JPH0374952B2 - - Google Patents

Info

Publication number
JPH0374952B2
JPH0374952B2 JP59276661A JP27666184A JPH0374952B2 JP H0374952 B2 JPH0374952 B2 JP H0374952B2 JP 59276661 A JP59276661 A JP 59276661A JP 27666184 A JP27666184 A JP 27666184A JP H0374952 B2 JPH0374952 B2 JP H0374952B2
Authority
JP
Japan
Prior art keywords
flow
isfet
ion sensor
sensitive
type ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59276661A
Other languages
Japanese (ja)
Other versions
JPS61151453A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59276661A priority Critical patent/JPS61151453A/en
Publication of JPS61151453A publication Critical patent/JPS61151453A/en
Publication of JPH0374952B2 publication Critical patent/JPH0374952B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は小型のフロースルーセルタイプの分析
機器に用いるためのフロースルーセル型イオンセ
ンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a flow-through cell type ion sensor for use in a small-sized flow-through cell type analytical instrument.

(従来の技術とその問題点) 従来より血液、尿等の検体試料をセル内を通過
せしめ、セルに組み込まれたイオンセンサにより
その濃度を測定するフロースルーセル型分析器は
少量の試で測定が可能であるため、医療診断の分
野で数多く用いられている。しかしながら血液、
尿などの検体検査においては、血清肝炎などに感
染する危険性があるためより少量の検体試料で測
定できるフロースルーセル型分析器の開発が望ま
れている。かかる要望に答えるものとして最***
板状の基板表面にゲート感応領域を有する電界効
果トランジスタ型イオンセンサ(以下ISFETと
いう)を用いたフロースルーセル型分析器が提案
された。(Clin Chem 30/1 135(1984))この
分析器は平板状の基板に形成されたISFETのゲ
ート感応領域を軟質塩ビチユーブの側壁開口部に
配置せしめて、ISFETの基板をチユーブに接着
してチユーブとISFETを一体化したもので、少
量の検体試料で測定が可能であるがISFETのボ
ンデイング部の絶縁のためにボンデイング部がも
りあがることや、配管に従来の軟質塩ビチユーブ
を用いる必要があること等から従の分析器に比べ
て格段に容積が小さくなつているとはいいがた
い。
(Conventional technology and its problems) Flow-through cell analyzers have conventionally passed a sample such as blood or urine through a cell and measured its concentration using an ion sensor built into the cell. Because it is possible, it is widely used in the field of medical diagnosis. However, blood
In the testing of specimens such as urine, there is a risk of infection with serum hepatitis, etc., so there is a desire for the development of a flow-through cell type analyzer that can perform measurements with a smaller amount of specimen sample. In order to meet this demand, a flow-through cell type analyzer using a field effect transistor type ion sensor (hereinafter referred to as ISFET) having a gate sensitive region on the surface of a flat substrate has recently been proposed. (Clin Chem 30/1 135 (1984)) In this analyzer, the gate sensitive region of the ISFET formed on a flat substrate is placed in the side wall opening of a soft PVC tube, and the ISFET substrate is glued to the tube. This is a tube and ISFET integrated, and it is possible to perform measurements with a small amount of sample, but the bonding part of the ISFET rises up to insulate it, and it is necessary to use a conventional soft PVC tube for piping. Therefore, it is difficult to say that the volume is significantly smaller than conventional analyzers.

(問題点を解決するための手段) 本発明者らはISFETを用いたフロースルーセ
ル型分析器用の改良された小型のフロースルーセ
ル型イオンセンサを提供するため鋭意検討した結
果本発明に到達したものである。すなわち本発明
は平板状の基板に形成された細長状の凹状溝内に
電界効果トランジスタ型イオンセンサのゲート感
応領域を設けるとともに該細長状の溝に蓋を一体
的に取り付けたことを特徴とするフロースルーセ
ル型イオンセンサである。
(Means for Solving the Problems) The present inventors have arrived at the present invention as a result of intensive studies to provide an improved compact flow-through cell type ion sensor for flow-through cell type analyzers using ISFET. It is something. That is, the present invention is characterized in that a gate sensitive region of a field effect transistor type ion sensor is provided in an elongated concave groove formed in a flat substrate, and a lid is integrally attached to the elongated groove. It is a flow-through cell type ion sensor.

(実施例) 以下本発明の一実施例を図面にて説明する。第
1図は検体試料の流入路及び流出路を接続したフ
ロースルーセル型イオンセンサの斜視図であり、
フロースルーセル型イオンセンサ1のソース電極
2、ドレイン電極3はそれぞれリード線4に接続
されている。検体試料が流入口5よりセルに入
り、ゲート感応領域上を通り、流出口6より流出
する構造となつている。流入出口を逆に用いても
何ら支障はない。第2図は第1図に示したフロー
スルーセル型イオンセンサの流路垂直方向の断面
図であり、平板状のシリコン基板10に検体試料
流路を形成する細長状の凹状溝11を有する
ISFET12と該溝に一体的に取り付けられた蓋
13で構成されいる。上記凹状溝11には
ISFETのゲート感応領域が形成されている。該
ゲート感応領域はSiO2層14とSi3N4層15が形
成され、このISFETは水素イオンに感応する。
該Si3N4層15にさらに他の化学物質感応膜を被
覆することもできる。
(Example) An example of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a flow-through cell type ion sensor in which an inflow path and an outflow path for an analyte sample are connected.
A source electrode 2 and a drain electrode 3 of the flow-through cell type ion sensor 1 are each connected to a lead wire 4. The structure is such that a specimen sample enters the cell through an inlet 5, passes over a gate sensitive region, and flows out through an outlet 6. There is no problem even if the inlet and outlet are used in reverse. FIG. 2 is a cross-sectional view in the vertical direction of the flow path of the flow-through cell type ion sensor shown in FIG.
It consists of an ISFET 12 and a lid 13 that is integrally attached to the groove. In the concave groove 11,
The gate sensitive region of the ISFET is formed. The gate sensitive region is formed with a SiO 2 layer 14 and a Si 3 N 4 layer 15, and this ISFET is sensitive to hydrogen ions.
The Si 3 N 4 layer 15 can also be further coated with another chemical sensitive film.

本発明のフロースルー型イオンセンサは次のよ
うにして作製することができる。なお第3図〜第
9図のaは平面図を、またbは断面図を示す。
The flow-through type ion sensor of the present invention can be manufactured as follows. Note that in FIGS. 3 to 9, a shows a plan view, and b shows a sectional view.

まずフロースルー型イオンセンサを作製すべき
平板状の基板10に細長状の溝11を形成する。
本例では基板に半導体用のP型シリコンウエフア
を用いて第3図aの斜線の部分をホトレジスト1
6で覆い、水−アミン系液によるエツチングによ
り溝を形成する。この場合シリコン基板は結晶面
に沿つて異方性エツチングを受け、第4図の如く
面に対して斜めの角度を持つた溝11が形成され
る。このように溝面が上を向いていないと、後の
ホトエツチングができず不都合である。溝の形成
はホトエツチングの他に機械的な切削により形成
してもよく、また溝は必ずしも本例のように直線
でなく曲がつていてもよい。溝の深さはあまり大
きいとセル容積を小さくするという本発明の目的
よりはずれ、またあまり小さいと、注入口との接
続が困難となり、また血液等の測定において血球
等の異物が詰まりやすくなるので通常10μ〜3mm
が適当である。溝の巾もあまり広いとセルの内容
積が大となり、あまり狭いとISFETの作製が困
難となるので200μ〜5mmが好ましい。
First, an elongated groove 11 is formed in a flat substrate 10 on which a flow-through type ion sensor is to be manufactured.
In this example, a P-type silicon wafer for semiconductors is used as the substrate, and the shaded area in Fig. 3a is coated with photoresist 1.
6, and grooves are formed by etching with a water-amine solution. In this case, the silicon substrate is subjected to anisotropic etching along the crystal plane, and grooves 11 having an oblique angle to the plane are formed as shown in FIG. If the groove surface does not face upward in this manner, it is inconvenient that subsequent photoetching cannot be performed. The grooves may be formed by mechanical cutting in addition to photoetching, and the grooves may not necessarily be straight as in this example but may be curved. If the depth of the groove is too large, this will defeat the purpose of the present invention, which is to reduce the cell volume, and if the groove is too small, it will be difficult to connect with the injection port, and foreign matter such as blood cells will easily clog when measuring blood. Usually 10μ~3mm
is appropriate. If the width of the groove is too wide, the internal volume of the cell will increase, and if it is too narrow, it will be difficult to fabricate an ISFET, so it is preferably 200 μm to 5 mm.

基板の材質としてはシリコンの他にサフアイア
基板(アルミナ)等を使うこともできる。この場
合溝形成後ISFETを作製するためにサフアイア
上にシリコン等の半導体層を適切な方法、例えば
エビタキシヤル生長により作製し以下の工程を行
なう。
In addition to silicon, a sapphire substrate (alumina) or the like can also be used as the material of the substrate. In this case, after forming the groove, a semiconductor layer of silicon or the like is formed on the sapphire by an appropriate method, for example, by epitaxial growth, and the following steps are performed to fabricate the ISFET.

次にFETセンサのn拡散を行なう。これには
第4図に点線で示した部分17に通常のSiO2
作製、ホトエツチング、りん熱拡散を行なうこと
により第5図に示すようなn型の拡散層17を作
る。この時のISFETの数は1個でも複数でもよ
いが、ISFETのゲート領域は必ず溝の中に、ま
た電極部は溝の外に位置するようにパターンを形
成しなければならない。もちろん、n拡散層の形
成は他の方法、例えばイオン打込法等で行つても
かまわない。
Next, perform n-diffusion of the FET sensor. For this purpose, an n-type diffusion layer 17 as shown in FIG. 5 is formed by forming an ordinary SiO 2 layer, photoetching, and phosphorescence diffusion in a portion 17 shown by a dotted line in FIG. 4. At this time, the number of ISFETs may be one or more, but the pattern must be formed so that the gate region of the ISFET is always located within the trench and the electrode portion is located outside the trench. Of course, the n-diffused layer may be formed by other methods, such as ion implantation.

n型の拡散層を作られたウエハーは次に第6図
の斜線で囲まれたゲート部以外の部分18にP+
の拡散(チヤネルストツパー形成)を行ない、ゲ
ート部分以外に電流が流れないようにする。
Next, the wafer on which the n-type diffusion layer has been formed has a P +
diffusion (channel stopper formation) to prevent current from flowing outside the gate area.

さらに第7図に示すようにP+拡散層18の上
にウエハ表面全体にSiO2、Si3N4の二重の絶縁膜
14,15を形成する。この絶縁膜はCVDによ
り形成することができる。この絶縁膜14,15
の厚みは、膜の外の電界がISFETのチヤネルに
十分効果を及ぼしうるものでなければならず、
300Å〜1μの厚さが必要である。通常1000〜3000
Åである。
Furthermore, as shown in FIG. 7, double insulating films 14 and 15 of SiO 2 and Si 3 N 4 are formed on the entire wafer surface on the P + diffusion layer 18. This insulating film can be formed by CVD. These insulating films 14, 15
The thickness of the film must be such that the electric field outside the film has a sufficient effect on the ISFET channel.
A thickness of 300 Å to 1 μ is required. Usually 1000-3000
It is Å.

Si3N4を最外層に形成したISFETはPH感応性と
なつているが他のイオンに感応するように、イオ
ン感応膜、酵素固定化膜をFETのゲート表面に
つけることにより、様々なイオン、化学物質に対
するセンサを作ることができる。このような感応
膜としてはNa+、K+に感応するガラス膜、Cl-
F-等に感応する固体膜、カリウム、カルシウム
に感応する高分子マトリツクス中に分散した液
膜、グルコースオキシダーゼ、ウレアーゼ等の酵
素を高分子膜に固定化したグルコース感応膜、尿
素感応膜等の酵素固定化膜等がある。
ISFETs with Si 3 N 4 formed on the outermost layer are PH-sensitive, but by attaching an ion-sensitive membrane and an enzyme-immobilized membrane to the gate surface of the FET so that they are sensitive to other ions, various ions can be detected. , it is possible to create sensors for chemicals. Such sensitive films include glass films that are sensitive to Na + and K + , Cl - ,
Solid membranes sensitive to F - , etc., liquid membranes dispersed in a polymer matrix sensitive to potassium and calcium, glucose-sensitive membranes in which enzymes such as glucose oxidase and urease are immobilized on polymer membranes, urea-sensitive membranes, etc. There are immobilized membranes, etc.

このフロースルーセル型センサで複数の化学物
質を測定するためには個々のFETゲート絶縁膜
上にそれぞれ異なる物質に感応する膜を形成する
必要がある。感応膜形成工程は、例えばTa2O5
のように膜が電極形成工程に耐える場合はSi3N4
膜形成後行なつてもよいが、一般には次の電極形
成工程後行なわれる。すなわち第7図に示すよう
にSi3N4膜15を形成したISFETは、第8図に示
すように溝の外の部分に電極部2,3を形成す
る。そのためには、まず電極部のSi3N4、SiO2
ホトエツチングにより取り除き、電極となる金属
の蒸着を行なう。第8図では金属にアルミを用
い、このアルミの電極は基板の端まで蒸着されて
おり、ここで、コネクタにつながるようになつて
いる。このような電極は各ISFETにつきソース
7及びドレイン8の2個づつ形成しなければなら
ない。
In order to measure multiple chemical substances with this flow-through cell type sensor, it is necessary to form films sensitive to different substances on each FET gate insulating film. In the sensitive film formation process, if the film can withstand the electrode formation process, for example, Ta 2 O 5 film, Si 3 N 4
Although it may be carried out after film formation, it is generally carried out after the next electrode formation step. That is, in the ISFET in which the Si 3 N 4 film 15 is formed as shown in FIG. 7, electrode portions 2 and 3 are formed outside the grooves as shown in FIG. To do this, first, Si 3 N 4 and SiO 2 in the electrode portion are removed by photo-etching, and a metal that will become the electrode is vapor-deposited. In FIG. 8, aluminum is used as the metal, and electrodes of this aluminum are deposited to the edge of the board, where they are connected to the connector. Two such electrodes, a source 7 and a drain 8, must be formed for each ISFET.

このようにして作製されたISFETは第9図の
ように溝の外側に平面状の蓋20を接着剤もしく
はパツキングを用いて取付けることによりフロー
スルー型イオンセンサが完成する。この蓋はガラ
スが通常用いられる。
A flow-through type ion sensor is completed by attaching a planar lid 20 to the outside of the groove using adhesive or packing to the ISFET thus manufactured as shown in FIG. Glass is usually used for this lid.

(効 果) このようにして作製されるフロースルーセル型
イオンセンサはたて、横、厚さのすべてが数十〜
数mmであり、セル間のつぎめもないことから、非
常に小量の検体試料での測定が可能で、例えば電
極をコネクタを通じ測定回路と接続し、1端の穴
に数μlの血清滴をつければ、血清は毛管現象で中
に吸込まれ、わずか一滴の血液で複数の化学成分
量の測定を行なうことができるなどの優れた効果
を有している。
(Effects) The flow-through cell type ion sensor manufactured in this way has a height, width, and thickness of several tens to
Since it is several mm in diameter and there is no joint between cells, it is possible to measure a very small amount of sample.For example, the electrode can be connected to the measurement circuit through a connector, and a few microliters of serum droplet is poured into the hole at one end. Once applied, serum is sucked into the blood via capillary action, which has excellent effects such as the ability to measure the amounts of multiple chemical components with just one drop of blood.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のフロースルー型イオンセンサ
の全体図、第2図は第1図のセンサの流路断面
図、第3図a〜第9図a及び第3図b〜第9図b
は本発明によるフロースルー型イオンセンサの各
作製工程における平面図と断面図である。 1…ISFET、2…ソース電極、3…ドレイン
電極、20…蓋。
Fig. 1 is an overall view of the flow-through type ion sensor of the present invention, Fig. 2 is a cross-sectional view of the flow path of the sensor of Fig. 1, Fig. 3a to Fig. 9a and Fig. 3b to Fig. 9b.
1A and 1B are a plan view and a cross-sectional view in each manufacturing process of a flow-through type ion sensor according to the present invention. 1...ISFET, 2...Source electrode, 3...Drain electrode, 20...Lid.

Claims (1)

【特許請求の範囲】[Claims] 1 平板状の基板に形成された細長状の凹状溝内
に電界効果トランジシタ型イオンセンサのゲート
感応領域を設けるとともに該細長状の溝に蓋を一
体的に取り付けたことを特徴とするフロースルー
セル型イオンセンサ。
1. A flow-through cell characterized in that a gate sensitive region of a field effect transistor type ion sensor is provided in an elongated concave groove formed in a flat substrate, and a lid is integrally attached to the elongated groove. type ion sensor.
JP59276661A 1984-12-25 1984-12-25 Flow-through cell type ion sensor Granted JPS61151453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59276661A JPS61151453A (en) 1984-12-25 1984-12-25 Flow-through cell type ion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59276661A JPS61151453A (en) 1984-12-25 1984-12-25 Flow-through cell type ion sensor

Publications (2)

Publication Number Publication Date
JPS61151453A JPS61151453A (en) 1986-07-10
JPH0374952B2 true JPH0374952B2 (en) 1991-11-28

Family

ID=17572555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59276661A Granted JPS61151453A (en) 1984-12-25 1984-12-25 Flow-through cell type ion sensor

Country Status (1)

Country Link
JP (1) JPS61151453A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2641506B2 (en) * 1988-06-24 1997-08-13 株式会社日立製作所 Liquid chromatograph detector

Also Published As

Publication number Publication date
JPS61151453A (en) 1986-07-10

Similar Documents

Publication Publication Date Title
US4764797A (en) Chemical-sensitive semiconductor device
JP3111283B2 (en) Miniaturized chemical biosensor device having an ion-selective membrane and method for producing a support for the device
Miyahara et al. Integrated enzyme FETs for simultaneous detections of urea and glucose
EP0063455B1 (en) Method for the fabrication of encapsulated chemoresponsive microelectronic device arrays
US5138251A (en) Fet sensor apparatus of flow-cell adaptive type and method of manufacturing the same
JPH073321Y2 (en) Flow-through hydrogen peroxide electrode
US7435610B2 (en) Fabrication of array pH sensitive EGFET and its readout circuit
Hanazato et al. Glucose sensor based on a field-effect transistor with a photolithographically patterned glucose oxidase membrane
US5387328A (en) Bio-sensor using ion sensitive field effect transistor with platinum electrode
Schöning et al. Miniaturised flow-through cell with integrated capacitive EIS sensor fabricated at wafer level using Si and SU-8 technologies
Urban et al. Performance of integrated glucose and lactate thin-film microbiosensors for clinical analysers
EP0328108B1 (en) Electrochemical sensor facilitating repeated measurement
Steinkuhl et al. Micromachined glucose sensor
Arquint et al. Organic membranes for miniaturized electrochemical sensors: Fabrication of a combined pO2, pCO2 and pH sensor
JPH0374952B2 (en)
US10739301B2 (en) Field-effect transistor, biosensor comprising the same, method of manufacturing field-effect transistor, and method of manufacturing biosensor
JP3064468B2 (en) Component analyzer
JPS59206756A (en) Fet chemical sensor combined with reference electrode
JPS59178353A (en) Flow-type semiconductor chemical sensor
JPS62132160A (en) Biosensor using separation gate type isfet
JPH0422293Y2 (en)
US20050147741A1 (en) Fabrication of array PH sensitive EGFET and its readout circuit
KR0168828B1 (en) Dissolved gas sensor for semiconductor
KR20150073782A (en) Urine glucose sensing panel
Sakai et al. A nozzle-type ultra-micro-volume multi-ion sensor using a rear-gate SIS/ISFET

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees