JPS61151453A - Flow-through cell type ion sensor - Google Patents

Flow-through cell type ion sensor

Info

Publication number
JPS61151453A
JPS61151453A JP59276661A JP27666184A JPS61151453A JP S61151453 A JPS61151453 A JP S61151453A JP 59276661 A JP59276661 A JP 59276661A JP 27666184 A JP27666184 A JP 27666184A JP S61151453 A JPS61151453 A JP S61151453A
Authority
JP
Japan
Prior art keywords
flow
ion sensor
cell type
type ion
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59276661A
Other languages
Japanese (ja)
Other versions
JPH0374952B2 (en
Inventor
Makoto Yano
誠 矢野
Hidehiko Iketani
池谷 秀彦
Kazunobu Kitano
北野 一信
Michihiro Nakamura
通宏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP59276661A priority Critical patent/JPS61151453A/en
Publication of JPS61151453A publication Critical patent/JPS61151453A/en
Publication of JPH0374952B2 publication Critical patent/JPH0374952B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Abstract

PURPOSE:To obtain a flow-through cell type analyser capable of measuring concn. from a small amount of a specimen, by providing the gate responsive region of an ion sensor in the elongated recessed groove formed to a flat substrate. CONSTITUTION:The title flow-through cell type ion sensor 1 constituted of ISFET12, wherein an elongated recessed groove 11 forming a specimen flow channel is provided to a flat silicon substrate 10, and lid 3 integrally attached to said groove 11. The gate responsive region of ISFET is formed to the recessed groove 11 and the source electrode 2 and drain electrode 3 of the ion sensor 1 are respectively connected to lead wires 4. The specimen enters the cell 1 from an inflow port 5 and passes on the gate responsive region to be flowed out of an outflow port 6. The length, width and thickness of the flow-through cell type ion sensor are respectively several ten-several mm and there is no joint part between cells and, therefore, measurement using an extremely small amount of a specimen is enabled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は小型のフロースルーセルタイプの分析機器に用
いるためのフロースルーセル型イオンセンサに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a flow-through cell type ion sensor for use in a small-sized flow-through cell type analytical instrument.

(従来の技術とその問題点) 従来より血液、尿等の検体試料をセル内を通過せしめ、
セルに組み込まれたイオンセンサによりその濃度を測定
するフロースルーセル型分析器は少量の試料で測定が可
能であるため、医療診断の分野で数多く用いられている
。しかしながら血液、尿などの検体検査においては、血
清肝炎などに感染する危険性があるためより少量の検体
試料で測定できるフロースルーセル型分析器の開発が望
まれている。かかる要望に答えるものとして最***板状
の基板表面にゲート感応領域を有する電界効果トランジ
スタ型イオンセンサ(以下l8FJ!;Tという)を用
いたフロースルーセル型分析器が提案された。(01i
n chem 30/1 135 (1984)  )
この分析器は平板状の基板に形成されたl8NETのゲ
ート感応領域を軟質塩ビチューブの側壁開口部に配置せ
しめて、l81i’ETの基板をチューブに接着してチ
ューブとl8NETを一体化したもので、少量の検体試
料で測定が可能であるが18FETのボンディング部の
絶縁のためにボンディング部がちりあがることや、配管
に従来の軟質塩ビチューブを用いる必要があること等か
ら従来の分析器に比べて格段に容積が小さくなっている
とはいいがたい。
(Conventional technology and its problems) Conventionally, specimen samples such as blood and urine are passed through a cell,
Flow-through cell analyzers, which measure the concentration of ions using ion sensors built into the cell, are widely used in the field of medical diagnosis because they can perform measurements with a small amount of sample. However, in testing samples such as blood and urine, there is a risk of infection with serum hepatitis, etc., so there is a desire to develop a flow-through cell type analyzer that can perform measurements with a smaller amount of sample. In order to meet this demand, a flow-through cell type analyzer using a field effect transistor type ion sensor (hereinafter referred to as 18FJ!; T) having a gate sensitive region on the surface of a flat substrate has recently been proposed. (01i
n chem 30/1 135 (1984))
This analyzer has the l8NET gate sensitive region formed on a flat substrate placed in the side wall opening of a soft PVC tube, and the l81i'ET substrate is glued to the tube to integrate the tube and l8NET. , it is possible to measure with a small amount of sample, but compared to conventional analyzers, the bonding part of the 18FET rises due to insulation, and it is necessary to use conventional soft PVC tubes for piping. It is hard to say that the volume has become significantly smaller.

(問題点を解決するための手段) 本発明音らはl8FETを用いたフロースルーセ小型分
析器用の改良された小型のフロースルーセル型イオンセ
ンサを提供するため鋭意検討した結果本発明に到達した
ものである。すなわち本発明は平板状の基板に形成され
た細長状の凹状溝内に付けたことを特徴とするフロース
ルーセル型イオンセンサである。
(Means for Solving Problems) The present invention We have arrived at the present invention as a result of intensive studies to provide an improved small-sized flow-through cell type ion sensor for use in a small-sized flow-through cell analyzer using an 18FET. It is something. That is, the present invention is a flow-through cell type ion sensor characterized in that it is installed in an elongated concave groove formed in a flat substrate.

(実 施 例) 以下本発明の一実施例を図面にて説明する。第1図は検
体試料の流入路及び流出・路を接続したフロースルーセ
ル型イオンセンサの斜視図であり、フロースルーセル型
イオンセンサ1のソースa4−2、ドレイン電極3はそ
れぞれリード線4に接続されている。検体試料が流入口
5よりセルに入り、ゲート感応領域上を通り、流出口6
より流出する構造となっている。流入出口を逆に用いて
も何ら支障はない。第2図は第1図に示したフロースル
ーセル型イオンセンサの流路垂直方向の断面図であり、
平板状のシリコン基板10に検体試料流路を形成する細
長状の凹状溝11を有するl8FET工2と該溝に一体
的に取り付けられた蓋13で構成されている。上記凹状
溝11にはI 8 FETのゲート感応領域が形成され
ている。該ゲート感応領域は8t02層14と8i3N
4層15が形成され、この18 FETは水素イオンに
感応する。該8i3N4層15にさらに他の化学物質感
応膜を被覆することもできる。
(Example) An example of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a flow-through cell type ion sensor in which the inflow and outflow channels of the specimen sample are connected, and the source a4-2 and drain electrode 3 of the flow-through cell type ion sensor 1 are connected to the lead wire 4, respectively. It is connected. The specimen sample enters the cell through the inlet 5, passes over the gate sensitive area, and passes through the outlet 6.
It has a structure that allows for more outflow. There is no problem even if the inlet and outlet are used in reverse. FIG. 2 is a cross-sectional view in the vertical direction of the flow channel of the flow-through cell type ion sensor shown in FIG.
It is composed of an 18FET device 2 having an elongated concave groove 11 forming a sample flow path on a flat silicon substrate 10, and a lid 13 integrally attached to the groove. A gate sensitive region of an I 8 FET is formed in the concave groove 11 . The gate sensitive region consists of 8t02 layer 14 and 8i3N
Four layers 15 are formed and this 18 FET is sensitive to hydrogen ions. The 8i3N4 layer 15 can also be further coated with another chemical sensitive film.

本発明のフロースルー型イオンセンサは次のようにして
作製することができる。なお第3図〜第9図の(&)は
平面図を、また(b)は断面図を示す。
The flow-through type ion sensor of the present invention can be manufactured as follows. Note that (&) in FIGS. 3 to 9 indicates a plan view, and (b) indicates a sectional view.

まずフロースルー型イオンセンサを作製すべき平板状の
基板10に細長状の溝11を形成する。
First, an elongated groove 11 is formed in a flat substrate 10 on which a flow-through type ion sensor is to be manufactured.

本例では基板に半導体用のP型シリコンウェファを用い
て第3図(alの斜線の部分をホトレジスト16で覆い
、水−アミン系液によるエツチングにより溝を形成する
。この場合シリコン基板は結晶面に沿って異方性エツチ
ングを受け、第4図の如く面に対して斜めの角度を持っ
た溝11が形成される。このように溝面が上を向いてい
ないと、後のホトエツチングができず不都合である。溝
の形成はホトエツチングの他に機械的な切削により形成
してもよく、また溝は必ずしも本例のように直線でなく
曲がっていてもよい。溝の深さはあまり大きいとセル容
積を小さくするという本発明の目的より゛はずれ、また
あまり小さいと、注入口との接続が困難となり、また血
液等の測定において血球等の異物が詰まりやすくなるの
で通常10μ〜:1mが適当である。溝の巾もあまり広
いとセルの内容積が大となり、あまり狭いと工81i’
ETの作製が困難となるので200μ〜5順が好ましい
In this example, a P-type silicon wafer for semiconductors is used as the substrate, and the diagonally shaded portions (al) in FIG. Anisotropic etching is performed along the grooves, forming grooves 11 having an oblique angle to the surface as shown in Fig. 4. If the groove surfaces do not face upward in this way, later photo-etching will be difficult. The grooves may be formed by mechanical cutting in addition to photoetching, and the grooves may not necessarily be straight as in this example but may be curved.If the depth of the grooves is too large, This deviates from the purpose of the present invention, which is to reduce the cell volume, and if it is too small, it will be difficult to connect with the injection port, and it will be easy to get clogged with foreign matter such as blood cells when measuring blood, so 10 μm to 1 m is usually appropriate. If the width of the groove is too wide, the internal volume of the cell will become large, and if it is too narrow, the
The order of 200μ to 5 is preferable since it becomes difficult to produce ET.

基板の材質としてはシリコンの他にサファイア基板(ア
ルミナ)等を使うこともでき、る。この場合溝形成後l
8FETを作製するためにサファイア上にシリコン等の
半導体層を適切な方法、例えばエピタキシャル生長によ
り作製し以下の工程を行なう。
In addition to silicon, a sapphire substrate (alumina) or the like can also be used as the substrate material. In this case, after groove formation l
In order to fabricate an 8FET, a semiconductor layer of silicon or the like is fabricated on sapphire by an appropriate method, such as epitaxial growth, and the following steps are performed.

次にFETセンサのn拡散を行なう。これには第4図に
点線で示した部分17に通常の8i02層作製、ホトエ
ツチング、りん熱拡散を行なうことにより第5図に示す
ようなn型の拡散層17を作る。
Next, perform n-diffusion of the FET sensor. For this purpose, an n-type diffusion layer 17 as shown in FIG. 5 is formed by forming a normal 8i02 layer, photoetching, and phosphorescence diffusion in a portion 17 shown by a dotted line in FIG.

この時のl8FETの数はi個でも複数でもよいが、l
8FETのゲート領域は必ず溝の中に、また電極部は溝
の外に位置するようにパターンを形成しなければならな
い。もちろん、n拡散層の形成は他の方法、例えばイオ
ン打込法等で行ってもかまわない。
The number of l8FETs at this time may be i or more than one, but l
The pattern must be formed so that the gate region of the 8FET is always located within the trench, and the electrode portion is located outside the trench. Of course, the n-diffused layer may be formed by other methods, such as ion implantation.

n型の拡散層を作られたウェハーは次に第6図の斜線で
囲まれたゲート部以外の部分18にP”の拡散(チャネ
ルストッパー形成)を行ない、ゲート部分以外に電流が
流れないようにする。
Next, on the wafer on which the n-type diffusion layer has been formed, P" is diffused (to form a channel stopper) in the area 18 other than the gate area surrounded by diagonal lines in FIG. 6 to prevent current from flowing outside the gate area. Make it.

さらに第7図に示すようにP4拡散層18の上にウェハ
表面全体に8i0□、8i3N4の二重の絶縁膜14.
15を形成する。この絶縁膜はCVDにより形成するこ
とができる。この絶縁膜14.15の厚みは、膜の外の
電界がl8FETのチャネルに十分効果を及ぼしうるも
のでなければならず、300゛λ 〜1μの厚さが必要
である。通常1000〜3000λである。
Furthermore, as shown in FIG. 7, a double insulating film 14 of 8i0□ and 8i3N4 is formed over the entire wafer surface on the P4 diffusion layer 18.
form 15. This insulating film can be formed by CVD. The thickness of this insulating film 14, 15 must be such that the electric field outside the film can have a sufficient effect on the channel of the 18FET, and the thickness is required to be 300°λ to 1μ. Usually it is 1000-3000λ.

8+3’N4を最外層に形成したl8FETはpH感応
性となっているが他のイオンに感応するように、イオン
感応膜、酵素固定化膜をF E Tのゲート表面につけ
ることにより、様々なイオン、化学物質に対するセンサ
を作ることができる。このような感応膜としてはNa@
に+に感応するガラス膜、CI!−1F−等に感応する
固体膜、カヂウム、カルシウムに(0応する高分子マ)
 IJフックス中分散しだ液膜、グルコースオキシダー
ゼ、ウレアーゼ等の酵素を高分子膜に固定化したグルコ
ース感応膜、尿素感応膜等の酵素固定化膜等がある。
The 18FET with 8+3'N4 formed on the outermost layer is pH sensitive, but by attaching an ion-sensitive membrane and an enzyme-immobilized membrane to the gate surface of the FET so that it is sensitive to other ions, various Sensors for ions and chemicals can be created. As such a sensitive film, Na@
A glass membrane sensitive to +, CI! -1F-, etc.-sensitive solid membrane, cadium, calcium (0-sensitive polymer matrix)
There are enzyme-immobilized membranes such as a salivary fluid membrane dispersed in IJ Fuchs, a glucose-sensitive membrane in which enzymes such as glucose oxidase and urease are immobilized on a polymer membrane, and a urea-sensitive membrane.

このフロースルーセル型センサで複数の化学物質を測定
するためには個々のNETゲート絶縁膜上にそれぞれ異
なる物質に感応する膜を形成する必要がある。感応膜形
成工程は、例えばTa205膜のように膜が電極形成工
程に耐える場合は8i3N4膜形成後行なってもよいが
、一般には次の電極形成工程後行なわれる。すなわち第
呑図に示すように8+3N4膜15を形成したl8NE
Tは、第8図に□ 示すように溝の外の部分に電極部2
.3を層成する。そのためには、まず電極部の813N
4.8 s 02をホトエツチングにより取り除き、電
極となる金属の蒸着を行なう。第8図では金属にアルミ
を用い、このアルミの電極は基板の端まで蒸着されてお
り、ここで、コネクタに、つながるようになっている。
In order to measure a plurality of chemical substances with this flow-through cell type sensor, it is necessary to form films sensitive to different substances on each NET gate insulating film. The sensitive film forming step may be performed after forming the 8i3N4 film if the film can withstand the electrode forming step, such as a Ta205 film, but is generally performed after the next electrode forming step. In other words, as shown in FIG.
T is the electrode part 2 on the outside of the groove as shown in Figure 8.
.. Layer 3. To do this, first, the 813N of the electrode part
4.8 S02 is removed by photoetching, and a metal that will become an electrode is deposited. In FIG. 8, aluminum is used as the metal, and electrodes of this aluminum are deposited to the edge of the board, where they are connected to the connector.

このような電極は各l5FETにつきソース7及びドレ
イン8の2個づつ形成しなければならない。
Two such electrodes, source 7 and drain 8, must be formed for each 15FET.

このようにして作製されたl8FETは第9図のように
溝の外側に平面状の蓋20を接着剤もしくはバッキング
を用いて取付けることによりフロースルー型イオンセン
サが完成する。この蓋はガラスが通常用いられる。
A flow-through type ion sensor is completed by attaching a planar lid 20 to the outside of the groove using an adhesive or a backing for the 18FET thus manufactured as shown in FIG. Glass is usually used for this lid.

(効  果) このようにして作製されるフロースルーセル型イオンセ
ンサはたて、横、厚さのすべてが数十〜数国であり、セ
ル間のつぎめもないことから、非常に小量の検体試料で
の測定が可能で、例えば電極をコネクタを通じ測定回路
と接続し、1端の穴に数μlの血清滴をつければ、血清
は毛管現象で中に吸込まれ、わずか−滴の血液で複数の
化学成分量の測定を行なうことができるなどの優れた効
果を有している。
(Effects) The flow-through cell type ion sensor manufactured in this way has a height, width, and thickness of several tens to several centimeters, and there is no joint between the cells, so it can be used in very small quantities. It is possible to measure a specimen sample, for example, by connecting the electrode to the measurement circuit through a connector and placing a few microliters of serum drop into the hole at one end, the serum will be sucked into it by capillary action, and only a small drop of blood will be absorbed. It has excellent effects such as being able to measure the amounts of multiple chemical components.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のフロースルー型イオンセンサの全体図
、第2図は第1図のセンサの流路断面図、第3図(a)
〜第9図(b)及び、第3図(b)〜第9図(blは本
発明によるフロースルー型イオンセンサの各作製工程に
おける平面図と断面図である。
Figure 1 is an overall view of the flow-through type ion sensor of the present invention, Figure 2 is a sectional view of the flow path of the sensor in Figure 1, and Figure 3 (a).
-FIG. 9(b) and FIG. 3(b)-FIG. 9 (bl are plan views and cross-sectional views in each manufacturing process of the flow-through type ion sensor according to the present invention.

Claims (1)

【特許請求の範囲】 平板状の基板に形成された細長状の凹状溝内に電界効果
トランジシタ型 イオンセンサのゲート感応領域を設けるとともに該細長
状の溝に蓋を一体的に取り付けたことを特徴とするフロ
ースルーセル型イオンセンサ。
[Scope of Claims] A gate sensitive region of a field effect transistor type ion sensor is provided in an elongated concave groove formed in a flat substrate, and a lid is integrally attached to the elongated groove. A flow-through cell type ion sensor.
JP59276661A 1984-12-25 1984-12-25 Flow-through cell type ion sensor Granted JPS61151453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59276661A JPS61151453A (en) 1984-12-25 1984-12-25 Flow-through cell type ion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59276661A JPS61151453A (en) 1984-12-25 1984-12-25 Flow-through cell type ion sensor

Publications (2)

Publication Number Publication Date
JPS61151453A true JPS61151453A (en) 1986-07-10
JPH0374952B2 JPH0374952B2 (en) 1991-11-28

Family

ID=17572555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59276661A Granted JPS61151453A (en) 1984-12-25 1984-12-25 Flow-through cell type ion sensor

Country Status (1)

Country Link
JP (1) JPS61151453A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321354A (en) * 1988-06-24 1989-12-27 Hitachi Ltd Detector for liquid chromatograph

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321354A (en) * 1988-06-24 1989-12-27 Hitachi Ltd Detector for liquid chromatograph

Also Published As

Publication number Publication date
JPH0374952B2 (en) 1991-11-28

Similar Documents

Publication Publication Date Title
US4502938A (en) Encapsulated chemoresponsive microelectronic device arrays
US4764797A (en) Chemical-sensitive semiconductor device
US6123820A (en) Sensor cartridges
ES2247090T3 (en) A MEDICAL DIAGNOSTIC DEVICE FOR CAPILLARY FLOW CONTROL.
CA1059645A (en) Selective chemical sensitive fet transducers
US5138251A (en) Fet sensor apparatus of flow-cell adaptive type and method of manufacturing the same
JP2610294B2 (en) Chemical sensor
Hanazato et al. Glucose sensor based on a field-effect transistor with a photolithographically patterned glucose oxidase membrane
US7435610B2 (en) Fabrication of array pH sensitive EGFET and its readout circuit
Urban et al. Performance of integrated glucose and lactate thin-film microbiosensors for clinical analysers
US20230032773A1 (en) Analyte sensing system and cartridge thereof
KR101901193B1 (en) Biosensor
JPS61151453A (en) Flow-through cell type ion sensor
US20190310225A1 (en) Microfluidic organic electrochemical transistor sensors for real time nitric oxide detection
US10710068B2 (en) Microfluidic chip with chemical sensor having back-side contacts
JP3064468B2 (en) Component analyzer
EP3951374A1 (en) Biosensor system for multiplexed detection of biomarkers
JPH0469338B2 (en)
KR20180019432A (en) Multi-sensor of nano-floating structure and manufacturing method thereof
JPS6224141A (en) Chemical substance detector
JPS59178353A (en) Flow-type semiconductor chemical sensor
KR20150023733A (en) Analytical test strip with capillary sample-receiving chambers separated by stop junctions
US20210255140A1 (en) Fluidic stack and reference electrode for sample collection and analysis and related methods
JPH01219659A (en) Solution component sensor
JPH0422293Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees