JPH0374047A - Battery - Google Patents

Battery

Info

Publication number
JPH0374047A
JPH0374047A JP1210872A JP21087289A JPH0374047A JP H0374047 A JPH0374047 A JP H0374047A JP 1210872 A JP1210872 A JP 1210872A JP 21087289 A JP21087289 A JP 21087289A JP H0374047 A JPH0374047 A JP H0374047A
Authority
JP
Japan
Prior art keywords
battery
oxygen
gas diffusion
diffusion electrode
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1210872A
Other languages
Japanese (ja)
Inventor
Akira Hanabusa
花房 彰
Shigeto Noya
重人 野矢
Masaaki Yoshino
芳野 公明
Nobuyuki Yanagihara
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1210872A priority Critical patent/JPH0374047A/en
Publication of JPH0374047A publication Critical patent/JPH0374047A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PURPOSE:To take oxygen into a battery at an adequate speed and to prevent penetration of water vapor and carbon dioxide by interposing a three-layer structure oxygen selectively permeable composite film prepared by sticking water-repellent gas permeable films on both sides of a hygroscopic microporous film between the air intake side of a gas diffusion electrode and the inner surface of a battery container. CONSTITUTION:A battery has a gas diffusion electrode 1 which uses oxygen as an active material and a battery container 10 having an air intake hole 3 communicating with the atmosphere. A three-layer structure oxygen selectively permeable composite film 11 prepared by sticking water-repellent gas permeable films 2 on both sides of a hygroscopic microporous film 11 is interposed between the air intake side of the gas diffusion electrode 1 and the inner surface of the battery container 10. The composite film 11 is formed, for example, by sputtering polytetrafluoroethylene used as a target on both sides of a microporous cellulose ester film. An adequate oxygen-permeable speed is maintained and penetration of water vapor and carbon dioxide in the air into the battery are prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸素をf8物質に用いるガス拡散電極と、ア
ルカリ水溶液からなる電解液と、亜鉛、マグネシウム、
アルミニウム等の金属、もしくはアルコール、ヒドラジ
ン、水素等の負極活物質とを備えた電池に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas diffusion electrode using oxygen as an F8 substance, an electrolyte consisting of an alkaline aqueous solution, zinc, magnesium,
The present invention relates to a battery comprising a metal such as aluminum, or a negative electrode active material such as alcohol, hydrazine, or hydrogen.

従来の技術 ガス拡散電極を備え、酸素を活物質とする電池としては
、空気電池、燃料電池等がある。特にアルカリ水溶液、
中性塩水溶液を電解質として使用する電池においては、
ガス拡散電極(酸素極)より内部の蒸気圧に応じて水蒸
気の出入りがあり、電池的電解液の濃度変化、体積変化
が起こり、これが電池の緒特性に影響を与えていた。ボ
タン型空気電池を例にと9、第2図を用いてその状況を
説明する。1は酸素極(空気極〉、2はガス拡散性はあ
るが液体は阻止するポリテトラフルオロエチレン(PT
FE)よりなり酸素極1を支持する多孔性撥水膜である
。3は外部からの空気取入れ孔、4は空気の拡散を行う
多孔体、5.6はセパレータ、7は負極亜鉛で、これら
に含浸保持されるアルカリ電解液には水酸化カリウム水
溶液を使用し、その濃度は30〜35重量%としている
BACKGROUND OF THE INVENTION BACKGROUND ART Batteries equipped with gas diffusion electrodes and using oxygen as an active material include air cells, fuel cells, and the like. Especially alkaline aqueous solution,
In batteries that use a neutral salt aqueous solution as the electrolyte,
Water vapor flows in and out from the gas diffusion electrode (oxygen electrode) depending on the internal vapor pressure, causing changes in the concentration and volume of the battery electrolyte, which affected the battery's performance. Taking a button-type air battery as an example, the situation will be explained using FIG. 2. 1 is an oxygen electrode (air electrode), 2 is a polytetrafluoroethylene (PT) that has gas diffusion properties but blocks liquids.
This is a porous water-repellent membrane made of FE) that supports the oxygen electrode 1. 3 is an air intake hole from the outside, 4 is a porous body for air diffusion, 5.6 is a separator, 7 is a negative electrode zinc, and the alkaline electrolyte impregnated and retained in these is a potassium hydroxide aqueous solution, Its concentration is 30 to 35% by weight.

このため相対湿度が47〜59%より高いと外部の湿気
を取り込み、電解液濃度の低下と体積Il領とが起こり
、放電性能の低下、電解液の漏液を生じていた。一方、
相対湿度が前記以下の場合には電解液の蒸発が起こり、
内部抵抗の増大や放電性能の低下をもたらしていた。従
って、環境雰囲気による影響を受は易いため、長期間保
存後の電池特性に問題が生じ、これが空気電池や燃料!
池を特定の分野での使用に制約し、その汎用化を図る上
で大きな課題を有していた。なお、図中8は負極亜鉛7
を収容した負極容器、9は絶縁ガスケット、10は正極
容器である。
For this reason, when the relative humidity is higher than 47% to 59%, external moisture is taken in, resulting in a decrease in the electrolyte concentration and volume Il area, resulting in a decrease in discharge performance and leakage of the electrolyte. on the other hand,
If the relative humidity is below the above, evaporation of the electrolyte will occur,
This resulted in an increase in internal resistance and a decrease in discharge performance. Therefore, since it is easily affected by the environmental atmosphere, problems arise with the battery characteristics after long-term storage, which causes problems with air batteries and fuel!
The use of ponds was restricted to specific fields, and there were major challenges in trying to make them more general-purpose. In addition, 8 in the figure is negative electrode zinc 7
9 is an insulating gasket, and 10 is a positive electrode container.

発明が解決しようとする課題 これらの課題を改善するため、従来より種々のi案がな
されてきた0例えば、空気孔周辺の一部に電解液と反応
する物質を挿入し、電池外部への電解液漏出を防止する
。あるいは紙または高分子材料よりなる不織布等の電解
液吸収材を設けて、電池外部への電解液漏出を防止する
。さらには空気孔を極端に小さくして酸素の供給量を制
限してまでも、水蒸気や炭酸ガスの電池内部への進入を
防止する等の提案がなされている。しかし、いずれの方
法も漏液防止や放電性能、特に長時間放電での性能に大
きな問題を烈していた。これらの主要原因は空気中の水
蒸気の電池内への進入によるアルカリ電解液の希釈と体
積膨張、及び炭酸ガスの通人による炭酸塩の生成に基づ
く放電反応の阻害と空気流通経路の閉塞によるもので、
外気が低湿度の場合には逆に電解液中の水分の逸散が性
能低下の原因となっていた。この原因を取り除くため、
近年Tは、水蒸気や炭酸ガスの透過量を制御し、選択的
に酸素を優先して透過させる躾を介して空気をM負極に
供給する方法、例えばオルガノポリシロキサン系の無孔
性の均一な落馬や金属酸化物、あるいは金属元素を含有
する有鑞化合物の薄鵬と適宜な多孔性戚とを一体化させ
た躾を用いる方法がmsされている。
Problems to be Solved by the Invention In order to improve these problems, various proposals have been made in the past. Prevent liquid leakage. Alternatively, an electrolyte absorbing material such as a nonwoven fabric made of paper or a polymeric material is provided to prevent leakage of the electrolyte to the outside of the battery. Furthermore, proposals have been made to prevent water vapor and carbon dioxide from entering the inside of the battery, even by making the air holes extremely small to limit the amount of oxygen supplied. However, both methods had serious problems in preventing leakage and discharge performance, especially in long-term discharge performance. The main causes of these are dilution and volumetric expansion of the alkaline electrolyte due to the entry of water vapor in the air into the battery, and obstruction of the discharge reaction due to the formation of carbonates due to the passage of carbon dioxide gas and blockage of the air circulation path. in,
Conversely, when the outside air has low humidity, the loss of moisture in the electrolyte causes a decline in performance. In order to eliminate this cause,
In recent years, methods for supplying air to the M negative electrode through a method that controls the amount of permeation of water vapor and carbon dioxide gas and selectively allows oxygen to permeate, for example, non-porous homogeneous organopolysiloxane-based A method using a method that integrates a metal oxide, a metal oxide, or a metal compound containing a metal element with a suitable porous material has been proposed.

発明が解決しようとする課題 しかしながら、現在までのところ、充分に有効な酸素選
択透過性が得られないことから、満足な放電性能は得ら
れず、電池として長期の使用や貯蔵に耐えられないので
、その実用化に至っていないという技術課題を持ってい
た。
Problems to be Solved by the Invention However, to date, it has not been possible to obtain sufficiently effective oxygen permselectivity, so satisfactory discharge performance has not been obtained, and batteries cannot withstand long-term use or storage. However, there were technical issues that prevented it from being put into practical use.

そこで本発明は上記の電池の貯蔵性、長期使用における
性能を改善すると共に、軽負荷から重負荷に至る広い放
電条件で満足な放電性能を得るために、大気中の酸素を
選択的に充分な速度で電池内に取り入れると共に、水蒸
気の電池への出入りと、大気中の炭酸ガスの電池内への
進入を長期にわたり防止する有効な手段を提供すること
を目的にするものである。
Therefore, the present invention aims to improve the storability and long-term use performance of the above-mentioned battery, as well as to selectively remove oxygen from the atmosphere in order to obtain satisfactory discharge performance under a wide range of discharge conditions from light loads to heavy loads. The purpose of this invention is to provide an effective means to introduce water vapor into the battery at a high speed and prevent water vapor from entering and exiting the battery, and carbon dioxide from the atmosphere from entering the battery for a long period of time.

1lJ1を解決するための手段 上記の目的を達成するため、本発明は酸素を活物質とす
るガス拡散電極と、外気に通じる空気取入れ孔を有する
電池容器を備えた電池のガス拡散電極の空気取入れ側と
電池容器内面との間に、吸湿性徴多孔層の同調に、撥水
性を持つ気体透過性鵬を当接させた3層構造の酸素選択
透過性複合鵬を介在させたものである。
Means for Solving 1lJ1 In order to achieve the above object, the present invention provides an air intake method for a gas diffusion electrode of a battery comprising a gas diffusion electrode using oxygen as an active material and a battery container having an air intake hole communicating with the outside air. A three-layer oxygen-selective permeability composite layer is interposed between the side and the inner surface of the battery container, in which a water-repellent, gas-permeable layer is brought into contact with a hygroscopic porous layer.

本発明は、酸素選択透過性の優れた躾として吸湿性徴多
孔真の両側を撥水性の気体透過性躾ではさんだ構成の複
合朧の大きい酸素選択性透過能に着目したものである。
The present invention focuses on the high oxygen selective permeability of a composite material having a structure in which a hygroscopic porous core is sandwiched between water-repellent gas permeable materials on both sides as a material having excellent oxygen selective permeability.

この麿が、111&荷での満足な放電性能を帰るために
必要な酸素透過速度と、長期保存や低湿度下あるいは、
高湿度雰囲気下での長期放電に耐えるだけの水蒸気及び
炭酸ガスに対する透過阻止能とを持ち、この膜を適用し
た電池の性能がきわめて優れていることを見い出し、完
成させたものである。
This material has the oxygen permeation rate necessary for achieving satisfactory discharge performance under 111& load, long-term storage, low humidity, or
They discovered and completed the membrane that it has sufficient permeation blocking ability against water vapor and carbon dioxide to withstand long-term discharge in a high-humidity atmosphere, and that the performance of batteries to which this membrane is applied is extremely excellent.

作用 この構成による複合膜は、渣述の実施例における電池試
験の結果からも明らかなように、電池用としての良好な
酸素透過速度と、空気中の水蒸気や炭酸ガスの電池内へ
の進入を遮断する効果を共に満足すべき状態に保て、実
用的な電池に要求される重負荷放電性能と、高温度や低
温度の雰囲気下で長時間放電した場合の性能も共に満足
することとなる。
Function: As is clear from the results of the battery test in the example described above, the composite membrane with this configuration has a good oxygen permeation rate for batteries and prevents water vapor and carbon dioxide from entering the battery. The blocking effect can both be maintained in a satisfactory state, and both the heavy load discharge performance required for practical batteries and the performance when discharging for a long time in high or low temperature atmospheres are also satisfied. .

実施例 (実yi例1) 平均孔径0.OJumIj51am孔を有する厚さ12
5μmのセルロースエステルII(商品名、ミリポアメ
ンブランフィルタ−: ミリボアコーポレーション製)
の両面に、ポリテトラフロロエチレン(PTFE)をタ
ーゲットとし、圧力2X10”Torrで、RF電力1
00Wのスパッター条件にて、それぞれ2000Aの厚
みの薄膜を形成し複合膜とした。
Example (Example 1) Average pore diameter: 0. Thickness 12 with OJumIj51am hole
5 μm cellulose ester II (trade name, Millipore membrane filter: manufactured by Millipore Corporation)
Polytetrafluoroethylene (PTFE) was targeted on both sides of the
Thin films each having a thickness of 2000 A were formed under sputtering conditions of 00 W to form a composite film.

(実施例2) 実施例1で用いたものと同仕様のセルロースエステル族
の両面に、約2μmの厚さのシリコーン樹脂WIllI
を、ロールコータ−にて塗布して複合膜とした。
(Example 2) Silicone resin WIllI with a thickness of about 2 μm was applied to both sides of a cellulose ester group having the same specifications as that used in Example 1.
was applied using a roll coater to form a composite film.

(実施例3〉 厚さ180μmの芳11族ポリアミド繊維よりなる微多
孔膜の両面に、実施例2と同様に、シリコーン樹脂11
mを塗布して複合膜とした。
(Example 3) In the same manner as in Example 2, silicone resin 11
A composite film was prepared by applying m.

(比較例1) 補強用のポリプロピレン製不織布上に、厚さ50μmで
ポリジメチルシロキサン膜を製膜して複合膜とした。
(Comparative Example 1) A polydimethylsiloxane film was formed to a thickness of 50 μm on a reinforcing polypropylene nonwoven fabric to obtain a composite film.

(比較例2〉 厚さ100μmのポリプロピレン製不織布の両側に、シ
リコーン樹脂薄膜をコーチイブして複合膜とした。
(Comparative Example 2) A composite membrane was prepared by coating silicone resin thin films on both sides of a 100 μm thick polypropylene nonwoven fabric.

(比較例3) 多孔性撥水躾は使用するが、複合膜を用いないもの。(Comparative example 3) A porous water repellent film is used, but a composite membrane is not used.

本発明の効果を*aするために、実施例1〜3で作成し
た複合膜、及び比較例1.2の複合膜を使用した電池と
、複金属を使用していない電池を試作胛部して検討した
。まず、複金属を用いない比較例3の場合は第2図と全
く同一の構成とした次に、複合膜を使用した電池は、第
1図に示すようにPTFEの多孔112と、酸素の流れ
を分数しかつ均一化させる多孔体4との間にそれぞれの
複合膜が介在した構成である。
In order to demonstrate the effects of the present invention *a, we produced prototype batteries using the composite membranes prepared in Examples 1 to 3 and the composite membranes of Comparative Example 1.2, and batteries that did not use composite metals. I considered it. First, in the case of Comparative Example 3, which does not use a double metal, the configuration was exactly the same as that shown in Figure 2. Next, as shown in Figure 1, the battery using the composite membrane has PTFE pores 112 and oxygen flow. In this structure, each composite membrane is interposed between the porous body 4 and the porous body 4, which makes the pores fractional and uniform.

試作した電池の寸法はいずれも直径11.6mm、総高
5.4mmであり、比較的重負荷(75Ω)で20°C
1常温(60%RH)での連続放電により電池内への空
気中の酸素取り込み速度の充足性を評領し、比較的重負
荷(3にΩ)で20@C1高湿度(90%RH)、およ
び低湿度(20%RH)での長時間連続放電により、長
期の放電期間中における雰囲気からの水蒸気の電池内へ
の取り込みや電池内の水分の蒸発、及び炭酸ガスの取り
込みなど電池性能への影響度を評価した。
The dimensions of the prototype batteries are 11.6 mm in diameter and 5.4 mm in total height, and the battery can withstand 20°C under a relatively heavy load (75Ω).
1 Evaluate the sufficiency of the rate of oxygen uptake from the air into the battery by continuous discharge at room temperature (60% RH), and evaluate the sufficiency of the oxygen uptake rate in the air into the battery by continuous discharge at room temperature (60% RH). , and long-term continuous discharge at low humidity (20% RH) will affect battery performance, such as the incorporation of water vapor from the atmosphere into the battery, evaporation of moisture within the battery, and incorporation of carbon dioxide gas during the long-term discharge period. The degree of influence was evaluated.

試作した電池の内訳は第1表に示す通りであるここで、
比較例1. 2と実施例1〜3を比較すれば明らかなよ
うに、酸素と水蒸気のガス透過速度比は、比較例では、
いずれもL以下であり、電池用の膜としては、酸素選択
性透過膜とはいえない、しかし、実施例では、いずれも
5以上であり本発明の複合膜は優れた酸素選択性透過能
を有していることがわかる。
The details of the prototype battery are shown in Table 1.Here,
Comparative example 1. As is clear from comparing 2 and Examples 1 to 3, the gas permeation rate ratio of oxygen and water vapor is as follows in the comparative example.
All of them are less than L, and cannot be said to be oxygen-selective permeable membranes as membranes for batteries. However, in the examples, all of them are 5 or more, and the composite membrane of the present invention has excellent oxygen-selective permeability. It can be seen that it has.

また第2表に試作電池の性能試験結果を示す。Table 2 also shows the performance test results of the prototype battery.

第2表において、放電終止電圧はいずれも0゜9vであ
り、重量変化は放電試験前後の増減を示しており、主と
して放電中の水分の取り込み、あるいは蒸発の多少を示
唆する数値である。
In Table 2, the end-of-discharge voltage is 0°9V in all cases, and the change in weight indicates the increase/decrease before and after the discharge test, and is a numerical value that mainly indicates the amount of moisture taken in or evaporated during discharge.

これらの電池の特性を、複合膜を使用していない比較例
3と対比すると最も端的に本発明の詳細な説明できる。
The present invention can be most clearly explained in detail by comparing the characteristics of these batteries with Comparative Example 3, which does not use a composite membrane.

まず20°C1常温での重負荷試験では放電時間が短く
、水分の取り込みや蒸発の影響や炭酸ガスの影響が少な
いので、電池の性能は酸素の供給速度が充分であれば水
分や炭酸ガスの透過阻止はあまり考慮する必要が無い、
従って、このような条件下では比較例3でも優れた特性
が得られる。
First, in a heavy load test at 20°C1 room temperature, the discharge time is short, and the effects of moisture uptake, evaporation, and carbon dioxide gas are small, so the battery performance can be improved by reducing moisture and carbon dioxide gas as long as the oxygen supply rate is sufficient. There is no need to consider blocking the transmission.
Therefore, under such conditions, excellent characteristics can be obtained even in Comparative Example 3.

これに対し、前述の実施例1〜3は比較例3と同等の放
電特性が得られており、複合膜を酸素が透過する速度が
放電反応で酸素が消費される速度に充分追随しているこ
とを示している。しかしながら、比較例1. 2は、酸
素透過速度が全く不足していることがわかる。
On the other hand, in Examples 1 to 3 described above, discharge characteristics equivalent to Comparative Example 3 were obtained, and the rate at which oxygen permeates through the composite membrane sufficiently follows the rate at which oxygen is consumed in the discharge reaction. It is shown that. However, Comparative Example 1. It can be seen that No. 2 has a completely insufficient oxygen permeation rate.

一方、軽負荷放電の場合は放電時間が長く、しかも外気
が高湿度あるいは低湿度の場合には酸素の供給速度より
も水分や炭酸ガス、特に水分の透過阻止が優れた電池特
性を得るために重要となり、水分や炭酸ガスの透過阻止
機構を持たない比較例3の電池は水分の枯渇、あるいは
逆に水分の過剰取入れによる漏液に起因した空気孔の閉
塞などにより、放電の途中で電圧が低下し、重負荷試験
で得られた放電容量の一部分に相当する容量が得られる
に過ぎない、また放電途中での漏液は実用面で致命的な
問題であることはいうまでもない、これに対して実施例
は極めて優れた性能を示し、これらは重負荷試験の放電
容量とほぼ等しい容量が得られている。これらの傾向は
試験雰囲気が高温度、低温度、いずれの場合とも同様で
ある。このことは、実施例の場合、複合膜の水分透過阻
止効果が充分に発揮されていることを示している。
On the other hand, in the case of light load discharge, the discharge time is long, and in addition, when the outside air is high or low humidity, it is necessary to obtain battery characteristics that are superior in preventing the permeation of moisture and carbon dioxide gas, especially moisture, rather than the oxygen supply rate. The battery of Comparative Example 3, which does not have a mechanism to prevent the permeation of moisture and carbon dioxide gas, suffers from voltage drop during discharge due to water depletion or, conversely, air hole blockage caused by leakage due to excessive moisture intake. However, it goes without saying that leakage during discharge is a fatal problem in practical terms. On the other hand, the examples showed extremely excellent performance, and they obtained a capacity almost equal to the discharge capacity in the heavy load test. These trends are the same whether the test atmosphere is high temperature or low temperature. This shows that in the case of the example, the moisture permeation blocking effect of the composite membrane was sufficiently exhibited.

以上を総合して、吸湿性微多孔膜の両側を撥水性の気体
透過性膜てはさんだ構成の複合膜を用いた電池は、重負
荷特性、軽負荷特性とも優れ、外部雰囲気の変化にも安
定した優れた電池を提供できることが結論できる。
In summary, batteries using a composite membrane consisting of a hygroscopic microporous membrane sandwiched between water-repellent and gas-permeable membranes on both sides have excellent heavy-load and light-load characteristics, and are resistant to changes in the external atmosphere. It can be concluded that a stable and excellent battery can be provided.

また、本発明の複合膜を上記実施例では電池容器との間
に空気拡散用の多孔体を介して設置したが、本発明の複
合膜の機械的強度が充分な場合は、前記空気拡散用の多
孔体を除いても電池特性に差異はない、さらに、上記実
施例では、本発明の複合膜を酸素極との間に酸素極を支
持する多孔躾を介して設置したが、酸素極の強度が充分
であれば前記多孔膳は不用にでき、その場合にも電池特
性は変わらない、また、塩化アンモニウム、塩化亜鉛な
どの中性塩の水溶液を電解液に用いた空気電池に対して
も、実施例で示したアルカリ性の電解液を用いた電池と
同様の効果があることも確認している。
Further, in the above embodiment, the composite membrane of the present invention was installed between the battery container and the porous body for air diffusion, but if the mechanical strength of the composite membrane of the present invention is sufficient, the air diffusion There is no difference in battery characteristics even if the porous material is removed.Furthermore, in the above example, the composite membrane of the present invention was installed between the oxygen electrode and the porous material supporting the oxygen electrode. If the strength is sufficient, the porous plate described above can be dispensed with, and the battery characteristics will not change in that case.Also, it can be used for air batteries using an aqueous solution of neutral salts such as ammonium chloride or zinc chloride as the electrolyte. It has also been confirmed that the battery has the same effect as the battery using the alkaline electrolyte shown in the example.

発明の効果 以上の説明で明らかなように、本発明による酸素ガス拡
散電極によれば、中性もしくはアルカリ性の水溶液を電
解液とする電池の重負荷から軽負荷にわたる広い範囲で
優れた実用性能と、優れた耐漏液性、長期貯蔵性を得る
ことができるという効果がある。
Effects of the Invention As is clear from the above explanation, the oxygen gas diffusion electrode according to the present invention has excellent practical performance in a wide range from heavy loads to light loads of batteries using a neutral or alkaline aqueous solution as the electrolyte. This has the effect of providing excellent leakage resistance and long-term storage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1〜3及び比較例1゜2の検討
に用いたボタン型空気亜鉛電池の断面図第2図は複合膜
を使用していない従来のボタン型空気亜鉛電池の断面図
である。 1、酸素極(空気極)9.絶縁ガスケット2、撥水m 
       1o、  正極容器3、空気取入れ孔 
   11.捏合膜4、多孔腹 5.6.セパレータ 7、負極亜鉛 8、負極容器
Figure 1 is a cross-sectional view of a button-type zinc-air battery used in the study of Examples 1 to 3 of the present invention and Comparative Examples 1-2. Figure 2 is a cross-sectional view of a conventional button-type zinc-air battery that does not use a composite membrane. FIG. 1. Oxygen electrode (air electrode) 9. Insulating gasket 2, water repellent
1o, positive electrode container 3, air intake hole
11. Kneaded membrane 4, porous belly 5.6. Separator 7, negative electrode zinc 8, negative electrode container

Claims (5)

【特許請求の範囲】[Claims] (1)酸素を活物質とするガス拡散電極と、外気に通じ
る空気取入れ孔を有する電池容器を備え、前記ガス拡散
電極の空気取入れ側と前記電池容器内面との間に、吸湿
性微多孔膜の両側に撥水性を持つ気体透過性膜を当接さ
せた3層構造の酸素選択透過性複合膜を介在させた電池
(1) A gas diffusion electrode containing oxygen as an active material and a battery container having an air intake hole communicating with the outside air, and a hygroscopic microporous film is provided between the air intake side of the gas diffusion electrode and the inner surface of the battery container. A battery with a three-layer oxygen-selective permeable composite membrane in which water-repellent, gas-permeable membranes are in contact with each other on both sides.
(2)前記酸素選択透過性複合膜が、空気取入れ孔を有
する前記電池容器の内面と前記ガス拡散電極に直接接し
ている特許請求の範囲第1項記載の電池。
(2) The battery according to claim 1, wherein the oxygen selectively permeable composite membrane is in direct contact with the inner surface of the battery container having an air intake hole and the gas diffusion electrode.
(3)前記酸素選択透過性複合膜と前記電池容器との間
に不織布等の空気拡散多孔体を介在させた特許請求の範
囲第1項記載の電池。
(3) The battery according to claim 1, wherein an air diffusion porous material such as a nonwoven fabric is interposed between the oxygen selectively permeable composite membrane and the battery container.
(4)前記酸素選択透過性複合膜と前記ガス拡散電極と
の間にポリテトラフルオロエチレン(PTFE)等の多
孔性フィルムよりなる酸素極を支持する微多孔膜を介在
させた特許請求の範囲第1項記載の電池。
(4) A microporous membrane supporting an oxygen electrode made of a porous film such as polytetrafluoroethylene (PTFE) is interposed between the oxygen selectively permeable composite membrane and the gas diffusion electrode. The battery according to item 1.
(5)前記酸素選択透過性複合膜と前記電池容器との間
に不織布等の空気拡散多孔体を介在させ、かつ前記酸素
選択透過性複合膜と前記ガス拡散電極との間にはポリテ
トラフルオロエチレン等の多孔性フィルムよりなり、前
記ガス拡散電極を支持する微多孔膜を介在させた特許請
求の範囲第1項記載の電池。
(5) An air diffusion porous material such as a nonwoven fabric is interposed between the oxygen selectively permeable composite membrane and the battery container, and a polytetrafluorocarbon material is interposed between the oxygen selectively permeable composite membrane and the gas diffusion electrode. 2. The battery according to claim 1, wherein the battery is made of a porous film such as ethylene and has a microporous membrane interposed therebetween that supports the gas diffusion electrode.
JP1210872A 1989-08-16 1989-08-16 Battery Pending JPH0374047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1210872A JPH0374047A (en) 1989-08-16 1989-08-16 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1210872A JPH0374047A (en) 1989-08-16 1989-08-16 Battery

Publications (1)

Publication Number Publication Date
JPH0374047A true JPH0374047A (en) 1991-03-28

Family

ID=16596496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1210872A Pending JPH0374047A (en) 1989-08-16 1989-08-16 Battery

Country Status (1)

Country Link
JP (1) JPH0374047A (en)

Similar Documents

Publication Publication Date Title
JPH0417259A (en) Battery
JPH0374047A (en) Battery
JP2782837B2 (en) Battery
JPH04312771A (en) Air battery
JP2817343B2 (en) Battery
JPH0562687A (en) Oxygen transmitting composite film and cell provided with the composite film
JPH03108254A (en) Battery
JP2778078B2 (en) Battery
JPH09894A (en) Oxygen permselective membrane and cell using the same
JP2757383B2 (en) Battery
JP2782911B2 (en) Battery
JP2822485B2 (en) Battery
JP2817341B2 (en) Battery
JPH03108258A (en) Battery
JPH0475253A (en) Manufacture of battery
JPH0714565A (en) Battery
JPH0422545Y2 (en)
JPH01267971A (en) Battery
JPH04162374A (en) Battery
JP2743574B2 (en) Battery
US20220238949A1 (en) Pouch-type secondary battery, manufacturing method thereof, and pouch-type secondary battery manufactured therefrom
JPH01267974A (en) Battery
JPH03108257A (en) Battery
JPS6051505A (en) Gas selective composite membrane
JPH01267972A (en) Battery