JPH0377299A - Organic electroluminescense element - Google Patents

Organic electroluminescense element

Info

Publication number
JPH0377299A
JPH0377299A JP1212968A JP21296889A JPH0377299A JP H0377299 A JPH0377299 A JP H0377299A JP 1212968 A JP1212968 A JP 1212968A JP 21296889 A JP21296889 A JP 21296889A JP H0377299 A JPH0377299 A JP H0377299A
Authority
JP
Japan
Prior art keywords
layer
organic
anode
cathode
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1212968A
Other languages
Japanese (ja)
Other versions
JP2895868B2 (en
Inventor
Chishio Hosokawa
地潮 細川
Tadashi Kusumoto
正 楠本
Hiroshi Shoji
弘 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP21296889A priority Critical patent/JP2895868B2/en
Publication of JPH0377299A publication Critical patent/JPH0377299A/en
Application granted granted Critical
Publication of JP2895868B2 publication Critical patent/JP2895868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers

Abstract

PURPOSE:To obtain the luminescence of high brightness with low drive voltage by providing a luminous layer comprising an inorganic amorphous charge injection and carrier layer and an organic compound, and when necessary, a charge barrier layer between an anode and a cathode. CONSTITUTION:A thin film comprising a desired anode material is so formed on a substrate as to have a thickness, for example, of 10 to 200nm. Then a thin film comprising P type a-Si or the like is formed and an inorganic amorphous layer for hole injection and carrier is thereby formed. Thereafter, a thin film of organic luminous material is formed on the amorphous layer to make a luminous layer and then a thin film comprising a cathode material is so formed thereon as to have a thickness, for example, within the range of 10 to 200nm, thereby forming a cathode. Furthermore, when necessary, an anode and an inorganic amorphous layer for hole injection and carrier is formed, and an organic electron barrier layer is formed thereon via a vapor deposition method or the like. According to this construction, it is possible to obtain the luminescence of high brightness with low drive voltage.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は新規な有機エレクトロルミネッセンス素子に関
するものである。さらに詳しくいえば、本発明は、5v
以下の低い駆動電圧及び良好な発光効率で、高輝度の発
光を得ることができ、各種表示装置の発光素子として好
適な有機エレクトロルミネッセンス素子に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a novel organic electroluminescent device. More specifically, the present invention provides 5v
The present invention relates to an organic electroluminescent device that can emit high-intensity light with the following low driving voltage and good luminous efficiency, and is suitable as a light-emitting device for various display devices.

〔従来の技術〕[Conventional technology]

近午、エレクトロルミネッセンス素子(以下、EL素子
と略称する)は自己発光のため視認性が高く、かつ完全
固体素子であるため、耐衝撃性に優れるなどの特徴を有
することから、各種表示装置における発光素子としての
利用が注目されている。
Recently, electroluminescent elements (hereinafter referred to as EL elements) have been widely used in various display devices because they are self-luminous and have high visibility, and because they are completely solid-state elements, they have excellent impact resistance. Its use as a light emitting device is attracting attention.

このEL素子には、発光層に無機化合物を用いて成る無
機EL素子と有機化合物を用いて成る有機EL素子とが
あり、このうち、有機EL素子は印加電圧を大幅に低く
しうるために、その実用化研究が積極的になされている
There are two types of EL devices: inorganic EL devices that use inorganic compounds in their light-emitting layers, and organic EL devices that use organic compounds. Research on its practical application is actively being conducted.

前記有機EL素子の構成については、陽極/発光層/陰
極の構成を基本とし、これに陽極より注入された正孔を
効率よく発光層に伝達する機能を有する正孔注入輸送層
や、陰極より注入された電子を効率よく発光層に伝達す
る機能を有する電子注入輸送層を適宜設けた構成のもの
が知られている。
The structure of the organic EL element is basically an anode/emissive layer/cathode structure, and includes a hole injection transport layer that has a function of efficiently transmitting holes injected from the anode to the emissive layer, and a hole injection transport layer that efficiently transmits holes injected from the anode to the emissive layer. A structure in which an electron injection transport layer having a function of efficiently transmitting injected electrons to a light emitting layer is appropriately provided is known.

このような構成の有機EL素子の中で、優れた性能を有
するものとして、陽極/正孔注入輸送層/発光層/陰極
から成る構成の素子が種々開示されている(米国特許第
4,539,507号明細書、同第4,769,292
号明細書、特開昭59−194393号公報、同63−
295695号公報)。そして、この構成の有機EL素
子においては、該正孔注入輸送層1こ薄膜形成性に優れ
た材料を用いることにより、正孔注入輸送層と発光層と
の合計膜厚をL50nm以下にすることを可能にし、そ
の結果20V以下の駆動電圧で高輝度の発光を得ること
に成功している。さらに、該正孔注入輸送層に、電子を
輸送せず電子に対して障壁として作用しうるトリフェニ
ルアミン系の正孔伝達化合物を用い、正孔注入輸送層と
発光層との界面1;存在する電子の障壁により、この発
光層内の界面に電子の蓄積を行い、発光効率を高め、例
えば発光層の材料にアルミニウムのオキシン錯体を用い
ることによって、10v以下の印加電圧で、1000c
d/m”の高輝度の絶色発光を発光効率1.5nm/V
でもって実現している[「アプライド・フィズイクス・
レターズJ  (A+)pl、Phys。
Among organic EL devices having such a structure, various devices having a structure consisting of an anode/hole injection/transport layer/emitting layer/cathode have been disclosed as having excellent performance (US Pat. No. 4,539). , No. 507, No. 4,769,292
specification, JP-A-59-194393, JP-A No. 63-
295695). In the organic EL device having this configuration, the total thickness of the hole injection and transport layer and the light emitting layer can be made to be L50 nm or less by using a material with excellent thin film forming properties for the hole injection and transport layer. As a result, we have succeeded in obtaining high-intensity light emission with a drive voltage of 20V or less. Further, a triphenylamine-based hole transport compound that does not transport electrons but can act as a barrier to electrons is used in the hole injection transport layer, and the interface between the hole injection transport layer and the light emitting layer 1; By using an electron barrier, electrons are accumulated at the interface within the luminescent layer, increasing luminous efficiency. For example, by using an aluminum oxine complex as the material of the luminescent layer, 1000 c
d/m” high brightness and color emission with luminous efficiency of 1.5 nm/V
This has been realized through [Applied Physics]
Letters J (A+) pl, Phys.

Lett、)第51巻、第913ページ(1987午)
】。
Lett,) Volume 51, Page 913 (1987 PM)
].

ところで、該EL素子においては、その発光機構は電子
と正孔の再結合型であるので、無機物を発光材料とし、
PN接合の素子構成をとった場合発光ダイオードなみの
低電圧駆動(2〜5v程度)が可能なはずであるが、前
記したように、現状では駆動電圧は5■以上である。こ
れは陽極と正孔注入輸送層との界面や正孔注入輸送層と
発光層との界面に存在する正孔注入に対するエネルギー
障壁、あるいは発光層と陰極との界面に存在する電子注
入に対するエネルギー障壁によるためである。
By the way, in the EL element, the light emitting mechanism is the recombination type of electrons and holes, so an inorganic substance is used as the light emitting material,
If a PN junction element configuration is used, it should be possible to drive at a low voltage (approximately 2 to 5 V) comparable to that of a light emitting diode, but as described above, the current driving voltage is 5V or higher. This is an energy barrier to hole injection that exists at the interface between the anode and the hole injection transport layer, or an interface between the hole injection transport layer and the light emitting layer, or an energy barrier to electron injection that exists at the interface between the light emitting layer and the cathode. This is because.

さらに、発光の量子収率の上限は40%近くであるとい
われているが、該EL素子においては、まだ1%程度で
ある。
Furthermore, although it is said that the upper limit of the quantum yield of light emission is close to 40%, it is still about 1% in the EL element.

このように、陽極/正孔注入輸送層/発光層/陰極から
成る構成の有機EL素子においては、他の構成のEL素
子に比べて、性能は良いものの、駆at圧及び発光効率
については、必ずしも十分に満足しうるものではない。
As described above, although the organic EL device with the structure consisting of anode/hole injection/transport layer/light emitting layer/cathode has better performance than EL devices with other structures, the driving pressure and luminous efficiency are It is not always completely satisfactory.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、このような事情のもとで、5v以下の低い駆
動電圧及び良好な発光効率で高輝度の発光を得ることが
できる有機EL素子を提供することを目的としてなされ
tこものである。
Under these circumstances, the present invention was made with the object of providing an organic EL element that can obtain high-intensity light emission with a low driving voltage of 5 V or less and good luminous efficiency.

[課題を解決するt;めの手段] 本発明者らは前記の優れた特徴を有する有機EL素子を
開発すべく鋭意研究を重ねた結果、陽極/発光層/陰極
の基本構成に、少なくとも無機アモルファス質電荷注入
輸送層を設けることにより、各界面に存在する電荷注入
のエネルギー障壁が緩和され、より低い駆動電圧が可能
となる上、該無機アモルファス質は薄膜形成性に優れ、
しかも表面硬度などの機械的強度に優れていること、及
びさらに所望に応じ電荷障壁層を設けることにより、発
光効率がより一層向上することを見い出し、この知見に
基づいて本発明を完成するに至った。
[Means for Solving the Problem] As a result of intensive research to develop an organic EL device having the above-mentioned excellent characteristics, the present inventors found that at least an inorganic By providing an amorphous charge injecting and transporting layer, the energy barrier for charge injection existing at each interface is relaxed, enabling a lower driving voltage, and the inorganic amorphous material has excellent thin film forming properties.
Moreover, they discovered that it has excellent mechanical strength such as surface hardness, and that the luminous efficiency can be further improved by providing a charge barrier layer if desired.Based on this knowledge, they have completed the present invention. Ta.

すなわち、本発明は、陽極と陰極との間に無機アモルフ
ァス質電荷注入輸送層と有機化合物から成る発光層と、
所望に応じて用いられる電荷障壁層とを設けて成る有機
EL素子を提供するものである。
That is, the present invention provides a light emitting layer comprising an inorganic amorphous charge injection transport layer and an organic compound between an anode and a cathode,
The present invention provides an organic EL device that is provided with a charge barrier layer that is used as desired.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の有機EL素子は、陽極/発光層/陰極の基本構
成に、少なくとも無機アモルファス質電荷注入輸送層が
設けられたものであって、該無機アモルファス質電荷注
入輸送層は、無機アモルファス質正孔注入輸送層として
設けられてもよいし、無機アモルファス質電子注入輸送
層として設けられてもよく、あるいはその両方として設
けられてもよい。また、本発明のEL素子においては、
肱アモルファス質電荷注入輸送層とともに、所望に応じ
有機質正孔注入輸送層や有機質電子注入輸送層を設ける
ことができる。
The organic EL device of the present invention is one in which at least an inorganic amorphous charge injection transport layer is provided in the basic structure of an anode/emitting layer/cathode, and the inorganic amorphous charge injection transport layer is made of an inorganic amorphous charge injection transport layer. It may be provided as a hole injection transport layer, an inorganic amorphous electron injection transport layer, or both. Furthermore, in the EL element of the present invention,
In addition to the amorphous charge injection and transport layer, an organic hole injection and transport layer and an organic electron injection and transport layer can be provided as desired.

このような素子構成の代表的な例としては、(1)陽極
/無機アモルファス質正孔注入輸送層/発光層/陰極 (2)陽極/無機アモルファス質正孔注入輸送層/有機
質正孔注入輸送層/発光層/陰極(3)陽極/無機アモ
ルファス質正孔注入輸送層/発光層/有機質電子注入輸
送層/陰極(4)陽極/発光層/無機アモルファス質電
子注入輸送層/陰極 (5)!極/発光層/有機質電子注入輸送層/無機アモ
ルファス質電子注入輸送層/陰極(6)陽極/有機質正
孔注入輸送層/発光層/無機アモルファス質電子注入輸
送層/陰極(7)陽極/無機アモルファス質正孔注入輸
送層/発光層/無機アモルファス質電子注入輸送層/陰
極 などを挙げることができる。
Typical examples of such device configurations include (1) anode/inorganic amorphous hole injection transport layer/light emitting layer/cathode (2) anode/inorganic amorphous hole injection transport layer/organic hole injection transport Layer/Emissive layer/Cathode (3) Anode/Inorganic amorphous hole injection transport layer/Emissive layer/Organic electron injection transport layer/Cathode (4) Anode/Emissive layer/Inorganic amorphous electron injection transport layer/Cathode (5) ! Pole/Emissive layer/Organic electron injection/transport layer/Inorganic amorphous electron injection/transport layer/Cathode (6) Anode/Organic hole injection/transport layer/Emissive layer/Inorganic amorphous electron injection/transport layer/Cathode (7) Anode/Inorganic Examples include an amorphous hole injection transport layer/light emitting layer/inorganic amorphous electron injection transport layer/cathode.

本発明の有機EL素子においては、さらに所望に応じ電
荷障壁層を設けることができる。この電荷障壁層は電子
障壁層として設けてもよいし、正孔障壁層として設けて
もよく、あるいはその両方として設けてもよい。該電荷
障壁層を設ける場所については、電荷障壁層が電子障壁
層の場合は、発光層と陽極との間、好ましくは発光層の
陽極側表面に接するように設けられ、一方正孔障壁層の
場合は、発光層と陰極との間、好ましくは発光層の陰極
側表面に接するように設けられる。
In the organic EL device of the present invention, a charge barrier layer can be further provided as desired. This charge barrier layer may be provided as an electron barrier layer, a hole barrier layer, or both. Regarding the location where the charge barrier layer is provided, when the charge barrier layer is an electron barrier layer, it is provided between the light emitting layer and the anode, preferably in contact with the anode side surface of the light emitting layer; In this case, it is provided between the light-emitting layer and the cathode, preferably in contact with the cathode-side surface of the light-emitting layer.

このような素子構成の代表的な例としては、(8)陽極
/無機アモルファス質正孔注入輸送層/電子障壁層/発
光層/陰極 (9)陽極/発光層/正孔障壁層/無機アモルファス質
電子注入輸送層/陰極 (10)陽極/無機アモルファス質正孔注入輸送層/電
子障壁層/発光層/正孔陣璧層/無機アモルファス質電
子注入輸送層/陰極 などを挙げることができる。
Typical examples of such device configurations include (8) anode/inorganic amorphous hole injection transport layer/electron barrier layer/emissive layer/cathode (9) anode/emissive layer/hole blocking layer/inorganic amorphous Examples include a solid electron injection transport layer/cathode (10) anode/inorganic amorphous hole injection transport layer/electron barrier layer/light emitting layer/hole barrier layer/inorganic amorphous electron injection transport layer/cathode.

前記構成の素子においては、いずれも基板に支持されて
いることが好ましく、該基板については特に制限はない
が、従来有機EL素子に慣用されているもの、例えばガ
ラス、透明プラスチック、石英などから成るものを用い
ることができる。
In the device having the above structure, it is preferable that each device is supported by a substrate, and the substrate is not particularly limited, but may be made of a material conventionally used in organic EL devices, such as glass, transparent plastic, quartz, etc. can be used.

次に、各構成要素について説明すると、無機アモルファ
ス質正孔注入輸送層(以下1aHTLと略称する)は、
無機物質のアモルファス質の薄膜であって、陽極から注
入された正孔を発光層又は有機質正孔注入輸送層まで伝
達する機能を有している。この層は単層であってもよい
し、たがいに別種の材料から成る複数の層を積層したも
のであってもよいが、正孔移動度が10−”crs”/
 V・S以上であることが望ましく、はとんどの水素化
アモルファス質膜はこれを満たしている。このI aH
TLの材料は正孔のキャリヤーをもつP型半導体であっ
て、そのイオン化エネルギーが、IaHTLに面する陽
極を形成する金属などの仕事関数と、発光層又は有機質
正孔注入輸送層のイオン化エネルギーとの間に位置する
ものが好ましく、特にイオン化エネルギーがこの条件を
満たし、かつ電気伝導度が10−’S/cmより大きい
P型半導体が好適である。
Next, to explain each component, the inorganic amorphous hole injection transport layer (hereinafter abbreviated as 1aHTL) is:
It is an amorphous thin film made of an inorganic substance, and has the function of transmitting holes injected from the anode to a light emitting layer or an organic hole injection transport layer. This layer may be a single layer or a stack of multiple layers made of different materials, but the hole mobility is 10-"crs"/
It is desirable that it be equal to or higher than V·S, and most hydrogenated amorphous films satisfy this requirement. This IaH
The material of the TL is a P-type semiconductor with hole carriers, and its ionization energy is determined by the work function of the metal forming the anode facing the IaHTL and the ionization energy of the light emitting layer or the organic hole injection transport layer. A P-type semiconductor whose ionization energy satisfies this condition and whose electrical conductivity is greater than 10-'S/cm is particularly preferred.

このような材料としては、例えばP型a−8i。An example of such a material is P-type a-8i.

P型a−5iC,a−5i、、N、% a  Cなどが
挙げられるが、これらの中で特に価電子制御ができ、か
つ電気伝導度が10−’S/cm以上が可能であるP型
a−3i及びP型a−5tCが好適である〔「エネルギ
ー(Energy)J第1巻、第125ページ(198
2午)「ソリッド・スティソ・コミュニュケーション(
Solid  StateCommun、)J第17巻
、第1193ページ(1975年)]。このP型a−S
i及びP型a−5iCは、イオン化エネルギーが5.3
eV程度であって、I aHTLに面する陽極を形成す
る金属などの仕事関数と発光層又は有機質正孔注入輸送
層のイオン化エネルギーの間に位置する(1986午応
用物理学会講演会予稿集27a−8−1)。
Examples include P-type a-5iC, a-5i, N, %aC, etc. Among these, P type which can control valence electrons and has electrical conductivity of 10-'S/cm or more Type a-3i and P type a-5tC are preferred [Energy J Vol. 1, p. 125 (198
2pm) “Solid Stiso Communication (
Solid State Commun, ) J vol. 17, p. 1193 (1975)]. This P type a-S
i and P type a-5iC have ionization energy of 5.3
eV, which is located between the work function of the metal forming the anode facing the IaHTL and the ionization energy of the light emitting layer or organic hole injection transport layer (1986 Society of Applied Physics Conference Proceedings 27a- 8-1).

このようなI aHTLを用いた素子は、これを用いな
いものに比べて、より低電圧で発光層又は有機質正孔注
入輸送層に正孔を多く注入することが可能である。これ
は次に示す理由による。ずなわち、陽極より発光層内に
正孔を注入する際にはエネルギー障壁が存在し、また、
陽極より有機質正孔注入輸送層内に注入する際にもエネ
ルギ・−障壁が存在するが、この場合、発光層に直接注
入するより該障壁は軽減される。IaHTLはこのよう
な有機質正孔注入輸送層と同様な効果をもつが、さらに
、陽極に面する付近のIaHTLを特に低抵抗化したり
、陽極にオーミック接合の金属を用いることにより、接
触抵抗が小さい状態で正孔をIaHTL内に注入するこ
とができるという、絶縁体又はこれに近い有機質正孔注
入輸送層では不可能な効果を発揮する。さらに、IaH
TL内を電界により輸送された正孔は発光層又は有機質
正孔注入輸送層との界面に到達する。この界面にもエネ
ルギー障壁が存在するが、IaHTLimP型半導体を
用いた場合には、電圧降下はIa、HTLではほとんど
起こらず、高抵抗層である発光層又は有機質正孔注入輸
送層で起こるので、前記界面に高い電界を形放しやすく
なり、正孔の注入効率が向上し、駆動電圧は低下する。
A device using such IaHTL can inject more holes into a light emitting layer or an organic hole injection transport layer at a lower voltage than a device that does not use IaHTL. This is due to the following reasons. In other words, there is an energy barrier when injecting holes from the anode into the light emitting layer, and
An energy barrier also exists when injecting from the anode into the organic hole injection transport layer, but in this case, the barrier is reduced compared to direct injection into the light emitting layer. IaHTL has the same effect as such an organic hole injection transport layer, but the contact resistance can be reduced by making the resistance of the IaHTL near the anode particularly low, and by using an ohmic contact metal for the anode. It exhibits an effect that holes can be injected into the IaHTL in a state that is impossible with an insulator or an organic hole injection transport layer similar thereto. Furthermore, IaH
Holes transported within the TL by the electric field reach the interface with the light emitting layer or the organic hole injection transport layer. An energy barrier also exists at this interface, but when using an IaHTLimP-type semiconductor, voltage drop hardly occurs in Ia and HTL, but occurs in the light emitting layer or organic hole injection transport layer, which is a high resistance layer. It becomes easier to release a high electric field at the interface, improving hole injection efficiency and lowering the driving voltage.

このように、IaHTLを用いた素子は、これを用いな
い素子に比べて、より低い駆動電圧で、発光層又は有機
質正孔注入輸送層に正孔を多く注入することができるが
、特に該1aHTLとしてP型a−3tやP型a−3i
Cを用いI;場合、その効果は顕著でおる。さらに、該
IaHTLに用いられる無機アモルファス質は薄膜形成
性に優れているので、これを用いf;Iaf(TLIま
ピンホールが生威しにくく、大面積の素子においてもピ
ンホールによる好ましくない事態の招来を抑えることが
できる上、表面硬度などの機械的強度に優れるなどのメ
リットもある。
In this way, the device using IaHTL can inject more holes into the light emitting layer or the organic hole injection transport layer at a lower driving voltage than the device not using IaHTL. As P type a-3t and P type a-3i
When using C and I, the effect is significant. Furthermore, since the inorganic amorphous material used in the IaHTL has excellent thin film forming properties, it is difficult to generate pinholes in f;Iaf(TLI), and even in large-area devices, undesirable situations caused by pinholes can be prevented. It has the advantage of not only being able to suppress the occurrence of corrosion, but also having excellent mechanical strength such as surface hardness.

一方、電子障壁層は発光層より陽極側に出ていこうとす
る電子を発光層内に留める役割を有しており、該電子障
壁層を発光層・とIaHTL間のいずれかに、好ましく
は発光層の陽極側表面に接するように設けることによっ
て、素子の発光効率が向上する。この電子障壁層は、そ
の電子の移動度が発光層のそれより劣る層であるか、又
は発光層の電子親和力より小さい電子親和力をもつ層で
あることが好ましい。
On the other hand, the electron barrier layer has the role of keeping electrons that try to exit from the light emitting layer to the anode side within the light emitting layer, and the electron barrier layer is preferably placed between the light emitting layer and the IaHTL. By providing it in contact with the anode side surface of the layer, the light emitting efficiency of the device is improved. This electron barrier layer is preferably a layer whose electron mobility is inferior to that of the light-emitting layer, or a layer having an electron affinity smaller than that of the light-emitting layer.

このような電子障壁層の好ましい例としては、トリフェ
ニルジアミン系化合物から成る層や〔「アプライド・フ
ィズイクス・レターズ(A、ppl、Phys、Let
t、)J第51巻、第913ページ(1987午)〕、
芳香族第三級アミン系化合物の正孔注入輸送層(特開昭
59−194393号公報、同63−295695号公
報)などが開示されている。
Preferred examples of such an electron barrier layer include a layer made of a triphenyldiamine compound and [Applied Phys.
t,) J Vol. 51, page 913 (1987 noon)],
Hole injecting and transporting layers made of aromatic tertiary amine compounds (Japanese Patent Application Laid-open Nos. 59-194393 and 63-295695) have been disclosed.

これらは電子を輸送しないことで障壁として作用する。These act as barriers by not transporting electrons.

また、本発明者らは、無機アモルファス質であるa−3
it−、C,(0,5<x<1)やa −S t +−
wN++ (0,4<x)から成る層であって、特にこ
の層の電子親和力が発光層の電子親和力よりも小さくな
るように該Xの値を定めるか、作製条件の範囲を決めて
得られたものが電子障壁層として好ましいこと、そして
該無機アモルファス質がa−5rl−Nwの場合には、
特に好ましいXの値は0.47より大きく、かつ0.5
7未満の範囲に存在することを見い出した。なお、この
電子障壁層に用いられる無機アモルファス質はP型の半
導体である必要はない。
In addition, the present inventors have discovered that a-3, which is an inorganic amorphous material,
it-, C, (0,5<x<1) or a-S t +-
A layer consisting of wN++ (0,4<x), which can be obtained by determining the value of X so that the electron affinity of this layer is smaller than that of the light emitting layer, or by determining the range of production conditions. is preferable as an electron barrier layer, and when the inorganic amorphous material is a-5rl-Nw,
Particularly preferred values of X are greater than 0.47 and 0.5
It was found that it exists in a range of less than 7. Note that the inorganic amorphous material used for this electron barrier layer does not need to be a P-type semiconductor.

このような無機アモルファス質から成る電子障壁層は、
そのイオン化エネルギーとして、(1)IaHTLのイ
オン化エネルギーと、IaHTL以外の電子障壁層に面
する発光層などの層のイオン化エネルギ・−との間の値
を有するもの、及び(2)IaHTL以外の電子障壁層
に面する発光層などの層のイオン化エネルギーより大き
な値をもつもの、の2種に分けることができる。
The electron barrier layer made of such an inorganic amorphous material is
The ionization energy of the ionization energy is between (1) the ionization energy of IaHTL and the ionization energy of a layer such as a light-emitting layer facing an electron barrier layer other than IaHTL, and (2) electrons other than IaHTL. It can be divided into two types: those having a value larger than the ionization energy of the layer such as the light-emitting layer facing the barrier layer.

前記(1)型の電子障壁層においては、i極/IaHT
L/電子障壁層/発光層などの順番でイオン化エネルギ
ーが大きくなり、正孔が注入されやすいが、該電子障壁
層の正孔の移動度は10 ””cm”/ V−5より大
きいことが好ましい。
In the electron barrier layer of type (1), the i-pole/IaHT
Ionization energy increases in the order of L/electron barrier layer/light emitting layer, etc., and holes are likely to be injected, but the hole mobility of the electron barrier layer may be greater than 10 cm/V-5. preferable.

この種の電子障壁層はIaHTLの一部とみなすことも
できる。一方、前記(2)型の電子障壁層においては、
正孔がこの層をトンネルするように膜厚を定めることが
望ましく、該膜厚は20nm以下が特に好ましい。
This kind of electron barrier layer can also be considered as part of the IaHTL. On the other hand, in the electron barrier layer of type (2),
It is desirable to set the film thickness so that holes tunnel through this layer, and the film thickness is particularly preferably 20 nm or less.

前記の素子構成における無機アモルファス質電子注入輸
送層(以下、IaETLと略記する)は、無機物質のア
モルファス質の薄膜であって、電極より注入された電子
を発光層又は有機質電子注入輸送層まで伝達する機能を
有している。この層は単層であってもよいし、たがいに
別種の材料から成る複数の層を積層したものであっても
よいが、電子移動度がI Q −”c1/ V−S以上
であることが望ましく、はとんどの水素化アモルファス
質膜は、これを満たしている。
The inorganic amorphous electron injection transport layer (hereinafter abbreviated as IaETL) in the above device configuration is an amorphous thin film made of an inorganic material, and transmits electrons injected from the electrode to the light emitting layer or the organic electron injection transport layer. It has the function of This layer may be a single layer or may be a stack of multiple layers made of different materials, but the electron mobility must be IQ-"c1/V-S or higher. is desirable, and most hydrogenated amorphous films satisfy this requirement.

このIaETLの材料は電子のキャリヤーをもつN型半
導体であって、その電子親和力がIaETLに面する陰
極を形成する金属松どの仕事関数と、発光層又は有機質
電子注入輸送層の電子親和力との間に位置するものが好
ましく、特に電子親和力がこの条件を満たし、かつ電気
伝導度が10″′lS/crRより大きいN型半導体が
好適である。
The material of this IaETL is an N-type semiconductor with electron carriers, and its electron affinity is between the work function of the metal pin that forms the cathode facing the IaETL and the electron affinity of the light-emitting layer or the organic electron injection and transport layer. An N-type semiconductor whose electron affinity satisfies this condition and whose electrical conductivity is greater than 10''lS/crR is particularly preferable.

このような材料としては、例えばN型a−5i。An example of such a material is N-type a-5i.

N型a−5iC,a−5i、、N、、a−Cなどが挙げ
られるが、これらの中で特に価電子制御ができ、かつ電
気伝導度が10−’S/cm以上が可能であるN型a−
5i及びN型a−5iCが好適である[「エネルギー(
Energy)J第1巻、第125ページ(1982年
、)「ソリッド・スティソ・コミュニュケーション(S
olidState  Commun、)J第17巻、
第1193ページ(1975午)]。このN型a−3i
及びN型a−3iCは、電子親和力が3.4〜3.7e
V程度であって、IaETLに面する陰極を形成する金
属などの仕事関数と発光層又は有機質電子注入輸送層の
電子親和力との間に位置する(19J36午応用物理学
会講演会予稿集27a−3−1)。
Examples include N-type a-5iC, a-5i, N, a-C, among which valence electron control is particularly possible and electrical conductivity of 10-'S/cm or more is possible. N type a-
5i and N-type a-5iC are preferred [“Energy (
Energy) J Vol. 1, p. 125 (1982) "Solid Stiso Communication (S
solidState Commun, ) J Volume 17,
Page 1193 (1975 noon)]. This N type a-3i
and N-type a-3iC has an electron affinity of 3.4 to 3.7e
V, and is located between the work function of the metal forming the cathode facing the IaETL and the electron affinity of the light-emitting layer or the organic electron injection transport layer (19J36, Proceedings of the Japan Society of Applied Physics Conference 27a-3 -1).

このようなIaETL内用いた素子は、用いないものに
比べて、より低電圧で発光層又は有機質電子注入輸送層
に電子を多く注入することが可能である。これは次に示
す理由による。すなわち、陰極より発光層内に電子を注
入する際にはエネルギー障壁が存在し、また、陰極より
有機質電子注入輸送層内に注入する際にもエネルギー障
壁が存在するが、この場合、発光層に直接注入するより
該障壁は軽減される。IaETLはこのような有機質電
子注入輸送層と同様な効果をもつが、さらに、陰極に面
する付近のIaETLを特に低抵抗化したり、陰極にI
aETLにオーミック接合する金属を用いることにより
、接触抵抗が小さい状態で電子をIaETL内に注入す
ることができるという、絶縁体又はこれに近い有機質電
子注入輸送層では不可能な効果を発揮する。さらに、I
aETL内を電界により輸送されt;電子は発光層又は
有機質電子注入輸送層との界面に到達する。この界面に
もエネルギー障壁が存在するが、IaETLにN型半導
体を用いた場合には、電圧降下はIaETLではほとん
ど起こらず、高抵抗層である発光層又は有機質電子注入
輸送層で起こるので、前記界面に高い電界を形成しやす
くなり、電子の注入効率が向上する。
An element used in such an IaETL can inject more electrons into a light emitting layer or an organic electron injection transport layer at a lower voltage than an element that is not used. This is due to the following reasons. That is, an energy barrier exists when electrons are injected from the cathode into the emissive layer, and an energy barrier also exists when injected from the cathode into the organic electron injection transport layer. The barrier is reduced compared to direct injection. IaETL has the same effect as such an organic electron injection transport layer, but in addition, the resistance of the IaETL near the cathode can be particularly reduced, or IaETL can be applied to the cathode.
By using a metal that makes an ohmic contact with the aETL, electrons can be injected into the IaETL with low contact resistance, an effect that is impossible with an insulator or an organic electron injection transport layer similar thereto. Furthermore, I
Electrons are transported within the aETL by an electric field and reach the interface with the light-emitting layer or the organic electron injection and transport layer. An energy barrier also exists at this interface, but when an N-type semiconductor is used for the IaETL, voltage drop hardly occurs in the IaETL, but occurs in the light-emitting layer or organic electron injection transport layer, which is a high resistance layer. It becomes easier to form a high electric field at the interface, improving electron injection efficiency.

このように、IaETLを用いた素子は、これを用いな
い素子に比べて、より低い駆動電圧で、発光層又は有機
質電子注入輸送層に電子を多く注入することができるが
、特に該1aETLとしてN型a−5iやN型a−Si
Cを用いた場合、その効果は顕著である。また、前記低
抵抗部分のIaETLとしてN+型a−8i、これに対
するオーミック電極としてAilなどが挙げられる。さ
らに、該1aETLに用いられる無機アモルファス質は
薄膜形成性゛に優れているので、これを用いたIaET
Lはピンホールが生威しに<<、大面積の素子において
もピンホールによる好ましくない事態の招来を抑えるこ
とができる上、表面硬度などの機械的強度に優れるなど
のメリットもある。
In this way, a device using IaETL can inject more electrons into the light emitting layer or organic electron injection transport layer at a lower driving voltage than a device not using IaETL. Type a-5i and N type a-Si
When C is used, the effect is remarkable. Furthermore, N+ type a-8i may be used as the IaETL of the low resistance portion, and Ail may be used as the ohmic electrode for this. Furthermore, since the inorganic amorphous material used in the 1aETL has excellent thin film forming properties, the IaETL using this
L has the advantage of being able to prevent pinholes from occurring even in large-area devices, as well as being superior in mechanical strength such as surface hardness.

一方、正孔障壁層は発光層より陰極側に出ていこうとす
る正孔を発光層内に留める役割を有しており、該正孔障
壁層を発光層とIaETL間のいずれかに、好ましくは
発光層の陰極側表面に接するように設けることによって
、素子の発光効率が向上する。この正孔障壁層は、その
正孔移動度が発光層のそれより劣る層であるか、又は発
光層のイオン化エネルギーより小さい層であることが好
ましい。
On the other hand, the hole blocking layer has a role of retaining holes in the light emitting layer that try to exit from the light emitting layer to the cathode side, and the hole blocking layer is preferably placed somewhere between the light emitting layer and the IaETL. By providing it in contact with the cathode side surface of the light emitting layer, the light emitting efficiency of the device is improved. This hole blocking layer is preferably a layer whose hole mobility is inferior to that of the light-emitting layer, or a layer whose ionization energy is lower than that of the light-emitting layer.

本発明者らは、このような正孔障壁層として、無機アモ
ルファス貿であるa−5iCであってN型のものが正孔
の移動度が小さく、好ましいことを見い出した。まt:
a−5it□N1(o 、 4 (x < 0 、57
 )から成る絶縁的な層であって、特に正孔障壁層のイ
オン化エネルギーが発光層のイオン化エネルギーよりも
大きくなるように、該Xの値を定めるか、作製条件の範
囲を決めて得られたものが好ましいことも見い出した。
The present inventors have found that N-type a-5iC, which is an inorganic amorphous material, is preferable as such a hole blocking layer because it has low hole mobility. Mat:
a-5it□N1(o, 4 (x < 0, 57
), in which the value of X is determined or the range of manufacturing conditions is determined so that the ionization energy of the hole blocking layer is greater than the ionization energy of the light emitting layer. I also found that things are preferable.

なお、この種の正孔障壁層に用いられる無機アモルファ
ス質はN型の半導体である必要はない。
Note that the inorganic amorphous material used for this type of hole blocking layer does not need to be an N-type semiconductor.

このような無機アモルファス質から成る正孔障壁層は、
その電子親和力として、(1)IaETLの電子親和力
と、IaETL以外の正孔障壁層に面する発光層などの
層の電子親和力との間の値を有するもの、及び(2)I
 aETL以外の正孔障壁層に面する発光層などの層の
電子親和力より小さな値をもつもの、の2種に分けるこ
とができる。前記(1)型の正孔障壁層においては、陰
極/IaETL/正孔障壁層/発光層などの順番で電子
親和力が小さくなり、電子が注入されやすいが、該正孔
障壁層の電子の移動度はL O−”cが/V・Sより大
きいことが好ましい。
A hole blocking layer made of such an inorganic amorphous material is
As for its electron affinity, (1) one having a value between the electron affinity of IaETL and the electron affinity of a layer such as a light emitting layer facing a hole blocking layer other than IaETL, and (2) IaETL.
It can be divided into two types: those having a value smaller than the electron affinity of a layer such as a light emitting layer facing a hole blocking layer other than aETL. In the hole blocking layer of type (1), the electron affinity decreases in the order of cathode/IaETL/hole blocking layer/light emitting layer, etc., and electrons are easily injected, but the movement of electrons in the hole blocking layer It is preferable that the degree L O-"c is larger than /V·S.

この種の正孔障壁層はIaETLの一部とみなすことも
できる。一方、前記(2)型の正孔障壁層においては、
電子がこの層をトンネルするように膜厚を定めることが
望ましく、該膜厚は20nm以下が特に好ましい。
This kind of hole blocking layer can also be considered as part of the IaETL. On the other hand, in the hole blocking layer of type (2),
It is desirable to set the film thickness so that electrons tunnel through this layer, and the film thickness is particularly preferably 20 nm or less.

前記無機アモルファス質薄膜の作製方法としては公知の
方法、例えばプラズマCVD法、ECRプラズマCVD
法、光CVD法などによって、Hl、StHいC1(、
、C,)i、、N)i、などのガスから作製する方法を
用いることができる。例えば、a−5iCはH2、Si
HいCHaのガスより前記方法で作製することができる
し、また、a−5iCやa−8tなどで価電子制御を行
い、電気伝導度を制御する場合は、通常BAHいPH3
などのガスを加えて薄膜を形成させ、a−SiCやa−
SiCの膜中にBやPなどをドープする方法がとられる
。Bドーグの場合はP型、Pドープの場合はN型の半導
体が得られる。
The method for producing the inorganic amorphous thin film is a known method such as plasma CVD method, ECR plasma CVD method, etc.
Hl, StHCl (,
, C,)i, ,N)i, and the like can be used. For example, a-5iC is H2, Si
It can be produced using the above method from HCHa gas, and when controlling the electrical conductivity by controlling the valence electrons with a-5iC or a-8t, it is usually produced using BAHCHa gas.
A thin film is formed by adding a gas such as a-SiC or a-
A method of doping B, P, etc. into the SiC film is used. In the case of B-dope, a P-type semiconductor is obtained, and in the case of P-doped, an N-type semiconductor is obtained.

通常、前記のSiHいCH,、CtHhN Hsのガス
は、水素ガスにより10%程度に希釈した状態で用いら
れ、また、B、H,、PH3は500ppm程度にまで
希釈した状態で用いられ、マス70−制御器を通して、
原料ガス混合物の混合比、圧力などを調製し、CVD炉
内に導入される。
Usually, the SiH, CH, CtHhN Hs gases mentioned above are used diluted to about 10% with hydrogen gas, and B, H, and PH3 are used diluted to about 500 ppm. 70 - Through the controller,
The mixture ratio, pressure, etc. of the raw material gas mixture are adjusted and introduced into the CVD furnace.

その後、高周波、光、放電などでエネルギーを与え、炉
内ガスを分解すれば、基板の上に薄膜が形成される。こ
の際、基板は適切な基板温度に設定され、また、薄膜の
生成速度は作製法、原料の種類、作製条件などにより異
なるが、通常0.1〜10nm/分の範囲で選ばれる。
After that, energy is applied using radio frequency, light, electric discharge, etc. to decompose the gas in the furnace, and a thin film is formed on the substrate. At this time, the substrate is set at an appropriate substrate temperature, and the thin film production rate varies depending on the production method, type of raw material, production conditions, etc., but is usually selected in the range of 0.1 to 10 nm/min.

本発明の有機EL素子における陽極としては、仕事関数
の大きい(4eV以上)金属、合金、電気伝導性化合物
及びこれらの混合物を電極物質とするものが好ましく用
いられる。このような電極物質の具体例としては、Au
などの金属、Cul、ITOlSnO,、ZnOなどの
導電性透明材料が挙げられる。該陽極は、これらの電極
物質を蒸着やスパッタリングなどの方法により、薄膜を
形成させることにより作製することができる。この電極
より発光を取り出す場合には、透過率を10%より大き
くすることが望ましく、また、電極としてのシート抵抗
は数百0/口以下が好ましい。
As the anode in the organic EL device of the present invention, an electrode material containing a metal, an alloy, an electrically conductive compound, or a mixture thereof having a large work function (4 eV or more) is preferably used. A specific example of such an electrode material is Au.
Examples include metals such as Cu, ITO, SnO, and conductive transparent materials such as ZnO. The anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. When emitting light from this electrode, it is desirable that the transmittance be greater than 10%, and the sheet resistance of the electrode is preferably several hundred 0/port or less.

さらに、膜厚は材料にもよるが、通常500nm以下、
好ましくは10〜200nmの範囲で選ばれる。
Furthermore, although the film thickness depends on the material, it is usually 500 nm or less,
Preferably it is selected within the range of 10 to 200 nm.

一方、陰極としては、仕事関数の小さい(4eV以下)
金属、合金、電気伝導性化合物及びこれらの混合物を電
極物質とするものが用いられる。このような電極物質の
具体例としては、ナトリウム、ナトリウム−カリウム合
金、マグネシウム、リチウム、マグネシウム/#4混合
物、A ll A no z、イッテルビウム、インジ
ウムなどが挙げられる。該陰極は、これらの電極物質を
蒸着やスパッタリングなどの方法により、薄膜を形成さ
せることにより、作製することができる。また、電極と
してのシート抵抗は数百07口以下が好ましく、膜厚は
通常500nm以下、好ましくは10〜200nmの範
囲で選ばれる。なお、本発明の素子においては、該陽極
又は陰極のいずれか一方が透明又は半透明であることが
発光を透過し、取り出す効率が良いので好ましい。
On the other hand, as a cathode, it has a small work function (4 eV or less).
Electrode materials made of metals, alloys, electrically conductive compounds, and mixtures thereof are used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium/#4 mixture, All A no z, ytterbium, indium, and the like. The cathode can be manufactured by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. Further, the sheet resistance of the electrode is preferably several hundreds of nanometers or less, and the film thickness is usually selected to be 500 nm or less, preferably in the range of 10 to 200 nm. In the element of the present invention, it is preferable that either the anode or the cathode be transparent or semi-transparent, since this allows light to pass through and extract the light with good efficiency.

本発明の有機EL素子における発光層は、固体状態で蛍
光性を有する有機化合物から成る厚さ5nmないし5μ
m程度の薄膜状のものであって、(1)を界印加時に、
陽極又は正孔注入輸送層より正孔を注入することができ
、かつ陰極又は電子注入輸送層より電子を注入すること
ができる注入機能、(2)注入した電荷(電子と正孔)
を電界の力で移動させる輸送機能、(3)電子と正孔の
再結合の場を提供し、これを発光につなげる発光機能な
どを有している。なお、正孔の注入されやすさと、電子
の注入されやすさに違いがあってもよいし、正孔と電子
の移動度で表される輸送機能に大小があってもよいが、
どちらか一方の電荷を移動することが好ましい。
The light-emitting layer in the organic EL device of the present invention is made of an organic compound that has fluorescence in a solid state and has a thickness of 5 nm to 5 μm.
It is a thin film of about m, and when (1) is applied with a field,
Injection function that can inject holes from the anode or hole injection transport layer and electrons from the cathode or electron injection transport layer, (2) Injected charges (electrons and holes)
(3) provides a field for recombination of electrons and holes, which leads to light emission; and (3) a light-emitting function. Note that there may be a difference in the ease with which holes are injected and the ease with which electrons are injected, and there may be differences in the transport function expressed by the mobility of holes and electrons.
It is preferable to move one of the charges.

前記の注入機能において、発光層のイオン化エネルギー
は、適当な陽極材料を選べば比較的正孔を注入しやすい
点から、6.OeV以下であることが好ましく、一方電
子親和力は、適当な陰極材料を選べば比較的電子を注入
しやすい点から、2.5eV以上であることが好ましい
。また、前記発光機能については、固体状態蛍光性が強
いことが望ましい。これは、このような発光層はそれを
形成する化合物自体、化合物の会合体又は結晶などの励
起状態を光に変換する能力が大きいからである。
In the above-mentioned injection function, the ionization energy of the light emitting layer is 6. from the point that it is relatively easy to inject holes if an appropriate anode material is selected. It is preferable that the electron affinity is OeV or less, while the electron affinity is preferably 2.5 eV or more because it is relatively easy to inject electrons if an appropriate cathode material is selected. Further, regarding the light emitting function, it is desirable that solid state fluorescence is strong. This is because such a light-emitting layer has a large ability to convert the excited state of the compound itself, an aggregate of compounds, or a crystal forming the layer into light.

本発明の有機EL素子における発光層に用いられる有機
化合物については、前記の性質を有する薄膜形成性のも
のであれば、特に制限はなく、従来公知の化合物の中か
ら任意のものを選択して用いることができる。該有機化
合物としては、例えば多環縮合芳香族化合物、ベンゾチ
アゾール系、ベンゾイミダゾール系、ベンゾオキサゾー
ル系などの蛍光増白剤、金属キレート化オキシノイド化
合物、スチリルベンゼン系化合物などを用いることがで
きる。
The organic compound used in the light emitting layer of the organic EL device of the present invention is not particularly limited as long as it has the properties described above and is capable of forming a thin film, and any compound may be selected from conventionally known compounds. Can be used. Examples of the organic compound that can be used include polycyclic fused aromatic compounds, benzothiazole-based, benzimidazole-based, benzoxazole-based fluorescent brighteners, metal chelated oxinoid compounds, styrylbenzene-based compounds, and the like.

前記多環縮合芳香族化合物としては、例えばアンスラセ
ン、ナフタレン、フェナンスレン、ピレン、クリセン、
ペリレン骨格を含む縮合環発光物質や、約8個の縮合環
を含む他の縮合環発光物質などを挙げることができる。
Examples of the polycyclic fused aromatic compound include anthracene, naphthalene, phenanthrene, pyrene, chrysene,
Examples include fused ring luminescent substances containing a perylene skeleton and other fused ring luminescent substances containing about 8 fused rings.

まl;、前記多糸の蛍光増白剤としては、例えば特開昭
59−194393号公報に記載のものを用いることが
でき、その代表例としては、2.5−ビス(5,7−ジ
ーt−ペンチル−2−ベンゾオキサシリル)−1,3,
4−チアジアゾール、4.4′−ビス(5,7−t−ペ
ンチルー2−ベンゾオキサシリル)スチルベン、4.4
′−ビス〔5,7−ジー(2−メチル−2−ブチル)−
2−ベンゾオキサシリル〕スチルベン、2,5−ビス(
5,7−ジーt−ペンチル−2−ベンゾオキサシリル)
チオフェン、2.5−ビス(5−(α、σ−ジメチルベ
ンジル2−ベンゾオキサシリルフチオフエン、2.5−
ビス〔5,7ージー(2−メチル−2−ブチル)−2−
ベンゾオキサシリル)−3.4−ジフェニルチオフェン
、2.5−ビス(5−メチル−2−ベンゾオキサシリル
)チオフェン、4.4’−ビス(2−ベンゾオキサシリ
ル)ビフェニル、5−メチル− 2 −(2 − [4
−(5−メチル−2−ベンゾオキサシリル)フェニル]
 ビニル〕ベンゾオキサ/−ル、2−(2−(4−クロ
ロフェニル)ビニル〕ナフト(1,2−d)オキサゾー
ルなどのベンゾオキサゾール系、2.2’−(1)−7
エニレンジビニレン)−ビスベンゾチアゾールなどのベ
ンゾチアゾール系、2− (2− [4− (2−ベン
ゾイミダゾリル)フェニル]ビニル〕ペンゾイミタソー
ル、2 −(2−(4−カルボキシフェニル)ビニル〕
ベンゾイミダゾールなどのベンゾイミダゾール系などの
蛍光増白剤が挙げられる。
As the multi-filament fluorescent whitening agent, for example, those described in JP-A-59-194393 can be used, and a representative example thereof is 2,5-bis(5,7- di-t-pentyl-2-benzoxasilyl)-1,3,
4-thiadiazole, 4.4'-bis(5,7-t-pentyl-2-benzoxasilyl)stilbene, 4.4
'-Bis[5,7-di(2-methyl-2-butyl)-
2-benzoxasilyl]stilbene, 2,5-bis(
5,7-di-t-pentyl-2-benzoxasilyl)
Thiophene, 2.5-bis(5-(α,σ-dimethylbenzyl 2-benzooxacylylphthiophene, 2.5-
Bis[5,7-di(2-methyl-2-butyl)-2-
benzoxacylyl)-3,4-diphenylthiophene, 2,5-bis(5-methyl-2-benzoxasilyl)thiophene, 4,4'-bis(2-benzoxasilyl)biphenyl, 5-methyl-2 −(2 − [4
-(5-methyl-2-benzoxasilyl)phenyl]
benzoxazole series such as 2-(2-(4-chlorophenyl)vinyl)naphtho(1,2-d)oxazole, 2.2'-(1)-7
benzothiazole series such as (enylene divinylene)-bisbenzothiazole, 2-(2-[4-(2-benzimidazolyl)phenyl]vinyl]penzimitasole, 2-(2-(4-carboxyphenyl)vinyl))
Examples include benzimidazole-based fluorescent brighteners such as benzimidazole.

前記金属キレート化オキシノイド化合物としては、例え
ば特開昭63−295695号公報記載のものを用いる
ことができる。その代表例としては、トリス(8−キノ
リツール)アルミニウム、ビス(8−キノリツール)マ
グネシウム、ビス(ベンゾ[fl−8−キノリツール)
亜鉛、ビス(2−メチル−8−キノリノラード)アルミ
ニラムオキシド、トリス(8−キノリツール)インジウ
ム、トリス(5−メチル−8−キノリツール)アルミニ
ウム、8−キノリツールリチウム、トリス(5−クロロ
−8−キノリツール)ガリウム、ビス(5−クロロ−8
−キノリツール)カルシウム、ポリ〔亜鉛(■)−ビス
(8−ヒドロキシ−5−キノリノニル)メタン〕などの
8−ヒドロキシキノリン系金属錯体やジリチウムエビン
ドリジオンなどが挙げられる。
As the metal chelated oxinoid compound, for example, those described in JP-A-63-295695 can be used. Representative examples include tris(8-quinolitool)aluminum, bis(8-quinolitool)magnesium, bis(benzo[fl-8-quinolitool)
Zinc, bis(2-methyl-8-quinolinolade)aluminum oxide, tris(8-quinolitor)indium, tris(5-methyl-8-quinolitor)aluminum, 8-quinolitorium, tris(5-chloro-8 -quinolitool) gallium, bis(5-chloro-8
Examples include 8-hydroxyquinoline metal complexes such as calcium, poly[zinc (■)-bis(8-hydroxy-5-quinolinonyl)methane], and dilithium evindridione.

また、前記スチリルベンゼン系化合物としては、例えば
平戊元午2月10日、本出願人の出願である発明の名称
「薄膜エレクトロルミネッセンス素子」の明細書に記載
のものを用いることができる。
Further, as the styrylbenzene-based compound, for example, those described in the specification of the invention titled "Thin Film Electroluminescent Device" filed by the present applicant on February 10, 2016 can be used.

その代表例としては、次に示す構造の化合物を挙げるこ
とができる。
Typical examples thereof include compounds having the structure shown below.

II、C0 CU3 [1,C ’AsCt a、CO +13c。II, C0 CU3 [1,C 'AsCt a.C.O. +13c.

B、CO tCt ((U、]、C l3C0 OCR。B.C.O. tCt ((U,],C l3C0 OCR.

OCR。OCR.

C,[+。C, [+.

C(CL)s ■ LC ■バ1 H3 L H3 ■ 3C B、C H,C OC[+。C(CL)s ■ L.C. ■B1 H3 L H3 ■ 3C B, C H,C OC[+.

OC[l。OC[l.

しlI3 B’ 、 C0 さらに、前記化合物以外に、例えば12−7タロベリノ
ン〔「ジャーナル・オプ・アプライド・フイズイクスぐ
J、Appl、phys)J第27巻、L713(19
88年)]、スチルベン系化合物(特願昭62−312
356号、同63−80257号、同63−31393
2号、同63−308859号)、クマリン系化合物(
平戊元午1月20日、本出願人の出願である発明の名称
「薄膜有機EL素子」)なども発光層に用いることがで
きる。
Furthermore, in addition to the above compounds, for example, 12-7 taloberinone [Journal of Applied Physics J, Appl, Phys. J Vol. 27, L713 (19
1988)], stilbene compounds (patent application 1988-312)
No. 356, No. 63-80257, No. 63-31393
No. 2, No. 63-308859), coumarin compounds (
The invention filed by the present applicant on January 20th, 2017 (named "Thin Film Organic EL Device") can also be used as the light-emitting layer.

前記有機化合物から成る発光層は、所望に応じ2層以上
の積層構造をとってもよいし、米国特許第4,769,
292明細書に開示されているように、ホスト物質と蛍
光物質とから形成されていてもよい。この場合ホスト物
質は薄膜状の層であって、発光層の機能のうち、注入輸
送機能及び発光機能の一部をうけもち、−力量光物質は
、該ホスト物質の層の中に微量(数モル%以下)存在さ
せ、電子と正孔の結合に応答して発光するといった発光
機能の一部のみを担っている。また、発光層に用いる有
機化合物は薄膜形成性を有しない化合物であってもよく
、例えば1.4−ジフェニル−1,3−ブタジェンや1
.1.4.4−テトラフェニル−1,3−ブタジェンな
ども用いることができる。
The light-emitting layer made of the organic compound may have a laminated structure of two or more layers as desired.
As disclosed in the No. 292 specification, it may be formed from a host material and a fluorescent material. In this case, the host substance is a thin film-like layer, which has some of the functions of the light-emitting layer, including the injection transport function and the light-emitting function. % or less) and plays only part of the light-emitting function of emitting light in response to the combination of electrons and holes. Further, the organic compound used in the light emitting layer may be a compound that does not have thin film forming properties, such as 1,4-diphenyl-1,3-butadiene and 1.
.. 1.4.4-Tetraphenyl-1,3-butadiene and the like can also be used.

これらの有機発光材料の薄膜化の方法としては、例えば
スピンコード法、キャスト法、LB法、蒸着法などがあ
るが、均質な膜が得られやすく、かつピンホールが生成
しにくいなどの点から、蒸着法が好ましい。該発光材料
の薄膜化に、この蒸着法を採用する場合、その蒸着条件
は、使用する発光層に用いる有機化合物の昇華温度、目
的とする薄膜の状態、例えば微結晶かアモルファスの選
択、結晶性、結晶の配向などにより異なるが、一般にボ
ート加熱温度50〜500℃、真空度10−’〜l O
−’P a、蒸着速度0.01〜50nm/sec、基
板温度−50−+300℃、膜厚5nmないし5μmの
範囲で適宜選ぶことが望ましい。
Methods for making thin films of these organic light-emitting materials include, for example, the spin-coding method, casting method, LB method, and vapor deposition method. , vapor deposition method is preferred. When this vapor deposition method is used to form a thin film of the luminescent material, the deposition conditions include the sublimation temperature of the organic compound used in the luminescent layer, the desired state of the thin film, such as selection of microcrystalline or amorphous, and crystallinity. Although it varies depending on the orientation of the crystal, etc., generally the boat heating temperature is 50 to 500°C, and the degree of vacuum is 10-' to lO
-'P a, a deposition rate of 0.01 to 50 nm/sec, a substrate temperature of -50 to +300°C, and a film thickness of 5 nm to 5 μm.

本発明のEL素子において、所望に応じて設けられる有
機質正孔注入輸送層は有機正孔伝達化合物から成る層で
あって、陽極より注入された正孔を発光層に伝達する機
能を有し、この正孔注入輸送層を陽極と発光層との間に
介在させることにより、より低い電界で多くの正孔が発
光層に注入され、その上、発光層に陰極又は電子注入輸
送層より注入された電子は、発光層と正孔注入輸送層の
界面に存在する電子の障壁により、この発光層内の界面
付近に蓄積され発光効率が向上するなど、発光性能の優
れた素子となる。
In the EL device of the present invention, the organic hole injection transport layer provided as desired is a layer made of an organic hole transport compound, and has a function of transmitting holes injected from the anode to the light emitting layer, By interposing this hole injection transport layer between the anode and the light emitting layer, many holes can be injected into the light emitting layer with a lower electric field, and moreover, more holes can be injected into the light emitting layer from the cathode or the electron injection transport layer. The emitted electrons are accumulated near the interface within the light emitting layer due to the electron barrier existing at the interface between the light emitting layer and the hole injection transport layer, resulting in an element with excellent light emitting performance, such as improved light emitting efficiency.

前記有機質正孔注入輸送層に用いられる有機正孔伝達化
合物は、電界を与えられた2個の電極間に配置されて陽
極から正孔が注入された場合、該正孔を適切に発光層へ
伝達しうる化合物であって、例えば電界印加時に、少な
くとも1、0−”cm”/ V−5の移動度をもつもの
が好適である。
The organic hole transport compound used in the organic hole injection transport layer is arranged between two electrodes to which an electric field is applied, and when holes are injected from the anode, the organic hole transport compound is used to properly transfer the holes to the light emitting layer. Compounds capable of transmitting, such as those having a mobility of at least 1,0-"cm"/V-5 when an electric field is applied, are preferred.

このような有機正孔伝達化合物については、前記の好ま
しい性質を有するものであれば特に制限はなく、従来、
光導伝材料において、正孔の電荷輸送材として慣用され
ているものやEL素子の正孔注入輸送層に使用される公
知のものの中から任意のものを選択して用いることがで
きる。該電荷輸送材としては、例えばトリアゾール誘導
体(米国特許第3,112,197号明細書などに記載
のもの)、オキサジアゾール誘導体(米国特許第3,1
89.447号明細書などに記載のもの)、イミダゾー
ル誘導体(特公昭37−16096号公報などに記載の
もの)、ボリアリールアルカン誘導体(米国特許第3.
615,402号明細書、同3,820,989号明細
書、同3,542,544号明細書、特公昭45−55
5号公報、同51−10983号公報、特開昭51−9
3224号公報、同55−17105号公報、同56−
4148号公報、同55−108667号公報、同55
−156953号公報、同56−36656号公報など
に記載のもの)、ピラゾリン誘導体及びピラゾロン誘導
体(米国特許第3,180,729号明細書、同4,2
78,746号明細書、特開昭55−88064号公報
、同55−88065号公報、同49−105537号
公報、同55−51086号公報、同56−80051
号公報、同56−88141号公報、同57−4554
5号公報、同54−112637号公報、同55−74
546号公報などに記載のもの)、フェニレンジアミン
誘導体(米国特許第3,615,404号明細書、特公
昭51−10105号公報、同46−3712号公報、
同47−25336号公報、特開昭54−53435号
公報、同54−110536号公報、同54−1199
25号公報などに記載のもの)、アリールアミン誘導体
(米国特許第3,567.450号明細書、同3.18
0,703号明細書、同3,240,597号明細書、
同3,658,520号明細書、同4.232,103
号明細書、同4,175,961号明細書、同4,01
2,376号明細書、特公昭49−35702号公報、
同39−27577号公報、特開昭55−144250
号公報、同56−119132号公報、同56−224
37号公報、***特許第1,110,518号明細書な
どに記載のもの)、アミノ置換カルコン誘導体(米国特
許第3,526,501号明細書などに記載のもの)、
オキサゾール誘導体(米国特許第3,257,203号
明細書などに記載のもの)、スチリルアントラセン誘導
体(特開昭56−46234号公報などに記載のもの)
、フルオレノン誘導体(特開昭54−110837号公
報などに記載のもの)、ヒドラゾン誘導体(米国特許第
3,717,462号明細書、特開昭54−59143
号公報、同55−52063号公報、同55−5206
4号公報、同55−46760号公報、同55−854
95号公報、同57−11350号公報、同57−14
8749号公報などに記載されているもの)、スチルベ
ン誘導体(特開昭61−210363号公報、同61−
228451号公報、同61−14642号公報、同6
1−72255号公報、同62−47646号公報、同
62−36674号公報、同62−10652号公報、
同62−30255号公報、同60−93445号公報
、同60−94462号公報、同60−174749号
公報、同6〇−175052号公報などに記載のもの)
などを挙げることができる。
There are no particular restrictions on such organic hole transport compounds as long as they have the above-mentioned preferable properties.
For photoconductive materials, any material can be selected from those commonly used as hole charge transport materials and known materials used in hole injection and transport layers of EL devices. Examples of the charge transport material include triazole derivatives (described in U.S. Pat. No. 3,112,197, etc.), oxadiazole derivatives (U.S. Pat. No. 3,1
89.447, etc.), imidazole derivatives (described in Japanese Patent Publication No. 37-16096, etc.), polyarylalkane derivatives (US Patent No. 3.
Specification No. 615,402, Specification No. 3,820,989, Specification No. 3,542,544, Japanese Patent Publication No. 45-55
Publication No. 5, Publication No. 51-10983, JP-A-51-9
Publication No. 3224, Publication No. 55-17105, Publication No. 56-
No. 4148, No. 55-108667, No. 55
-156953, US Pat. No. 56-36656), pyrazoline derivatives and pyrazolone derivatives (US Pat. No. 3,180,729, US Pat.
78,746 specification, JP 55-88064, JP 55-88065, JP 49-105537, JP 55-51086, JP 56-80051
Publication No. 56-88141, Publication No. 57-4554
Publication No. 5, Publication No. 54-112637, Publication No. 55-74
546), phenylenediamine derivatives (U.S. Patent No. 3,615,404, Japanese Patent Publication No. 51-10105, Japanese Patent Publication No. 46-3712,
JP 47-25336, JP 54-53435, JP 54-110536, JP 54-1199
25, etc.), arylamine derivatives (U.S. Pat. No. 3,567.450, U.S. Pat. No. 3.18)
Specification No. 0,703, Specification No. 3,240,597,
Specification No. 3,658,520, No. 4.232,103
Specification of No. 4,175,961, No. 4,01
Specification No. 2,376, Japanese Patent Publication No. 49-35702,
Publication No. 39-27577, JP-A-55-144250
No. 56-119132, No. 56-224
No. 37, West German Patent No. 1,110,518, etc.), amino-substituted chalcone derivatives (US Pat. No. 3,526,501, etc.),
Oxazole derivatives (described in U.S. Patent No. 3,257,203, etc.), styryl anthracene derivatives (described in JP-A-56-46234, etc.)
, fluorenone derivatives (described in JP-A-54-110837, etc.), hydrazone derivatives (US Pat. No. 3,717,462, JP-A-54-59143)
No. 55-52063, No. 55-5206
Publication No. 4, Publication No. 55-46760, Publication No. 55-854
Publication No. 95, Publication No. 57-11350, Publication No. 57-14
8749), stilbene derivatives (JP-A-61-210363, JP-A-61-210363, JP-A-61-210-363, etc.)
No. 228451, No. 61-14642, No. 6
No. 1-72255, No. 62-47646, No. 62-36674, No. 62-10652,
62-30255, 60-93445, 60-94462, 60-174749, 60-175052, etc.)
etc. can be mentioned.

本発明においては、これらの化合物を正孔伝達化合物と
して使用することができるが、次に示すポリフィリン化
合物(特開昭63−295695号公報などに記載のも
の)及び芳香族第三級アミン化合物及びスチリルアミン
化合物(米国特許第4,127,412号明細書、特開
昭53−27033号公報、同54−58445号公報
、同54−149634号公報、同54−64299号
公報、同55−79450号公報、同55−14425
0号公報、同56−119132号公報、同61−29
5558号公報、同61−98353号公報、同63−
295695号公報などに記載のもの)、特に該芳香族
第三級アミン化合物を用いることが好ましい。
In the present invention, these compounds can be used as hole transfer compounds, but the following porphyrin compounds (described in JP-A No. 63-295695 etc.), aromatic tertiary amine compounds and Styrylamine compounds (U.S. Pat. No. 4,127,412, U.S. Pat. Publication No. 55-14425
Publication No. 0, Publication No. 56-119132, Publication No. 61-29
No. 5558, No. 61-98353, No. 63-
It is preferable to use the aromatic tertiary amine compound (described in Japanese Patent No. 295695, etc.), especially the aromatic tertiary amine compound.

該ポリフィリン化合物の代表例として は、ポルフィン、1.10,15.20−テトラフェニ
ル−21H,23H−ポルフィン銅(II)、1,10
,15.20−テトラフェニル−21H,23H−ポル
フィン亜鉛(11)、5.10,15.20−テトラキ
ス(ペンタフルオロフェニル)−218,23H−ポル
フィン、シリコンフタロシアニンオキシド、アルミニウ
ム7タロシアニンクロリド、フタロシアニン(無金属)
、ジリチウムフタロシアニン、銅テトラメチルフタロシ
アニン、銅7タロンアニン、クロム7りロシアニン、亜
鉛7タロシアニン、鉛7タロシアニン、チタニウム7タ
ロシアニンオキシド、マグネシウムフタロシアニン、銅
オクタメチルフタロシアニンなどが挙げられる。まt;
該芳香族第三級アミン化合物及びスチリルアミン化合物
の代表例としては、N、N、N’、N’−テトラ7エ二
ルー4.4′−ジアミノビフェニル、N、N’ジフェニ
ル−N、N’−ジ(3−メチルフェニル)−4,4’−
ジアミノビフェニル、2.2−ビスc4−ジーp−トリ
ルアミノフェニル)プロパン、1.1−ビス(4−ジ−
p−トリルアミノフェニル)シクロヘキサン、N、N、
N’、N’−テトラ−p−1リルー4.4′−ジアミノ
ビフェニル、l、1−ビス(4−ジ−p−トリルアミノ
フェニル)−4,−フェニルシクロヘキサン、ビス(4
−ジメチルアミノ−2−メチルフェニル)フェニルメタ
ン、ビス(4−ジ−p−t−ツルアミノフェニル)フェ
ニルメタン、N、N’−ジフェニル−N、N″−ジ(4
−メトキシフェニル)−4,4’ジアミノビフエニル、
N、N、N’、N″−テトラフェニル−4,4’−’;
アミノジフェニルエーテル、4.4′−ビス(ジフェニ
ルアミノ)クオードリフェニル、N 、N 、N−トリ
(p−トリル)アミン、4−(ジーp−トリルアミノ)
 −4’−(4(ジ−p−トリルアミノ)スチリル〕ス
チルベン、4−N、N−ジフェニルアミノ−(2−ジフ
ェニルビニル)ベンゼン、3−メトキシ−4’−N、N
−ジフェニルアミノスチルベン、N−7エニルカルバソ
ールなどが挙げられる。
Representative examples of the porphyrin compounds include porphine, 1.10,15.20-tetraphenyl-21H,23H-porphine copper(II), 1,10
, 15.20-tetraphenyl-21H,23H-porphine zinc (11), 5.10,15.20-tetrakis(pentafluorophenyl)-218,23H-porphine, silicon phthalocyanine oxide, aluminum 7-thalocyanine chloride, phthalocyanine (metal free)
, dilithium phthalocyanine, copper tetramethyl phthalocyanine, copper 7 talonanine, chromium 7 thalocyanine, zinc 7 thalocyanine, lead 7 thalocyanine, titanium 7 thalocyanine oxide, magnesium phthalocyanine, copper octamethyl phthalocyanine, and the like. Well;
Representative examples of the aromatic tertiary amine compound and styrylamine compound include N,N,N',N'-tetra7enyl-4,4'-diaminobiphenyl, N,N'diphenyl-N,N '-di(3-methylphenyl)-4,4'-
Diaminobiphenyl, 2,2-bisc4-p-tolylaminophenyl)propane, 1,1-bis(4-di-
p-tolylaminophenyl)cyclohexane, N, N,
N',N'-tetra-p-1lylu-4,4'-diaminobiphenyl, l,1-bis(4-di-p-tolylaminophenyl)-4,-phenylcyclohexane, bis(4
-dimethylamino-2-methylphenyl)phenylmethane, bis(4-di-pt-tuluminophenyl)phenylmethane, N,N'-diphenyl-N,N''-di(4
-methoxyphenyl)-4,4'diaminobiphenyl,
N, N, N', N''-tetraphenyl-4,4'-';
Aminodiphenyl ether, 4,4'-bis(diphenylamino)quadrifhenyl, N,N,N-tri(p-tolyl)amine, 4-(di-p-tolylamino)
-4'-(4(di-p-tolylamino)styryl)stilbene, 4-N,N-diphenylamino-(2-diphenylvinyl)benzene, 3-methoxy-4'-N,N
-diphenylaminostilbene, N-7enylcarbasol, and the like.

本発明素子における該有機質正孔注入輸送層は、これら
の有機正孔伝達化合物1種又は2種以上から成る1層で
構成されていてもよいし、あるいは、前記層とは別種の
化合物から成る有機質正孔注入輸送層を積層したもので
あってもよい。
The organic hole injection transport layer in the device of the present invention may be composed of a single layer composed of one or more of these organic hole transport compounds, or may be composed of a compound different from the above layer. It may also be a stack of organic hole injection transport layers.

一方、所望に応じて設けられる有機質電子注入輸送層は
、有機電子伝達化合物から成るものであって、陰極より
注入された電子を発光層に伝達する機能を有している。
On the other hand, the organic electron injection and transport layer provided as desired is made of an organic electron transfer compound and has a function of transferring electrons injected from the cathode to the light emitting layer.

このような有機電子伝達化合物について特に制限はなく
、従来公知の化合物の中から任意のものを選択して用い
ることができる。該有機電子伝達化合物の好ましい例と
しては、 II    No。
There are no particular limitations on such organic electron transfer compounds, and any one can be selected and used from conventionally known compounds. A preferred example of the organic electron transfer compound is II No.

すJ’のニトロ置換フルオレノン誘導体、などのチオビ
ランジオキシド誘導体、 などのジフェニルキノン誘導体[「ポリマー・プレプリ
ン)(Polymer  Preprints)、ジャ
パン」第37巻、第3号、第681ページ(1988年
)などに記載のもの】、あるいは0 などの化合物[「ジャーナル・オブ・アゲライド・フィ
ズイクス(J、Apply、Phys、)J第27巻、
L269(1988年)などに記載のもの〕や、アント
ラキノジメタン誘導体(特開昭57−149259号公
報、同58−55450号公報、同61−225151
号公報、同61−233750号公報、同63−104
081号公報などに記載のもの)、フレオレニリデンメ
タン誘導体(特開昭60−69657号公報、同61−
143764号公報、同61−148159号公報など
に記載のもの)、アントロン誘導体(特開昭61−22
5151号公報、同61−233750号公報などに記
載のもの)などを挙げることができる。
Nitro-substituted fluorenone derivatives such as J', thiovirane dioxide derivatives such as, diphenylquinone derivatives such as ], or compounds such as 0 [Journal of Agelide Physics (J, Apply, Phys,) J Vol. 27,
L269 (1988)] and anthraquinodimethane derivatives (JP-A No. 57-149259, JP-A No. 58-55450, JP-A No. 61-225151)
No. 61-233750, No. 63-104
081, etc.), fluorenylidene methane derivatives (JP-A-60-69657, JP-A-61-69657, etc.)
143764, 61-148159, etc.), anthrone derivatives (JP-A-61-22
5151, 61-233750, etc.).

次に、本発明の有機EL素子を作製する好適な方法の例
を、各構成の素子それぞれについて説明する。まず、陽
極/無機アモルファス質正孔注入輸送層/発光層/陰極
から成るEL素子の作製法について説明すると、適当な
基板上に所望の陽極用物質から成る薄膜を500nm以
下、好ましくは10〜200nmの範囲の膜厚になるよ
うに、蒸着やスパッタリングなどの方法により、前記の
条件下で形成させ、陽極を作製したのち、この上に、P
型a−5iやP型a−5iCなどから成る薄膜を、プラ
ズマCVDなどの方法により形成させ、無機アモルファ
ス質正孔注入輸送層を設ける。
Next, an example of a suitable method for manufacturing the organic EL device of the present invention will be explained for each device of each structure. First, a method for manufacturing an EL device consisting of an anode/inorganic amorphous hole injection/transport layer/light-emitting layer/cathode will be described. A thin film made of a desired anode material is deposited on a suitable substrate to a thickness of 500 nm or less, preferably 10 to 200 nm. After forming an anode under the above conditions by a method such as vapor deposition or sputtering to have a film thickness in the range of
A thin film made of type a-5i or P-type a-5iC is formed by a method such as plasma CVD to provide an inorganic amorphous hole injection transport layer.

この膜厚は発光を基板側より取り出す場合には透過率を
高めるために5〜200nm程度が好ましい。また製膜
条件については、薄膜化する材料の種類や不純物のドー
プ量などにより異なるため、−概に定めることはできな
い。
This film thickness is preferably about 5 to 200 nm in order to increase transmittance when emitted light is extracted from the substrate side. Further, film forming conditions cannot be generally determined because they vary depending on the type of material to be thinned, the amount of impurity doped, etc.

次に、この無機アモルファス質正孔注入輸送層の上に、
有機発光材料の薄膜を、膜厚が5imないし5μmの範
囲になるように、蒸着法などにより、前記の条件下で形
成させ、発光層を設けたのち、この上に、陰極用物質か
ら成る薄膜を、500nm以下、好ましくは10〜20
0nmの範囲の膜厚になるように、蒸着やスパッタリン
グなどの方法により、前記条件下で形成させ、陰極を設
けることにより、所望の有機EL素子が得られる。なお
、このEL素子の作製においては、作製順序を逆にして
、陰極、発光層、無機アモルファス質正孔注入輸送層、
陽極の順に作製することも可能である。
Next, on top of this inorganic amorphous hole injection transport layer,
A thin film of an organic light-emitting material is formed under the above conditions by vapor deposition or the like so that the film thickness is in the range of 5 im to 5 μm, and a light-emitting layer is formed, and then a thin film of a cathode material is formed on this layer. , 500 nm or less, preferably 10 to 20
A desired organic EL element can be obtained by forming the film under the above conditions by a method such as vapor deposition or sputtering so as to have a film thickness in the range of 0 nm, and by providing a cathode. In the production of this EL device, the production order was reversed to form a cathode, a light emitting layer, an inorganic amorphous hole injection transport layer,
It is also possible to manufacture the anode in this order.

陽極/無機アモルファス質正孔注入輸送層/有機質電子
障壁層/発光層/陰極から成るEL素子の作製について
は、まず前記のEL素子の作製の場合と同様にして、陽
極及び無機アモルファス質正孔注入輸送層を順次形成し
たのち、この上に発光層の蒸着の場合と同様に、蒸着法
などにより有機質電子障壁層を設け、次いでこの上に、
前記のEL素子の場合と同様にして、発光層及び陰極を
順次設けることにより、所望の有機EL素子が得られる
。なお、このEL素子の作製においても、作製順序を逆
にして、陰極、発光層、有機質電子障壁層、無機アモル
ファス質正孔注入輸送層、陽極の順に作製してもよい。
For the production of an EL device consisting of an anode/inorganic amorphous hole injection transport layer/organic electron barrier layer/emissive layer/cathode, first, the anode and inorganic amorphous hole After sequentially forming the injection transport layer, an organic electron barrier layer is provided thereon by vapor deposition, as in the case of vapor deposition of the light emitting layer, and then, on this,
A desired organic EL device can be obtained by sequentially providing a light emitting layer and a cathode in the same manner as in the case of the EL device described above. In the production of this EL element, the order of production may be reversed, and the cathode, light emitting layer, organic electron barrier layer, inorganic amorphous hole injection and transport layer, and anode may be produced in this order.

陽極/無機アモルファス賀正孔注入輸送層/無機質電子
障壁層/発光1m/陰極の作製については、まず前記の
EL素子の作製の場合と同様にして、陽極及び無機アモ
ルファス質正孔注入輸送層を順次設けたのち、この上に
、a−sil−1N、やa−3i、□C0などの薄膜を
、プラズマCVD法などにより形成して、無機アモルフ
ァス質電子障壁層を設ける。この膜厚は、発光を基板側
より取り出す場合には、透過率を高めるために5〜20
0nmの範囲が好ましい。また、製膜条件については、
薄膜化する材料の種類などに異なり、−概に定めること
ができない。
Anode/Inorganic amorphous hole injection transport layer/Inorganic electron barrier layer/Emission 1m/For the production of the cathode, first, the anode and the inorganic amorphous hole injection transport layer were sequentially formed in the same manner as in the production of the EL device described above. After this, a thin film of a-sil-1N, a-3i, □C0, etc. is formed thereon by plasma CVD or the like to provide an inorganic amorphous electron barrier layer. When emitting light from the substrate side, the film thickness should be 5 to 20 mm in order to increase the transmittance.
A range of 0 nm is preferred. Regarding the film forming conditions,
It depends on the type of material to be made into a thin film, etc., and cannot be determined generally.

次に、この上に、前記のEL素子の作製の場合と同様に
して、発光層及び陰極を順次設けることにより、所望の
EL素子が得られる。なお、このEL素子の作製におい
ても、作製順序を逆にして、陰極、発光層、無機質電子
障壁層、無機アモルファス質正孔注入輸送層、陽極の順
に作製してもよい。
Next, a light-emitting layer and a cathode are sequentially provided thereon in the same manner as in the production of the EL element described above, thereby obtaining a desired EL element. Note that in the production of this EL element, the production order may be reversed and the cathode, light emitting layer, inorganic electron barrier layer, inorganic amorphous hole injection and transport layer, and anode may be produced in this order.

陽極/無機アモルファス賀正孔注入輸送層/無機質電子
障壁層/発光M/無機アモルファス質電子注入輸送層/
陰極の作製については、まず前記のEL素子の作製の場
合と同様にして、陽極、無機アモルファス質正孔注入輸
送層、無機質電子障壁層及び発光層を順次形成したのら
、この上にN型a−5iやN型a−5iCなどの薄膜を
、プラズマCVD法などによって形成して、無機アモル
ファス質電子注入輸送層を設け、次いで前記のEL素子
の作製の場合と同様にして陰極を設けることにより、所
望のEL素子が得られる。
Anode/Inorganic amorphous hole injection transport layer/Inorganic electron barrier layer/Light emitting M/Inorganic amorphous electron injection transport layer/
Regarding the production of the cathode, first, in the same manner as in the production of the EL element described above, an anode, an inorganic amorphous hole injection transport layer, an inorganic electron barrier layer, and a light emitting layer are sequentially formed. A thin film such as a-5i or N-type a-5iC is formed by a plasma CVD method or the like to provide an inorganic amorphous electron injection transport layer, and then a cathode is provided in the same manner as in the production of the EL element described above. In this manner, a desired EL element can be obtained.

なお、このEL素子の作製においても、作製の順序を逆
にして、陰極、無機アモルファス質電子注入輸送層、発
光層、無機質電子1jiF壁層、無機アモルファス質正
孔注入輸送層、陽極の順に作製してもよい。
In the fabrication of this EL element, the fabrication order was also reversed, and the cathode, inorganic amorphous electron injection and transport layer, light emitting layer, inorganic electron 1jiF wall layer, inorganic amorphous hole injection and transport layer, and anode were fabricated in this order. You may.

このようにして得られた本発明の有機EL素子に、直流
電圧を印加する場合には、陽極を+、陰極を−の極性と
して電圧1〜30V程度を印加すると、発光が透明又は
半透明の電極側より観測できる。まI;、逆の極性で電
圧を印加しても発光は全く生じない。さらに、交流電圧
を印加する場合には、陽極が+、陰極が−の状態になっ
たときのみ発光する。なお、印加する交流の波形は任意
でよい。
When applying a DC voltage to the organic EL device of the present invention obtained in this way, when a voltage of about 1 to 30 V is applied with the anode as + polarity and the cathode as - polarity, the light emission becomes transparent or translucent. It can be observed from the electrode side. Well, even if a voltage with the opposite polarity is applied, no light is emitted at all. Further, when applying an alternating voltage, light is emitted only when the anode is in a positive state and the cathode is in a negative state. Note that the waveform of the applied alternating current may be arbitrary.

【実施例J 次に実施例により本発明をさらに詳細に説明するが、本
発明はこれらの例によってなんら限定されるものではな
い。
[Example J] Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例1 透明電極として用いる膜厚1100nのITOが、付い
ているガラス基板(25rrrmX 75mmx1.1
mmのサイズ、HOYA社製)を透明支持基板とし、こ
れをインプロピルアルコールで30分、超音波洗浄し、
さらにイソプロピルアルコールに浸漬し洗浄しt;。こ
の透明支持基板を乾燥窒素ガスで乾燥し、容量結合型の
横RFプラズマ装置の基板ホルダーに固定し、水素ガス
にて10%に希釈されたSiH4、CHい 500pp
mに希釈されf:、B、H,をマスフローコントローラ
ヲ通シチャンバー内に満たし圧力ITorrを維持した
。このときガス流量比B、H,/ (S iH4+CH
4)は0.31%であり50W、13.56MHzの高
周波を印加し、基板温度190°Cの前記基板上にP型
a−5iCを膜厚15nm成膜しIaHTLとした。二
〇後、チャンバーを開け、ガラス基板/ITO/P型a
−5iCを取り出し、直ちに真空蒸着装置の基板ホルダ
ーに取り付けた。
Example 1 A glass substrate (25rrrm x 75mm x 1.1
mm size, manufactured by HOYA) was used as a transparent support substrate, and this was ultrasonically cleaned with inpropyl alcohol for 30 minutes.
Furthermore, it was washed by immersing it in isopropyl alcohol. This transparent support substrate was dried with dry nitrogen gas, fixed on a substrate holder of a capacitively coupled horizontal RF plasma device, and then treated with 500 pp of SiH4, CH diluted to 10% with hydrogen gas.
The chamber was filled with f:, B, H, diluted to m, through a mass flow controller, and the pressure ITorr was maintained. At this time, the gas flow rate ratio B, H, / (S iH4 + CH
4) was 0.31%, and a high frequency of 50 W and 13.56 MHz was applied to form a P-type a-5iC film with a thickness of 15 nm on the substrate at a substrate temperature of 190° C. to form IaHTL. After 20 days, open the chamber, glass substrate/ITO/P type a
-5iC was taken out and immediately attached to a substrate holder of a vacuum evaporation apparatus.

モリブデン製の抵抗加熱ボートにクマリン30(KU3
0)をいれ真空蒸着装置に取り付けた。
Coumarin 30 (KU3) on a molybdenum resistance heating boat
0) and attached it to a vacuum evaporation device.

この後真空槽を2xlO−’Paまで減圧し、KU30
の入っt;前記ポートを通電し、摂氏230度まで加熱
し蒸着速度0.1〜0.3im/sでガラス基板/IT
O/P型a−5iCの上に蒸着り膜厚800nmの発光
層を得た。蒸着時の前記基板の温度は室温であっt;。
After this, the pressure in the vacuum chamber was reduced to 2xlO-'Pa, and the KU30
Electrification is applied to the port, heated to 230 degrees Celsius, and deposited on the glass substrate/IT at a deposition rate of 0.1 to 0.3 im/s.
A light emitting layer having a thickness of 800 nm was obtained by vapor deposition on O/P type a-5iC. The temperature of the substrate during vapor deposition was room temperature.

この後、真空槽をあけ、発光層の上にステンレス鋼製の
マスクを設置し、モリブデン製の抵抗加熱ポートにマグ
ネシウムを3g入れ、電子ビーム蒸着装置のるつぼに銅
を入れ、再び真空槽を1.2X10−’Paまで減圧し
た。この後、マグネシウム入りのボートに通電し、蒸着
速度5〜8nm/sでマグネシウムを蒸着した。この時
、同時に電子ビームにより銅を加熱し0.1〜0.3i
m/sで銅を蒸着し前記マグネシウムに銅を混合し、対
向電極とした。以上によりエレクトロルミネッセンス素
子の作製を終えた。この素子のITO電極を正極、Mg
と銅の混合物よりなる対向電極を負極とし直流4■を印
加したところ電流密度が80mA/c−の電流が流れ、
緑色の発光を得た。この時の発光極大波長は493 n
m、発光輝度90cd/m’、発光効率はO,Q8Lm
/wであッt;。
After this, the vacuum chamber was opened, a stainless steel mask was placed on top of the light emitting layer, 3g of magnesium was placed in the molybdenum resistance heating port, copper was placed in the crucible of the electron beam evaporator, and the vacuum chamber was opened again for 1 hour. The pressure was reduced to .2×10-'Pa. Thereafter, the boat containing magnesium was energized to deposit magnesium at a deposition rate of 5 to 8 nm/s. At this time, the copper is heated by an electron beam at the same time to 0.1 to 0.3 i.
Copper was evaporated at m/s and mixed with the magnesium to form a counter electrode. With the above steps, the production of the electroluminescent device was completed. The ITO electrode of this element is the positive electrode, and the Mg
When a direct current of 4 cm was applied using a counter electrode made of a mixture of
A green luminescence was obtained. The maximum emission wavelength at this time is 493n
m, luminance brightness 90cd/m', luminous efficiency O, Q8Lm
/w att;.

実施例2 実施例1と同様にしてガラス基板/ITO/P型a−3
iCを作製した。さらにチャンバーを開けず残留ガスを
排気し、実施例1と同様な5fH4と10%に水素希釈
されたC、H4とをマスフローコントローラを通し、チ
ャンバー内ニ導入し統は圧力LTo r r、CzH+
/ (CzH,+S + 84) −0,8を維持し、
RF出力40wで電子障壁層であるa−5iCをlon
m形戊し形成この後、実施例1と同様にKU30/Mg
:Cuを作製し、エレクトロルミネッセンス素子の作製
を終えた。
Example 2 Glass substrate/ITO/P type a-3 was prepared in the same manner as in Example 1.
iC was produced. Furthermore, without opening the chamber, the residual gas was exhausted, and 5fH4 as in Example 1 and C and H4 diluted with hydrogen to 10% were introduced into the chamber through a mass flow controller, and the pressure was set to LTorr, CzH+
/ (CzH, +S + 84) -0,8 maintained,
A-5iC which is an electron barrier layer is lon with RF output of 40W.
After forming m-shaped holes, KU30/Mg was formed in the same manner as in Example 1.
:Cu was produced, and the production of the electroluminescent device was completed.

この素子のITO電極を正極、Mgと銅の混合物よりな
る対向電極を負極とし直流5Vを印加したところ電流密
度が50mA/c+n”の電流が流れ、緑色の発光を得
た。この時の発光極大波長は493nm%CIE色度座
標はx−0,18、y−0,44発光輝度1120 c
 d/m2、発光効率は1.4Ltrl/wであり、電
子障壁層により高輝度、高効率を達成した。
When DC 5V was applied using the ITO electrode of this device as the positive electrode and the counter electrode made of a mixture of Mg and copper as the negative electrode, a current with a current density of 50 mA/c+n'' flowed and green light emission was obtained.At this time, the light emission was at its maximum. Wavelength is 493 nm% CIE chromaticity coordinates are x-0,18, y-0,44 Emission brightness 1120 c
d/m2, and the luminous efficiency was 1.4 Ltrl/w, achieving high brightness and high efficiency due to the electron barrier layer.

実施例3 実施例2と同様に素子を作製したが電子障壁層にa−5
iNをもちいたところが異なっていた。このとき流量比
N H3/ S i H4−5でマスフローコントロー
ラによりチャン、< −内1: N Hs、SiH4の
各ガスを導入し続は圧力0.3To r r。
Example 3 A device was produced in the same manner as in Example 2, but with a-5 in the electron barrier layer.
The difference was that iN was used. At this time, each gas of NHs and SiH4 was introduced using a mass flow controller at a flow rate ratio of NH3/SiH4-5, and the pressure was 0.3 Torr.

RF出力15W、基板温度250°Cの条件で膜厚1O
nm形威した。このa−5iNはN/5i−1,2とラ
ザフォード後方散乱法にまり組成が定められた。この素
子に直流6vをくわえたところ実施例2と同様な発光効
率、輝度を得た。
Film thickness is 1O under the conditions of RF output 15W and substrate temperature 250°C.
The nm shape was used. The composition of this a-5iN was determined by the Rutherford backscattering method as N/5i-1,2. When 6 V of DC was applied to this element, the same luminous efficiency and brightness as in Example 2 were obtained.

実施例4 実施例2と同様にKU30まで形成したあとれ“型のa
−5fを20nm形戊した。作製は3oooppmにH
3希釈されたPH3と実施例1と同様なSiH,を流量
比PH3/S i H4−0,5%でチャンバー内に流
し統は圧力0.6Torr。
Example 4 After forming up to KU30 in the same manner as Example 2,
-5f was cut into a 20 nm shape. Preparation is H at 3oooppm
3 diluted PH3 and SiH as in Example 1 were flowed into the chamber at a flow rate ratio of PH3/SiH4-0.5%, and the pressure was 0.6 Torr.

RF出力20W1基板温度60℃とし行った。The RF output was 20W and the substrate temperature was 60°C.

この後、AI電極を蒸着により形成しEl−素子作製を
終えt;。この素子のITO電極を正極、AIよりなる
対向電極を負極とし直流4vを印加したところ電流密度
が60mA/cm’の電流が流れ、緑色の発光を得た。
After this, an AI electrode is formed by vapor deposition, and the El-element fabrication is completed. When a direct current of 4 V was applied using the ITO electrode of this device as the positive electrode and the counter electrode made of AI as the negative electrode, a current with a current density of 60 mA/cm' flowed and green light was emitted.

この時の発光極大波長は495 n m *発光輝度1
000cd/m2発光効率は1 、3 L m / w
であった。
The maximum emission wavelength at this time is 495 nm *Emission brightness 1
000cd/m2 Luminous efficiency is 1.3L m/w
Met.

実施例5 実施例1と同様にITO付き基板を洗浄し、実施例1の
B、H!をPH3に変えてN型a−8iCを膜厚20n
m作製しl;。このとき流量比は0.55%、圧力IT
o r rs基板温度200℃、RF出力35Wの条件
であった。ざらに正孔障壁層として上記と同様なa−8
iCを250nmの膜厚で形成しt;。ただし、このと
きのCH,/(CH4+S i H4)−0,3である
ことが異なった。このあと実施例工と同様にKU30の
発光層を形成し最後にAu’!極を蒸着により形成した
Example 5 The ITO-coated substrate was cleaned in the same manner as in Example 1, and the B, H! changed to PH3 and made N-type a-8iC with a film thickness of 20n.
I made it. At this time, the flow rate ratio is 0.55%, and the pressure IT
The conditions were that the substrate temperature was 200°C and the RF output was 35W. Roughly the same a-8 as above as a hole blocking layer
iC was formed with a film thickness of 250 nm. However, the difference was that CH,/(CH4+S i H4)-0,3 at this time. After this, a light emitting layer of KU30 was formed in the same manner as in the example construction, and finally Au'! The poles were formed by vapor deposition.

この素子のAu電極を正極、ITOよりなる電極を負極
とし直流4■を印加したところ電流密度が8.3mA/
cm’の電流が流れ、緑色の発光を得た。この時の発光
極大波長は502nm%発光輝度400 c d / 
m ”、発光効率はx、xLm/wであった。
When the Au electrode of this device was used as the positive electrode and the electrode made of ITO was used as the negative electrode, a DC current of 4 cm was applied, resulting in a current density of 8.3 mA/
A current of cm' was applied, and green light was emitted. The maximum emission wavelength at this time is 502 nm% emission brightness 400 c d /
m'', and the luminous efficiency was x, xLm/w.

なお、クマリン30とは3−(2″−N−メチルベンズ
イミダゾリル)−7−N、N−ジエチルアミノクマリン
のことで下記構造を有する。
Note that coumarin 30 refers to 3-(2″-N-methylbenzimidazolyl)-7-N,N-diethylaminocoumarin and has the following structure.

C,II。C.II.

! 〔発明の効果] 本発明によると、陽極と陰極との間に無機アモルファス
買電荷注入輸送層と発光層とを設け、さらに所望に応じ
電荷障壁層を設けることにより、5V程度以下の低い駆
動電圧及び良好な発光効率で、高輝度の発光を出力しう
る有機EL素子が得られる。
! [Effects of the Invention] According to the present invention, by providing an inorganic amorphous charge injection transport layer and a light emitting layer between an anode and a cathode, and further providing a charge barrier layer as desired, a low driving voltage of about 5 V or less can be achieved. Moreover, an organic EL element capable of outputting high-luminance light with good luminous efficiency can be obtained.

本発明の有機EL素子はこのような優れた特徴を有し、
各種表示装置における発光素子として好適に用いられる
The organic EL device of the present invention has such excellent characteristics,
It is suitably used as a light emitting element in various display devices.

Claims (1)

【特許請求の範囲】 1 陽極と陰極との間に無機アモルファス質電荷注入輸
送層と有機化合物から成る発光層とを設けて成る有機エ
レクトロルミネッセンス素子。 2 無機アモルファス質電荷注入輸送層が正孔注入輸送
層及び/又は電子注入輸送層である請求項1記載の有機
エレクトロルミネッセンス素子。 3 陽極と陰極との間に電荷障壁層を設けて成る請求項
1又は2記載の有機エレクトロルミネッセンス素子。 4 電荷障壁層が電子障壁層及び/又は正孔障壁層であ
る請求項3記載の有機エレクトロルミネッセンス素子。
[Claims] 1. An organic electroluminescent device comprising an inorganic amorphous charge injection transport layer and a light emitting layer made of an organic compound between an anode and a cathode. 2. The organic electroluminescent device according to claim 1, wherein the inorganic amorphous charge injection transport layer is a hole injection transport layer and/or an electron injection transport layer. 3. The organic electroluminescent device according to claim 1 or 2, further comprising a charge barrier layer between the anode and the cathode. 4. The organic electroluminescent device according to claim 3, wherein the charge barrier layer is an electron barrier layer and/or a hole barrier layer.
JP21296889A 1989-08-21 1989-08-21 Organic electroluminescence device Expired - Fee Related JP2895868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21296889A JP2895868B2 (en) 1989-08-21 1989-08-21 Organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21296889A JP2895868B2 (en) 1989-08-21 1989-08-21 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JPH0377299A true JPH0377299A (en) 1991-04-02
JP2895868B2 JP2895868B2 (en) 1999-05-24

Family

ID=16631280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21296889A Expired - Fee Related JP2895868B2 (en) 1989-08-21 1989-08-21 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP2895868B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01213449A (en) * 1988-02-16 1989-08-28 Toray Ind Inc Ropy or netlike material having fuzz and production thereof
WO1999053727A1 (en) * 1998-04-09 1999-10-21 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP2000196140A (en) * 1998-12-28 2000-07-14 Sharp Corp Organic electroluminescence element and fabrication thereof
WO2000048431A1 (en) * 1999-02-15 2000-08-17 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and method of manufacture thereof
JP2000294376A (en) * 1999-04-02 2000-10-20 Tdk Corp Organic el element
WO2005060017A1 (en) * 2003-12-16 2005-06-30 Matsushita Electric Industrial Co., Ltd. Organic electroluminescent device and method for manufacturing the same
EP1672722A2 (en) * 1996-05-03 2006-06-21 Cambridge Display Technology Limited Organic light-emitting device and method of fabricating the same
US7345417B2 (en) 2002-12-19 2008-03-18 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2008270731A (en) * 2007-03-23 2008-11-06 Toppan Printing Co Ltd Organic el element and display device provided therewith
JP2012023388A (en) * 2005-02-16 2012-02-02 Massachusetts Inst Of Technol <Mit> Light emitting devices including semiconductor nanocrystals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3706605B2 (en) * 2002-09-27 2005-10-12 三洋電機株式会社 Organic electroluminescence device and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312874A (en) * 1988-06-09 1989-12-18 Nec Corp Organic thin film el element
JPH01313892A (en) * 1988-06-13 1989-12-19 Matsushita Electric Ind Co Ltd Image display device and manufacture thereof
JPH02196475A (en) * 1989-01-25 1990-08-03 Mitsui Toatsu Chem Inc Thin film light-emitting element
JPH02196885A (en) * 1989-01-25 1990-08-03 Asahi Chem Ind Co Ltd Organic electroluminescent element
JPH02207874A (en) * 1989-02-03 1990-08-17 Kubota Ltd Method for lining inside surface of metallic pipe
JPH02255789A (en) * 1989-03-29 1990-10-16 Asahi Chem Ind Co Ltd Organic electric field luminescent element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312874A (en) * 1988-06-09 1989-12-18 Nec Corp Organic thin film el element
JPH01313892A (en) * 1988-06-13 1989-12-19 Matsushita Electric Ind Co Ltd Image display device and manufacture thereof
JPH02196475A (en) * 1989-01-25 1990-08-03 Mitsui Toatsu Chem Inc Thin film light-emitting element
JPH02196885A (en) * 1989-01-25 1990-08-03 Asahi Chem Ind Co Ltd Organic electroluminescent element
JPH02207874A (en) * 1989-02-03 1990-08-17 Kubota Ltd Method for lining inside surface of metallic pipe
JPH02255789A (en) * 1989-03-29 1990-10-16 Asahi Chem Ind Co Ltd Organic electric field luminescent element

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01213449A (en) * 1988-02-16 1989-08-28 Toray Ind Inc Ropy or netlike material having fuzz and production thereof
EP1672722A3 (en) * 1996-05-03 2010-06-30 Cambridge Display Technology Limited Organic light-emitting device and method of fabricating the same
EP1684368A2 (en) * 1996-05-03 2006-07-26 Cambridge Display Technology Limited Organic light-emitting device and method of fabricating the same
EP1672722A2 (en) * 1996-05-03 2006-06-21 Cambridge Display Technology Limited Organic light-emitting device and method of fabricating the same
EP1684368A3 (en) * 1996-05-03 2010-06-30 Cambridge Display Technology Limited Organic light-emitting device and method of fabricating the same
EP1672721A3 (en) * 1996-05-03 2010-06-30 Cambridge Display Technology Limited Organic light-emitting device and method of fabricating the same
EP1672721A2 (en) * 1996-05-03 2006-06-21 Cambridge Display Technology Limited Organic light-emitting device and method of fabricating the same
US6617054B2 (en) 1998-04-09 2003-09-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO1999053727A1 (en) * 1998-04-09 1999-10-21 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP2000196140A (en) * 1998-12-28 2000-07-14 Sharp Corp Organic electroluminescence element and fabrication thereof
WO2000048431A1 (en) * 1999-02-15 2000-08-17 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and method of manufacture thereof
KR100702763B1 (en) * 1999-02-15 2007-04-03 이데미쓰 고산 가부시키가이샤 Organic electroluminescent device and method of manufacture thereof
US6635365B2 (en) 1999-02-15 2003-10-21 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and method of manufacture thereof
US6416888B1 (en) 1999-02-15 2002-07-09 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and method of manufacture thereof
JP2000294376A (en) * 1999-04-02 2000-10-20 Tdk Corp Organic el element
US7345417B2 (en) 2002-12-19 2008-03-18 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
WO2005060017A1 (en) * 2003-12-16 2005-06-30 Matsushita Electric Industrial Co., Ltd. Organic electroluminescent device and method for manufacturing the same
US7785718B2 (en) 2003-12-16 2010-08-31 Panasonic Corporation Organic electroluminescent device and method for manufacturing the same
JP2012023388A (en) * 2005-02-16 2012-02-02 Massachusetts Inst Of Technol <Mit> Light emitting devices including semiconductor nanocrystals
JP2008270731A (en) * 2007-03-23 2008-11-06 Toppan Printing Co Ltd Organic el element and display device provided therewith

Also Published As

Publication number Publication date
JP2895868B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
JP2793383B2 (en) Organic electroluminescence device
JP2651237B2 (en) Thin-film electroluminescence device
JP4152173B2 (en) Organic electroluminescence device
US20080193796A1 (en) Organic electroluminescent device
JP3170542B2 (en) Organic EL device
WO2007052759A1 (en) Organic electroluminescent element
WO2007132678A1 (en) Organic electroluminescent device
WO2005112518A1 (en) Organic electroluminescent device
WO2008015949A1 (en) Organic electroluminescence device
JPH06207170A (en) White organic electroluminescence element
JP2009187956A (en) Organic electroluminescence element having two luminescent layers through electron barrier layer
JPH061973A (en) Organic electroluminescent element
WO2007029806A1 (en) Azaaromatic compounds having azafluoranthene skeletons and organic electroluminescent devices made by using the same
JP2846503B2 (en) Device thin film electrode, electroluminescent device having the same, and methods of manufacturing the same
WO2007132704A1 (en) Organic electroluminescence element
JP2895868B2 (en) Organic electroluminescence device
WO2007026581A1 (en) Organic electroluminescent device
JPH05159882A (en) Manufacture of electron injectable electrode and manufacture of organic electroluminescence element therewith
JP3508805B2 (en) Multicolor light emitting device and method of manufacturing the same
JPH07224012A (en) Diphenylamine derivative
JPH0726255A (en) Organic el element
JPH07119408B2 (en) Organic electroluminescent device
JP3045799B2 (en) Organic electroluminescence device
JP2008258641A (en) Organic electroluminescent element
JP3983405B2 (en) Organic electroluminescence device and method for manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees