存特性を有
する。
Therefore, due to the photoelastic effect, the core 12 has a refractive index in the X-axis direction smaller than that in the Y-axis direction, and has a polarization plane preservation characteristic.

上述のように溝7は、研削加工手段により設けることが
できるので、高精度で、且つ加工が容易であり、また応
力付与ガラススート9Aを溝7に形成埋める手段は、外付
気相堆積法によるので、紡糸された偏波面保存光ファイ
バ20には気泡が含有されない。よって光の吸収,散乱が
少なくて、光伝送損失が小さい。
As described above, since the groove 7 can be provided by the grinding processing means, it is highly accurate and easy to process. The means for forming and filling the stress-applying glass soot 9A in the groove 7 is an external vapor deposition method. Therefore, the spun polarization-maintaining optical fiber 20 contains no bubbles. Therefore, light absorption and scattering are small, and optical transmission loss is small.

第4図の屈折率分布図に示す偏波面保存光ファイバは、
外付気相堆積法により応力付与ガラススート9Aを堆積す
る際に、第1図(c)に示す原料ガス、即ちSiCl4 ガス、B
Br3ガスに加えて、GeCl4 ガスを使用して、GeO2を添加
したものである。
The polarization-maintaining optical fiber shown in the refractive index distribution chart of FIG.
When depositing the stressed glass soot 9A by the external vapor deposition method, the raw material gases shown in FIG. 1 (c), namely SiCl 4 gas, B
In addition to br 3 gas, using GeCl 4 gas is obtained by addition of GeO 2.

このような偏波面保存光ファイバは、X軸方向の屈折率
分布は、第4図(a)に示すように、偏波面保存光ファイ
バの軸心Cを中心として、光弾性効果により屈折率が歪
んだコア12の両側に、クラッド13のなす小さい屈折率の
クラッド屈折率13n が形成されている。そして、クラッ
ド13の中に応力付与ガラス部24のなす屈折率の小さい応
力付与がガラス屈折率24n が形成されている。
Such a polarization-maintaining single-mode optical fiber has a refractive index distribution in the X-axis direction, as shown in FIG. On both sides of the distorted core 12, a clad refractive index 13n having a small refractive index formed by the clad 13 is formed. Then, the glass refractive index 24 n is formed in the clad 13 by the stress application of the stress-applying glass portion 24 having a small refractive index.

Y軸方向の屈折率分布は、第4図(b)に示すように、偏
波面保存光ファイバの軸心Cを中心として、光弾性効果
により屈折率が歪んだコア12のコア屈折率12n の両側
に、クラッド13のなす小さい屈折率のクラッド屈折率13
n が形成されている。
As shown in FIG. 4 (b), the refractive index distribution in the Y-axis direction is about the core refractive index 12n of the core 12 whose refractive index is distorted by the photoelastic effect with the axis C of the polarization-maintaining optical fiber as the center. On both sides, the cladding refractive index 13
n are formed.

この方法においては、応力付与ガラス部24に屈折率を大
きくするGeO2を多量に添加することも可能で、その時に
は、クラッド13の屈折率が偏在していることにより、光
弾性効果による偏波面保存光特性に加えて、クラッド13
に入射した光波にも、偏波面保存性が付与されて、偏波
面保存特性が高まることが期待される。
In this method, it is also possible to add a large amount of GeO 2 that increases the refractive index to the stress-applying glass portion 24, and at that time, because the refractive index of the cladding 13 is unevenly distributed, the polarization plane due to the photoelastic effect is generated. In addition to storage light characteristics, clad 13
It is expected that the polarization plane preserving property will be imparted to the light wave incident on and the polarization plane preserving property will be improved.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、応力付与ガラス部の形成
部が、光ファイバ母材の外側に開口した溝であることに
より、高精度で、且つ加工が容易であり、さらに、偏波
面保存光ファイバ内に気泡が存在しないことにより、光
の吸収,散乱が少なくて、光伝送損失が小さい等、実用
上で優れた効果がある。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, since the forming portion of the stress-applying glass portion is the groove opened to the outside of the optical fiber preform, it is highly accurate and easy to process. Since there are no bubbles in the fiber, light absorption and scattering are small, and optical transmission loss is small.

【図面の簡単な説明】[Brief description of drawings]

第1図の(a),(b),(c)はそれぞれ本発明の1実施例の
製造過程を示す光ファイバ母材の斜視図、 第2図は紡糸工程の斜視図、 第3図は本発明の1実施例により得られた偏波面保存光
ファイバの断面図、 第4図は他の実施例により得られた偏波面保存光ファイ
バの屈折率分布図で、(a)はX軸断面、(b)はY軸断面、 第5図の(a),(b),(c)はそれぞれ従来の製造過程を示
す光ファイバ母材の斜視図、 第6図は従来方法により得られた偏波面保存光ファイバ
の断面図ある。 図において、 1、1A,1B は光ファイバ母材、 2はコア部、3はクラッド部、 4は貫通孔、5はガラスロッド、 7は溝、5は酸水素バーナ、 9Aは応力付与ガラススート、 9Bは応力付与ガラス部、 10,20 は偏波面保存光ファイバ、 12はコア、13はクラッド、 14は応力付与ガラス部、15は調整石英管、 16は紡糸用加熱炉をそれぞれ示す。
1 (a), (b), and (c) are perspective views of an optical fiber preform showing a manufacturing process of one embodiment of the present invention, FIG. 2 is a perspective view of a spinning process, and FIG. FIG. 4 is a cross-sectional view of a polarization-maintaining single-mode optical fiber obtained according to one embodiment of the present invention, and FIG. 4 is a refractive index distribution diagram of a polarization-maintaining single-mode optical fiber obtained according to another embodiment. , (B) is a Y-axis cross section, (a), (b), and (c) of FIG. 5 are perspective views of the optical fiber preform showing the conventional manufacturing process, respectively, and FIG. 6 is obtained by the conventional method. It is a sectional view of a polarization-maintaining optical fiber. In the figure, 1, 1A and 1B are optical fiber base materials, 2 is a core part, 3 is a clad part, 4 is a through hole, 5 is a glass rod, 7 is a groove, 5 is an oxyhydrogen burner, and 9A is a stress-imparting glass soot. , 9B is a stress-applying glass part, 10 and 20 are polarization-maintaining optical fibers, 12 is a core, 13 is a clad, 14 is a stress-applying glass part, 15 is an adjusted quartz tube, and 16 is a heating furnace for spinning.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】石英系光ファイバ母材の側面に、該光ファ
イバ母材の軸心に対称に平行した2条の溝を設け、外付
気相堆積法により該溝を、該光ファイバ母材の熱膨張係
数とは異なる熱膨張係数を有する応力付与ガラスで埋め
た後、該光ファイバ母材を紡糸して、光ファイバを形成
することを特徴とする偏波面保存光ファイバの製造方
法。
1. A quartz optical fiber preform is provided on its side surface with two grooves that are symmetrically parallel to the axis of the optical fiber preform, and the grooves are formed by an external vapor deposition method. A method for producing a polarization-maintaining optical fiber, comprising filling an optical fiber with a stress-applying glass having a coefficient of thermal expansion different from that of the material, and then spinning the optical fiber preform to form an optical fiber.
【請求項2】前記熱膨張係数を有する応力付与ガラス
が、クラッド部の屈折率よりも大きい屈折率を有するこ
とを特徴とする、特許請求の範囲第1項に記載の偏波面
保存光ファイバの製造方法。
2. The polarization-maintaining optical fiber according to claim 1, wherein the stress-applying glass having the coefficient of thermal expansion has a refractive index higher than that of the cladding portion. Production method.
JP60055397A 1985-03-19 1985-03-19 Method of manufacturing polarization-maintaining optical fiber Expired - Lifetime JPH0627010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60055397A JPH0627010B2 (en) 1985-03-19 1985-03-19 Method of manufacturing polarization-maintaining optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60055397A JPH0627010B2 (en) 1985-03-19 1985-03-19 Method of manufacturing polarization-maintaining optical fiber

Publications (2)

Publication Number Publication Date
JPS61215225A JPS61215225A (en) 1986-09-25
JPH0627010B2 true JPH0627010B2 (en) 1994-04-13

Family

ID=12997392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60055397A Expired - Lifetime JPH0627010B2 (en) 1985-03-19 1985-03-19 Method of manufacturing polarization-maintaining optical fiber

Country Status (1)

Country Link
JP (1) JPH0627010B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68912288T2 (en) * 1988-12-09 1994-05-05 Alcatel Nv Process for processing a preform for polarization-maintaining optical fibers.
US5152818A (en) * 1990-11-09 1992-10-06 Corning Incorporated Method of making polarization retaining fiber
JP2002214465A (en) 2001-01-17 2002-07-31 Fujikura Ltd Polarization maintaining optical fiber
US6608956B2 (en) * 2001-03-12 2003-08-19 Verrillon Inc. Dual-clad polarization-preserving optical fiber
WO2002079827A1 (en) * 2001-03-12 2002-10-10 Intelcore Technologies, Inc. Dual-clad polarization-preserving optical fiber
US8434330B2 (en) * 2009-10-22 2013-05-07 Ofs Fitel, Llc Techniques for manufacturing birefringent optical fiber
US8526773B2 (en) * 2010-04-30 2013-09-03 Corning Incorporated Optical fiber with differential birefringence mechanism

Also Published As

Publication number Publication date
JPS61215225A (en) 1986-09-25

Similar Documents

Publication Publication Date Title
KR0172600B1 (en) Single-mode, single polarization optical fiber
US4354736A (en) Stress-induced birefringent single mode optical fiber and a method of fabricating the same
US4274854A (en) Polarization-preserving optical fiber
EP2626730B1 (en) Polarization-maintaining optical fiber
EP0357429A2 (en) Polarization-Maintaining optical fiber for coupler fabrication
GB2190762A (en) Directional coupler
US6580860B1 (en) Method for making shaped highly birefringent optical fibers
JPH0627010B2 (en) Method of manufacturing polarization-maintaining optical fiber
KR20080041428A (en) Polarization maintaining fiber and the method therof
JP2762571B2 (en) Manufacturing method of polarization maintaining optical fiber
JP2003206149A (en) Method for manufacturing optical fiber
JPS6365615B2 (en)
JPS59164505A (en) Single-polarization single-mode optical fiber
WO2022172910A1 (en) Polarization maintaining optical fiber and polarization maintaining optical fiber manufacturing method
CN214335290U (en) Panda type single polarization optical fiber
JPH0212887B2 (en)
JPH01279211A (en) Polarized wave maintaining optical fiber
JPH01222208A (en) Polarization maintaining optical fiber and fiber base material for producing said fiber
JPH0439605A (en) Elliptic core type polarization plane maintaining optical fiber and optical fiber polarizer
JPS6367168B2 (en)
JPH01148724A (en) Production of polarization retaining fiber
JP2003084160A (en) Polarization maintaining optical fiber
JPH0350505A (en) Single polarization optical fiber
JPS59135402A (en) Single polarization optical fiber
JPH0225806A (en) Polarization maintaining optical fiber and manufacture thereof