JPH036974B2 - - Google Patents

Info

Publication number
JPH036974B2
JPH036974B2 JP11366282A JP11366282A JPH036974B2 JP H036974 B2 JPH036974 B2 JP H036974B2 JP 11366282 A JP11366282 A JP 11366282A JP 11366282 A JP11366282 A JP 11366282A JP H036974 B2 JPH036974 B2 JP H036974B2
Authority
JP
Japan
Prior art keywords
alloy
temperature
electrical resistance
gold
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11366282A
Other languages
Japanese (ja)
Other versions
JPS596345A (en
Inventor
Ryo Masumoto
Naoji Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKI JIKI ZAIRYO KENKYUSHO
Original Assignee
DENKI JIKI ZAIRYO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKI JIKI ZAIRYO KENKYUSHO filed Critical DENKI JIKI ZAIRYO KENKYUSHO
Priority to JP11366282A priority Critical patent/JPS596345A/en
Publication of JPS596345A publication Critical patent/JPS596345A/en
Publication of JPH036974B2 publication Critical patent/JPH036974B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はNi−Au−Cu系電気抵抗合金およびそ
の製造方法に関するもので、その目的とするとこ
ろは広い温度範囲において電気抵抗の変化が極め
て少なく、しかも比較的低い電気抵抗を有する合
金を得るための成分配合の微調整と熱処理が比較
的容易で、細線や薄膜加工が良好でかつ安定性の
優れた電気抵抗合金を得るにある。 近年、生鮮食品の貯蔵や乾燥における温度管
理、ソーラプラント、空調機器、防災装置、生体
機器やバイオテクノロジー等のプロセス制御、物
性研究等ではデリケートな環境条件下の温度を非
常に高い分解能(0.01℃以下)で安定に計測する
必要が生じてきた。これに応える温度センサとし
ては小型で、熱応答性が速く、耐振、耐衝撃性の
高い厚膜あるいは薄膜白金測温抵抗体が開発され
つつある。この種センサは熱電対方式やサーミス
タ方式のものと比較して−200℃〜+500℃におけ
る抵抗値がほぼ直線的に変化すること、大出力が
得られること、信頼性や精度が高い等多くの利点
がある。 しかしながら温度に対する分解能は現在0.1℃
限界であつて、分解能をこれ以上高めるためには
温度センサ全体の構成系について再検討を必要と
する。すなわち温度に対する分解能を第1図の抵
抗−電圧変換回路で説明を行うと、その分解能は
温度センサの構造的因子の他に白金測温抵抗体
Rtの精度やこれとブリツジ回路で構成される基
準抵抗RSの性能に大きく影響を受ける。基準抵
抗RSに求められる条件としては、まず温度に対
する抵抗変化がないことが最も重要である。この
他にも適当な抵抗値(Rt/RS1)を有するこ
と、熱サイクルにおけるヒステリシスがないこ
と、熱エージングにおける抵抗変化のないこと、
化学的に安定であること、加工性が良好なこと等
が挙げられる。 この基準抵抗には従来標準抵抗として用いられ
ているマンガニン系巻線抵抗器(Cu−Mn系合
金)やニクロム系金属皮膜抵抗器(Ni−Ci系合
金)等が使用されており安定な出力が得られる。
ところが前者では適当な大きさの電気抵抗値は得
られるが、電気抵抗の温度係数を調整するための
熱処理が複雑であるばかりでなく経時変化が大き
い、また後者では小型で量産性に富むが、抵抗値
が非常に大きくRt/RSが極めて小さくなるため、
温度に対する分解能が劣るばかりでなく、品質の
バラツキが大きい等の欠点を有しており、いずれ
も一長一短があつて十分とは言い難つた。 またこれらの他にも通信機やポテンシヨメータ
ーの抵抗器として使われているNi−Cu系合金が
考えられる。この合金は比電気抵抗ρがマンガニ
ンの値(約45〜48μΩ−cm)に近く、ρの温度係
数が小さく、しかも合金が全率固溶体であるため
マンガニンの如く難しい熱処理を必要としない等
多くの特長を有しているが、反面組成に対するCf
の勾配が急であるため材料のバラツキの大きいこ
とが最大の欠点である。上記Cfの難点を緩和する
方法としては特公昭42−18911号に既に公示され
ている。それによると第5図からもわかるように
Cu−Ni系合金に第3元素としてFeやGeを微量添
加して改良を行い電気抵抗の温度係数Cf−0の合
金を得ている。しかし組成に対するCfの変化は未
だかなり大きく、例えば電気抵抗の温度係数Cf
±20ppm/℃以内の合金を得るためにはGe量を
±0.5%の極く狭い組成範囲に限定しなければな
らないので、量産を考慮した場合Cfのバラツキの
ないものを製造することは極めて困難であつた。 本発明者らは幾多研究の結果、前記合金の欠点
を除去改善して低温から高温までの広い温度範囲
において電気抵抗の変化が極めて少なく、しかも
加工性の良好な、安定性に優れた電気抵抗合金を
提供することができたのである。 すなわち本発明は、重量比にてニツケル22〜59
%、金0.01〜30%および銅39〜68%からなり少量
の不純物を含み、−100℃〜+250℃の広い温度範
囲において電気抵抗の温度係数が±100ppm/℃
以内を有する電気抵抗合金に関するものである。 さらに本発明は、重量比にてニツケル22〜59
%、金0.01〜30%および銅39〜68%からなり少量
の不純物を含む合金を鋳造および熱間加工あるい
は冷間加工により線材あるいは板材等の形状とな
し、非酸化性雰囲気中あるいは真空中で少くとも
250℃以上融点以下の温度で2秒以上加熱するこ
とにより電気抵抗の温度係数が−100℃〜+250℃
の温度範囲において±100ppm/℃以内であるも
のを得ることを特徴とするものである。 以下、本発明合金の製造方法について説明す
る。 本発明においてまずニツケル22〜59%、金0.01
〜30%および銅39〜68%のうちの適量を空気中好
ましくは非酸化性雰囲気中あるいは真空中におい
て適当な溶解炉を用いて溶解した後、マグネシウ
ム、マンガン、ケイ素、チタン、カルシユウム等
少量(約1g以下)を添加し有害な不純物を除
き、充分に撹拌して組成的に均一な溶融合金を造
る。次にこれを適当な形および大きさの鋳型に注
入して健全な鋳塊を得、さらにこれを常温あるい
は1100℃以下の温度において鋳造その他種々の加
工を施して適当な形状のもの、例えば棒あるいは
板を造る。さらにこれをスエージング、伸線、圧
延あるいは潰し等の方法によつて冷間加工を施し
目的の形状のもの、例えば細線あるいは薄板にす
る。最後に加工による内部歪を除去し特性の安定
化を図るために、これらを非酸化性雰囲気中ある
いは真空中で250℃以上融点以下の温度に2秒以
上100時間以下加熱保持後、任意の速度例えば5
〜300℃/hの速度で冷却し充分に焼鈍する必要
がある。この焼鈍処理は溶接性やロー付における
ぬれ性が向上し、取扱いが容易となる等の特長も
具備している。なお本発明合金は全組成に亘つて
全率固溶体を形成して偏析や化合物等を生じない
ため、安定性に優れていることも大きな特長の一
つである。 つぎに上記合金を電気抵抗体素子あるいはセン
サコイルとして用いる場合、絶縁方法としては以
下3種類の工程がある。 (A) 本発明合金を鋳造、鍛造、圧延、伸線等の加
工を施して線材あるいは板材等の所望の形状の
ものを、そのままの状態で耐熱性絶縁体、例え
ば高純度セラミツクペースト中に埋め込むか、
耐熱性絶縁体にアルミナ接着剤で直接貼付する
か、筒状セラミツクスに巻きつけるかあるいは
2枚の絶縁板で挾むなどの方法により固定す
る。 (B) 本発明合金を鋳造、鍛造、圧延、伸線等の加
工を施した線材あるいは板材等の表面に耐熱性
の良好なシリカ、アルミナ、マグネシア、フツ
化物、ホウ化物あるいはチツ化物等の無機質絶
縁被膜を電着、蒸着、プレーテイグあるいはス
パツタリング等の適当な方法により塗布あるい
はコーテングした後、所望の形状に巻線成形加
工を施す。 (C) 本発明合金の膜を耐熱性絶縁体表面に電着、
蒸着、プレーテングあるいはスパツタリング等
の適当な方法により被着した後、所望の形状に
エツチング打抜きあるいはトリミング加工を施
し、必要ならばさらにこの上に絶縁被膜を上記
(B)の方法により塗布あるいはコーテング処理を
施す。 以上のような工程により製造した成品をそのま
まで使用してもよいが、必要ならば成品の安定化
のために、さらに再び前述の方法により焼鈍処理
を施せば電気抵抗合金自体と同じ特性を発揮する
優秀な電気抵抗体素子あるいはセンサコイルの製
造が可能である。 つぎに本発明の実施例について述べる。 実施例 1 合金番号No.102(合金組成Ni−30%、Au−15
%、Cu−55%) 製造原料としては純度99.9%以上のニツケル、
金および銅を用いた。試料を造るには全重量100
gの原料をアルミナ坩堝に入れ、酸化を防ぐため
に高純度アルゴンガスを吹きつけながら高周波誘
導電気炉によつて溶かし、よく撹拌して均質な溶
融合金とした。この際脱酸剤としてマグネシユウ
ムを0.05%投入して、内径7mm、高さ180mmの鉄
型に鋳込んだ。その後鋳塊表面の疵を除去し、熱
間鍛造により直径5mmの丸棒とした。丸棒表面の
酸化物を丁寧に除去した後、スエージングおよび
伸線機により線径0.5mmまで冷間加工した。これ
より長さ100mmに切り取り電気抵抗測定用試料と
した。電気抵抗は−190℃〜+700℃の温度範囲で
測定した。第2図に示してあるように、加工状態
(破線)の電気抵抗の変化は組織が不安定なため
昇温途中の温度、例えばb点(300℃)で1時間
保持すると、電気抵抗がd点まで減少する。そし
て300℃以下の温度で加熱冷却を繰り返すとd→
e→f→gの如く元の経路を辿らずヒステリシス
を生ずる。しかしながら曲線deと曲線fgにおい
て、250℃以下の温度で加熱冷却を繰り返しても
ヒステリシスは生じないで同じ経路を辿る。この
現象についてらに詳しく調べたのが第3図Aであ
る。図は試料を1000℃で焼鈍した後、245℃、300
℃および350℃の各温度に1カ月間等温保持した
場合の保持日数に対する電気抵抗の変化を%で示
したものである。245℃で1カ月保持した場合は
電気抵抗は全く変化しないが、この温度以上では
1〜1.4%の電気抵抗の減少がみられた。したが
つて第2図および第3図Aからもわかるように、
曲線deと曲線fgにおいては250℃以下の温度で加
熱冷却を繰り返しても同じ経路を辿るため、実用
には差障りがない。また第2図において焼鈍状態
(実線)の特性曲線からもわかるように、c点
(470℃)以上の温度に加熱した場合には合金が安
定化されるためにヒステリシスはみられない。但
しこの場合でも第3図Aに示した如く、250℃以
上の温度に長時間保持すると電気抵抗の変化が生
ずるため、応用に際しては使用温度の上限を250
℃に設定しなければならない。尚20℃における比
電気抵抗ρは41μΩ−cm、ρの温度係数Cfは−
4ppm/℃(−50℃〜+250℃)と−5ppm/℃
(0℃〜+100℃)であつた。 実施例 2 合金番号No.176(合金組成Ni−28%、Au−24
%、Cu−48%) 製造原料は実施例1と同じ純度のニツケル、金
および銅を用いた。試料の製造方法は実施例1と
同じ工程であつた。試料は線径0.5mmのものと、
残りの線材を伸線加工により線径0.03mmにし、冷
間圧延により厚さ7μm、幅0.74mmのリボン状薄板
にしたものとで、これらを1000℃で焼鈍を行つ
た。その特性曲線は第2図および第3図Bのとお
りで、実施例1と類似の傾向を示す。この場合線
状試料と薄板状試料との測定結果の違いは全くみ
られなかつた。尚20℃における比電気抵抗ρは
43μΩ−cm、ρの温度係数Cfは−4ppm/℃(−50
℃〜+250℃)と−12ppm/℃(0℃〜+100℃)
であつた。 実施例 3 合金番号No.3(合金組成Ni−30%、Au−10%、
Cu−60%) 製造原料および製造方法は実施例2と同じであ
る。試料の特性曲線は第2図および第3図Cのと
おりで、実施例1および実施例2と類似の傾向を
示す。尚20℃における比電気抵抗ρは40μΩ−
cm、ρの温度係数Cfは2ppm/℃(−50℃〜+250
℃)と10ppm/℃(0℃〜+100℃)であつた。 第1表の1および第1表の2は、Cu−Ni−Au
系合金、Cu−Ni比較合金、Cu−Ni−Fe比較合
金およびCu−Ni−Ge比較合金について、−100〜
+250℃間における電気抵抗の平均の温度係数Cf
=ΔR/RΔTを示す。なおCu−Ni−Au系合金の場合 の合金試料は36種類、それらの組成範囲はCuが
25〜80%、Niが10〜65%およびAuが0〜40%
で、線径0.5mmおよび長さ100mmの細線を真空中
1000℃で1時間加熱後、300℃/hで室温まで冷
却した。
The present invention relates to a Ni-Au-Cu based electrical resistance alloy and a method for producing the same.The purpose of the present invention is to obtain an alloy with extremely little change in electrical resistance over a wide temperature range and a relatively low electrical resistance. The purpose of the present invention is to obtain an electrical resistance alloy that is relatively easy to finely adjust the component composition and heat treatment, can be processed into fine wires and thin films, and has excellent stability. In recent years, temperatures under delicate environmental conditions have been measured with very high resolution (0.01°C) in temperature control during storage and drying of fresh foods, process control for solar plants, air conditioning equipment, disaster prevention equipment, biological equipment and biotechnology, and physical property research. It has become necessary to stably measure the following). As a temperature sensor to meet this demand, thick film or thin film platinum resistance thermometers are being developed that are compact, have quick thermal response, and are highly resistant to vibration and impact. Compared to thermocouple or thermistor type sensors, this type of sensor has many advantages such as a nearly linear change in resistance value between -200℃ and +500℃, large output, high reliability and accuracy, etc. There are advantages. However, the resolution for temperature is currently 0.1℃
This is a limit, and in order to further increase the resolution, it is necessary to reconsider the overall structure of the temperature sensor. In other words, if we explain the resolution with respect to temperature using the resistance-voltage conversion circuit shown in Figure 1, the resolution will depend on the structural factors of the temperature sensor as well as the platinum resistance thermometer.
It is greatly affected by the accuracy of R t and the performance of the reference resistor R S , which is composed of this and a bridge circuit. The most important condition required for the reference resistance R S is that the resistance does not change with temperature. In addition, it must have an appropriate resistance value (R t /R S 1), no hysteresis during thermal cycles, no resistance change during thermal aging,
Examples include chemical stability and good processability. This reference resistor uses manganin-based wire-wound resistors (Cu-Mn-based alloy) and nichrome-based metal film resistors (Ni-Ci-based alloy), which are conventionally used as standard resistors, and provides stable output. can get.
However, although the former can obtain a suitable electrical resistance value, the heat treatment for adjusting the temperature coefficient of electrical resistance is not only complicated but also changes significantly over time, and the latter is compact and easy to mass produce, but Since the resistance value is very large and R t /R S is extremely small,
They not only have inferior temperature resolution, but also have drawbacks such as large variations in quality, and both have their advantages and disadvantages, making it difficult to say that they are sufficient. In addition to these, Ni-Cu alloys are also considered, which are used as resistors in communication devices and potentiometers. This alloy has a specific electrical resistance ρ close to the value of manganin (approximately 45 to 48 μΩ-cm), a small temperature coefficient of ρ, and since the alloy is entirely a solid solution, it does not require difficult heat treatment like manganin. However, on the other hand, the C f
The biggest drawback is the large variation in materials due to the steep slope. A method for alleviating the above-mentioned drawbacks of C f has already been disclosed in Japanese Patent Publication No. 18911/1973. According to this, as can be seen from Figure 5,
By adding a small amount of Fe or Ge as a third element to a Cu-Ni alloy, an alloy with a temperature coefficient of electrical resistance C f -0 was obtained. However, the change in C f with respect to composition is still quite large; for example, in order to obtain an alloy with a temperature coefficient of electrical resistance C f within ±20 ppm/°C, the Ge content must be limited to an extremely narrow composition range of ±0.5%. Therefore, when mass production is considered, it is extremely difficult to manufacture a product without variation in C f . As a result of numerous studies, the inventors of the present invention have removed and improved the defects of the above-mentioned alloy to create a highly stable electrical resistor with very little change in electrical resistance in a wide temperature range from low to high temperatures, as well as good workability. They were able to provide the alloy. That is, the present invention has a weight ratio of 22 to 59 nickels.
%, gold 0.01~30% and copper 39~68%, contains a small amount of impurities, and has a temperature coefficient of electrical resistance of ±100ppm/℃ over a wide temperature range of -100℃ to +250℃.
This relates to an electrical resistance alloy having the following characteristics. Furthermore, the present invention has a weight ratio of nickel of 22 to 59.
%, gold 0.01-30% and copper 39-68%, containing a small amount of impurities, is cast into a shape such as a wire or plate by hot working or cold working, in a non-oxidizing atmosphere or in a vacuum. at least
The temperature coefficient of electrical resistance changes from -100℃ to +250℃ by heating for 2 seconds or more at a temperature of 250℃ or higher and below the melting point.
It is characterized by obtaining a value within ±100 ppm/°C in the temperature range of . The method for producing the alloy of the present invention will be explained below. In the present invention, first, nickel 22-59%, gold 0.01%
After melting an appropriate amount of ~30% copper and 39~68% copper in an appropriate melting furnace in air, preferably in a non-oxidizing atmosphere or in vacuum, small amounts of magnesium, manganese, silicon, titanium, calcium, etc. (approximately 1 g or less) to remove harmful impurities and stir thoroughly to create a compositionally uniform molten alloy. Next, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is then subjected to various processing such as casting at room temperature or at a temperature below 1100°C to form an object of an appropriate shape, such as a rod. Or build a board. Further, this is subjected to cold working by methods such as swaging, wire drawing, rolling, or crushing to obtain a desired shape, such as a thin wire or a thin plate. Finally, in order to remove the internal strain caused by processing and stabilize the properties, heat and hold them at a temperature of 250℃ or higher and lower than the melting point in a non-oxidizing atmosphere or vacuum for 2 seconds or more and 100 hours or less. For example 5
It is necessary to cool down at a rate of ~300°C/h and sufficiently anneal. This annealing treatment also has features such as improved weldability and wettability during brazing, and ease of handling. One of the major features of the alloy of the present invention is that it has excellent stability because it forms a solid solution throughout the entire composition and does not generate segregation or compounds. Next, when the above alloy is used as an electric resistor element or a sensor coil, there are the following three types of insulation methods. (A) The alloy of the present invention is processed by casting, forging, rolling, wire drawing, etc. into a desired shape such as a wire rod or plate, and is then embedded in a heat-resistant insulator such as a high-purity ceramic paste. mosquito,
It is fixed by attaching it directly to a heat-resistant insulator with alumina adhesive, by wrapping it around a cylindrical ceramic, or by sandwiching it between two insulating plates. (B) Inorganic materials such as silica, alumina, magnesia, fluorides, borides, or nitrides with good heat resistance are added to the surface of wire rods or plates made by casting, forging, rolling, wire drawing, etc. of the alloy of the present invention. After applying or coating an insulating film by an appropriate method such as electrodeposition, vapor deposition, plating, or sputtering, the wire is formed into a desired shape. (C) Electrodepositing a film of the invention alloy on the surface of a heat-resistant insulator;
After being deposited by a suitable method such as vapor deposition, plating or sputtering, etching, punching or trimming is performed into the desired shape, and if necessary, an insulating film is further applied as described above.
Application or coating treatment is performed using method (B). The product manufactured by the above process may be used as is, but if necessary, in order to stabilize the product, it can be annealed again using the method described above to exhibit the same characteristics as the electrical resistance alloy itself. It is possible to manufacture excellent electrical resistor elements or sensor coils. Next, embodiments of the present invention will be described. Example 1 Alloy number No. 102 (alloy composition Ni-30%, Au-15
%, Cu-55%) The raw materials for production are nickel with a purity of 99.9% or higher,
Gold and copper were used. To make a sample, the total weight is 100
The raw material g was placed in an alumina crucible and melted in a high frequency induction electric furnace while blowing high purity argon gas to prevent oxidation, and stirred well to obtain a homogeneous molten alloy. At this time, 0.05% magnesium was added as a deoxidizing agent and cast into an iron mold with an inner diameter of 7 mm and a height of 180 mm. Thereafter, defects on the surface of the ingot were removed, and a round bar with a diameter of 5 mm was produced by hot forging. After carefully removing oxides from the surface of the round bar, it was cold-worked to a wire diameter of 0.5 mm using a swaging and wire drawing machine. This was cut to a length of 100 mm and used as a sample for measuring electrical resistance. Electrical resistance was measured in a temperature range of -190°C to +700°C. As shown in Figure 2, the change in electrical resistance during processing (broken line) is due to the unstable structure, so if the temperature is maintained at point b (300°C) for 1 hour, the electrical resistance changes to d. decreases to a point. Then, if heating and cooling are repeated at a temperature below 300℃, d→
It does not follow the original path like e→f→g and hysteresis occurs. However, curves de and fg follow the same path without hysteresis even if heating and cooling are repeated at temperatures below 250°C. Figure 3A shows a more detailed investigation of this phenomenon. The figure shows samples annealed at 1000℃, then 245℃ and 300℃.
350° C. and 350° C. for one month, the change in electrical resistance with respect to the number of days of holding is shown in %. When held at 245°C for one month, the electrical resistance did not change at all, but at temperatures above this temperature a decrease of 1 to 1.4% was observed. Therefore, as can be seen from Figures 2 and 3A,
Curve de and curve fg follow the same path even if heating and cooling are repeated at temperatures below 250°C, so there is no problem in practical use. Furthermore, as can be seen from the characteristic curve of the annealed state (solid line) in Figure 2, when heated to a temperature above point c (470°C), the alloy is stabilized and no hysteresis is observed. However, even in this case, as shown in Figure 3A, if the temperature is kept at a temperature higher than 250°C for a long time, the electrical resistance will change.
Must be set at ℃. The specific electrical resistance ρ at 20°C is 41μΩ-cm, and the temperature coefficient C f of ρ is -
4ppm/℃ (-50℃~+250℃) and -5ppm/℃
(0°C to +100°C). Example 2 Alloy number No. 176 (alloy composition Ni-28%, Au-24
%, Cu-48%) Nickel, gold, and copper of the same purity as in Example 1 were used as raw materials for production. The method of manufacturing the sample was the same as in Example 1. The sample has a wire diameter of 0.5 mm,
The remaining wire rod was drawn to a wire diameter of 0.03 mm and cold rolled into a ribbon-like thin plate with a thickness of 7 μm and a width of 0.74 mm, which was then annealed at 1000°C. The characteristic curves are as shown in FIGS. 2 and 3B, and show similar trends to those of Example 1. In this case, no difference was observed in the measurement results between the linear sample and the thin plate sample. Furthermore, the specific electrical resistance ρ at 20℃ is
43μΩ-cm, temperature coefficient of ρ C f is -4ppm/℃ (-50
℃ ~ +250℃) and -12ppm/℃ (0℃ ~ +100℃)
It was hot. Example 3 Alloy number No. 3 (alloy composition Ni-30%, Au-10%,
Cu-60%) The manufacturing raw materials and manufacturing method are the same as in Example 2. The characteristic curves of the sample are as shown in FIGS. 2 and 3C, and show similar trends to those of Examples 1 and 2. The specific electrical resistance ρ at 20℃ is 40μΩ−
cm, temperature coefficient of ρ C f is 2ppm/℃ (-50℃~+250℃
℃) and 10 ppm/℃ (0℃ to +100℃). 1 in Table 1 and 2 in Table 1 are Cu-Ni-Au
-100~ for Cu-Ni comparative alloy, Cu-Ni-Fe comparative alloy, and Cu-Ni-Ge comparative alloy.
Average temperature coefficient of electrical resistance C f between +250℃
=ΔR/RΔT is shown. In the case of Cu-Ni-Au alloy, there are 36 types of alloy samples, and their composition range is
25-80%, Ni 10-65% and Au 0-40%
A thin wire with a wire diameter of 0.5 mm and a length of 100 mm is placed in a vacuum.
After heating at 1000°C for 1 hour, it was cooled to room temperature at 300°C/h.

【表】【table】

【表】 第4図には実施例1ないし実施例3と同様の実
験をニツケル−金−銅3元系における金0〜50%
の組成範囲に亘つて行い、−100℃〜+250℃にお
ける電気抵抗の平均の温度係数Cf−ΔR/RΔT、すな わち−100ppm/℃、0、+100ppm/℃、+
200ppm/℃および+500ppm/℃の等値曲線を示
したものである。なお、図中点a,b,cおよび
dは、それぞれCu−Ni比較合金A,B,Cおよ
びDの組成位置を示す。また点eおよびfは、そ
れぞれCfが−100ppm/℃および+100ppm/℃の
曲線上における合金の組成位置を示す。図にみる
ように、例えばCfが±100ppm/℃以内にある合
金は、Cu−Ni2元系比較合金の場合では、点aお
よび点b間(Ni=32〜39%)および点cおよび
点d間(Ni=46〜59%)の2ケ所の組成範囲に
おいて得られるが、本発明Cu−Ni−Au合金にお
いては、点eおよび点f間(Au=4〜30%)の
非常に広い組成範囲において得られるのが特徴で
ある。 第5図は第4図における直線A,BおよびC、
すなわちニツケル28%、30%および32%の一定の
濃度について、金の組成に対するCfの変化が示し
てある。ここには本発明合金のCfの変化と比較す
るためにCU−Ni−Fe系比較合金とCu−Ni−Ge
系比較合金のCfも示しておいた。図からも明らか
なように比較合金のCfはFeあるいはGeの添加量
に対して急激に変化しているのに対して、本発明
合金の場合では、Cfの小さな値は添加元素の広い
組成範囲に亘つて得られる。例えばCfが±
20ppm/℃以内の合金を得るためには、Cu−Ni
−Ge比較合金において、Ge2〜3%の極く狭い
組成範囲内に限定されるが、本発明合金の場合で
は、Ni=30%の曲線において、Au量が4.5〜22.5
%の非常に広い組成範囲内にあり、比較合金のそ
れに比べて約18倍も組成範囲が広い。 すなわち、本発明合金は、第4図および第5図
にみるようにCu−Ni比較合金、Cu−Ni−Fe比
較合金およびCu−Ni−Ge比較合金などに比べる
と、Cfの組成依存性が極度に少ないといえる。 以上実施例1〜3に述べたように本発明合金は
温度に対する電気抵抗の変化が非常に小さいだけ
でなく、その合金組成が広範囲に及んでいるため
特性のバラツキがなく安定性に優れており、しか
も良好な加工性は勿論のこと全組成において全率
固溶体を形成するため再現性に富み、溶接性やロ
ー付が良好である等多くの特徴を示している。こ
れらの特性は基準抵抗用電気抵抗合金やセンサコ
イル材の量産に適しており、それらの要求特性を
充分に満足するものである。 つぎに本発明合金の組成についてニツケルを22
〜50%および金を0.01〜30%に限定した理由は、
各実施例、第2図、第4図および第5図からも明
らかなように、この範囲の組成においては−100
℃〜+250℃の温度範囲における電気抵抗の温度
係数が±100ppm/℃以内であるが、組成がこの
範囲を越えると上記の値より大きくなり、本発明
の目的である温度の広範囲にわたり電気抵抗の変
化の小さい合金に反するからである。 また本発明合金の温度範囲を−50℃〜+250℃
に限定した理由は、この温度範囲内では本発明合
金の全組成において電気抵抗の温度係数の変化が
±100ppm/℃以内の特性を示すが、250℃以上の
温度では第2図および第3図からも明らかなよう
に熱エージングがみられ安定性に難があるばかり
でなく、耐酸化性に欠ける。また−100℃以下の
温度では合金によつては電気抵抗の温度係数が+
100ppm/℃以上となるため、本発明の目的であ
る温度の広範囲にわたり電気抵抗の変化の小さい
合金に反するからである。 本発明合金の加熱温度および加熱時間をそれぞ
れ250℃以上融点以下および2秒以上100時間以下
に限定した理由を、第6図で説明する。 第6図は、合金No.11について電気的特性(抵抗
−温度曲線、電気抵抗の温度係数や電気抵抗の時
間変化など)の安定化に影響する加工歪の除去の
程度(硬度が50%以下に減少する量)と加熱温度
あるいは加熱保持時間との関係を示す。図中領域
(A)では、加熱に伴う再結晶化の過程における結晶
粒の成長が制御され、しかも軟化する。しかしそ
の外側の領域(B)では、軟化が非常に早く進行する
が、結晶粒が粗大化して機械的強度が脆弱となる
ばかりでなく、合金中に含有しているAuの遊離
が生ずるので、電気的特性が悪化する。したがつ
て領域(A)で処理することが好ましい。 また250℃以下あるいは2秒以下で処理した場
合には、上記の効果はほとんどみられず、本発明
合金の製造方法としては不適当である。 さらにまた本発明合金の加熱後の冷却速度を5
〜300℃/hに限定した理由は、この範囲で処理
することによつて再結晶化の過程における結晶粒
の成長が制御され、Auの遊離が発生しないなど
により本発明合金の優れた電気的特性を損なわな
いが、この範囲からはずれると所望の電気的特性
が得られないばかりが、電気的特性の安定化が損
なわれるので、本発明合金の製造方法としては不
適当である。 要するに本発明合金は広い組成に亘つて−100
℃〜+250℃の広い温度範囲における電気抵抗の
変化が±100ppm/℃以内と極めて小さく、しか
も全組成において全率固溶体を形成するため再現
性と安定性に優れ、溶接性やロー付が良好である
ばかりでなく極細線や薄板等の加工性が良好であ
るため量産性が高い等多くの特長を有している。
そのため、種々の基準抵抗器をはじめ精密計測機
器等の電気抵抗体素子やセンサコイル材として好
適である。特に本発明合金を高分解能型温度セン
サ用基準抵抗器へ応用せんとする場合、その比電
気抵抗値がマンガニン系合金のものより若干小さ
いので、より一層優れた特性を発揮することがで
きる。
[Table] Figure 4 shows an experiment similar to Examples 1 to 3 in which the gold content was 0 to 50% in a nickel-gold-copper ternary system.
The average temperature coefficient of electrical resistance C f −ΔR/RΔT, i.e., −100 ppm/℃, 0, +100 ppm/℃, +
200ppm/°C and +500ppm/°C isovalue curves are shown. Note that points a, b, c, and d in the figure indicate the composition positions of Cu-Ni comparison alloys A, B, C, and D, respectively. Further, points e and f indicate the composition position of the alloy on the curve where C f is -100 ppm/°C and +100 ppm/°C, respectively. As shown in the figure, for example, alloys with C f within ±100 ppm/°C are between points a and b (Ni = 32 to 39%), between points a and b (Ni = 32 to 39%), and between points c and However, in the Cu-Ni-Au alloy of the present invention, the composition range is very wide between points e and f (Au = 4 to 30%). It is characterized in that it can be obtained within a range of compositions. Figure 5 shows straight lines A, B and C in Figure 4,
That is, the variation of C f with respect to gold composition is shown for constant concentrations of 28%, 30% and 32% nickel. Here, in order to compare the change in C f of the present invention alloy, CU-Ni-Fe comparison alloy and Cu-Ni-Ge alloy are shown.
The C f of the comparative alloys is also shown. As is clear from the figure, the C f of the comparative alloy changes rapidly with the addition amount of Fe or Ge, whereas in the case of the invention alloy, the small value of C f changes over a wide range of additive elements. Available over a range of compositions. For example, C f is ±
In order to obtain an alloy within 20ppm/℃, Cu-Ni
In the -Ge comparison alloy, the composition is limited to an extremely narrow composition range of 2 to 3% Ge, but in the case of the invention alloy, the Au content is 4.5 to 22.5% in the Ni = 30% curve.
%, which is approximately 18 times wider than that of the comparative alloy. That is, as shown in FIGS. 4 and 5, the alloy of the present invention has a lower C f composition dependence than the Cu-Ni comparative alloy, Cu-Ni-Fe comparative alloy, Cu-Ni-Ge comparative alloy, etc. It can be said that there are extremely few. As described in Examples 1 to 3 above, the alloy of the present invention not only exhibits a very small change in electrical resistance with respect to temperature, but also has excellent stability with no variation in properties because its alloy composition spans a wide range. Moreover, it exhibits many characteristics such as not only good workability but also excellent reproducibility because it forms a solid solution in all compositions, and good weldability and brazing properties. These properties are suitable for mass production of electrical resistance alloys for reference resistors and sensor coil materials, and fully satisfy the required properties. Next, regarding the composition of the alloy of the present invention, nickel is 22
The reason for limiting gold to ~50% and 0.01 to 30% is that
As is clear from each example, FIG. 2, FIG. 4, and FIG. 5, in the composition range of -100
The temperature coefficient of electrical resistance in the temperature range from °C to +250 °C is within ±100 ppm/°C, but if the composition exceeds this range, it becomes larger than the above value, which is the purpose of the present invention. This is because it is contrary to alloys with small changes. In addition, the temperature range of the alloy of the present invention is -50°C to +250°C.
The reason for this limitation is that within this temperature range, the temperature coefficient of electrical resistance changes within ±100 ppm/°C for all compositions of the alloy of the present invention, but at temperatures above 250°C, the temperature coefficient changes as shown in Figures 2 and 3. As is clear from the above, not only is there a problem in stability due to thermal aging, but it also lacks oxidation resistance. Also, at temperatures below -100°C, the temperature coefficient of electrical resistance may increase depending on the alloy.
This is because it is 100 ppm/°C or more, which is contrary to the purpose of the present invention of creating an alloy that has a small change in electrical resistance over a wide range of temperatures. The reason why the heating temperature and heating time of the alloy of the present invention are limited to 250° C. or higher and lower than the melting point and 2 seconds or higher and 100 hours or lower, respectively, will be explained with reference to FIG. Figure 6 shows the degree of removal of machining strain (hardness of 50% or less) that affects the stabilization of electrical properties (resistance-temperature curve, temperature coefficient of electrical resistance, time change of electrical resistance, etc.) for alloy No. 11. This shows the relationship between the amount by which the temperature decreases and the heating temperature or heating holding time. Area in the diagram
In (A), the growth of crystal grains during the recrystallization process associated with heating is controlled and softened. However, in the outer region (B), softening progresses very quickly, but not only does the crystal grain become coarse and the mechanical strength becomes weak, but also the Au contained in the alloy is liberated. Electrical characteristics deteriorate. Therefore, it is preferable to process in area (A). Furthermore, when the treatment is carried out at 250° C. or below or for 2 seconds or below, the above-mentioned effects are hardly observed and this is inappropriate as a method for producing the alloy of the present invention. Furthermore, the cooling rate after heating of the alloy of the present invention was
The reason for limiting the temperature to ~300°C/h is that by processing within this range, the growth of crystal grains during the recrystallization process is controlled, and the release of Au does not occur, so the excellent electrical properties of the alloy of the present invention are achieved. Although the properties will not be impaired, if it deviates from this range, not only will the desired electrical properties not be obtained, but the stabilization of the electrical properties will be impaired, making it inappropriate as a method for producing the alloy of the present invention. In short, the alloy of the present invention has -100 over a wide range of compositions.
The change in electrical resistance over a wide temperature range from ℃ to +250℃ is extremely small, within ±100ppm/℃, and since it forms a solid solution in all compositions, it has excellent reproducibility and stability, and has good weldability and brazing. Not only that, but it also has many advantages such as good workability of ultra-fine wires and thin plates, making it highly suitable for mass production.
Therefore, it is suitable for various reference resistors, as well as electrical resistor elements and sensor coil materials for precision measuring instruments and the like. In particular, when the alloy of the present invention is applied to a reference resistor for a high-resolution temperature sensor, its specific electrical resistance value is slightly smaller than that of a manganin-based alloy, so it can exhibit even more excellent characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は温度センサに使用される抵抗−電圧変
換方式の基本構成図、第2図は合金番号No.102、
No.176およびNo.3について、測定温度に対する電
気抵抗の変化を示した特性曲線図、第3図は第2
図と同じ合金について245℃、300℃および350℃
の3種類の温度に1カ月以内等温保持した場合の
電気抵抗の変化を示す特性曲線図、第4図はニツ
ケル−金−銅合金について、−100℃〜+250℃の
温度範囲における平均の電気抵抗の温度係数−
100ppm/℃、0、+100ppm/℃、+200ppm/℃
および+500ppm/℃の等値曲線図、第5図は第
4図におけるニツケル28%、30%および30%一定
として、金の組成に対する電気抵抗の温度係数の
変化を示した特性曲線図、および第6図は合金No.
11について、加工歪の除去の程度と加熱温度ある
いは加熱保持時間との関係を示す特性曲線図であ
る。 1……定電流回路、2……差動増幅器、3……
信号変換回路。
Figure 1 is a basic configuration diagram of the resistance-voltage conversion method used in temperature sensors, Figure 2 is alloy number No. 102,
For No. 176 and No. 3, the characteristic curve diagram showing the change in electrical resistance with respect to the measured temperature.
245℃, 300℃ and 350℃ for the same alloy as shown
Figure 4 shows the average electrical resistance of the nickel-gold-copper alloy in the temperature range of -100°C to +250°C. Temperature coefficient of -
100ppm/℃, 0, +100ppm/℃, +200ppm/℃
and +500ppm/℃, Figure 5 is a characteristic curve diagram showing the change in the temperature coefficient of electrical resistance with respect to the composition of gold, assuming that 28%, 30%, and 30% of nickel in Figure 4 is constant. Figure 6 shows alloy No.
11 is a characteristic curve diagram showing the relationship between the degree of removal of processing strain and heating temperature or heating holding time for No. 11. FIG. 1... Constant current circuit, 2... Differential amplifier, 3...
Signal conversion circuit.

Claims (1)

【特許請求の範囲】 1 重量比にてニツケル22〜59%、金0.01〜30%
および銅39〜68%の組成からなり少量の不純物を
含むことを特徴とする電気抵抗合金。 2 重量比にてニツケル22〜59%、金0.01〜30%
および銅39〜68%の組成からなり少量の不純物を
含む合金を鋳造および熱間加工あるいは冷間加工
により線材あるいは板材等の形状となし、非酸化
性雰囲気中あるいは真空中で少なくとも250℃以
上融点以下の温度で2秒以上加熱することにより
電気抵抗の温度係数が−100℃〜+250℃の温度範
囲において±100ppm/℃以内であるものを得る
ことを特徴とする電気抵抗合金の製造方法。 3 重量比にてニツケル22〜59%、金0.01〜30%
および銅39〜68%の組成からなり少量の不純物を
含む合金を鋳造加工して得られた線材あるいは板
材等を巻線成形加工を施すかあるいは所望の形状
に打ち抜き、そのままの状態で耐熱性絶縁体中に
埋め込むか、耐熱性絶縁体に固定した後、さらに
これらを非酸化性雰囲気中あるいは真空中におい
て250℃以上融点以下の温度で2秒以上100時間以
下保持後5〜300℃/hの冷却速度で冷却し充分
焼鈍を行うことにより、電気抵抗の温度係数が−
100℃〜+250℃の温度範囲で±100ppm/℃以内
であるものを得ることを特徴とする電気抵抗体素
子あるいはセンサコイルの製造方法。 4 重量比にてニツケル22〜59%、金0.01〜30%
および銅39〜68%の組成からなり少量の不純物を
含む合金を鋳造加工して得られた細線あるいは薄
板の表面に耐熱性絶縁体を塗布あるいはコーテン
グした後、所望の形状に巻線成形加工を施し、さ
らに非酸化性雰囲気中あるいは真空中において
250℃以上融点以下の温度で2秒以上100時間以下
保持後、5〜300℃/hの冷却速度で冷却し充分
な焼鈍を行うことを特徴とする電気抵抗体素子あ
るいはセンサコイルの製造方法。 5 重量比にてニツケル22〜59%、金0.01〜30%
および銅39〜68%の組成からなり少量の不純物を
含む合金膜を適当な方法により耐熱性絶縁体表面
に披着した後、所望の形状に成形し、さらにこの
上に耐熱性絶縁体を被着、塗布あるいはコーテン
グしたものを非酸化性雰囲気中あるいは真空中に
おいて250℃以上融点以下の温度で2秒以上100時
間以下保持後5〜300℃/hの冷却速度で冷却し
充分な焼鈍を行うことを特徴とする電気抵抗体素
子あるいはセンサコイルの製造方法。
[Claims] 1. Nickel 22-59%, gold 0.01-30% by weight
and an electrical resistance alloy characterized by having a composition of 39 to 68% copper and containing a small amount of impurities. 2. Nickel 22-59%, gold 0.01-30% by weight
An alloy with a composition of 39-68% copper and a small amount of impurities is cast and hot-worked or cold-worked into a shape such as a wire or plate, with a melting point of at least 250℃ or higher in a non-oxidizing atmosphere or vacuum. 1. A method for producing an electrical resistance alloy, characterized in that an electrical resistance alloy having a temperature coefficient of electrical resistance within ±100 ppm/°C in a temperature range of -100°C to +250°C is obtained by heating at the following temperature for 2 seconds or more. 3 Nickel 22-59%, gold 0.01-30% by weight
The wire rod or plate material obtained by casting an alloy with a composition of 39 to 68% copper and containing a small amount of impurities is subjected to winding processing or punched into the desired shape, and it is used as is to provide heat-resistant insulation. After embedding them in the body or fixing them on a heat-resistant insulator, they are held at a temperature of 250°C or higher and below the melting point in a non-oxidizing atmosphere or vacuum for 2 seconds or more and 100 hours or less, and then heated at 5 to 300°C/h. By cooling at a cooling rate and performing sufficient annealing, the temperature coefficient of electrical resistance becomes -
A method for manufacturing an electric resistor element or a sensor coil, characterized in that it produces an electrical resistor element or sensor coil with a tolerance of within ±100 ppm/°C in a temperature range of 100°C to +250°C. 4 Nickel 22-59%, gold 0.01-30% by weight
After applying or coating a heat-resistant insulator on the surface of a fine wire or thin plate obtained by casting an alloy consisting of 39 to 68% copper and containing a small amount of impurities, the wire is formed into the desired shape. in a non-oxidizing atmosphere or in a vacuum.
A method for manufacturing an electric resistor element or a sensor coil, which comprises holding at a temperature of 250° C. or more and below the melting point for 2 seconds or more and 100 hours or less, and then cooling at a cooling rate of 5 to 300° C./h to perform sufficient annealing. 5 Nickel 22-59%, gold 0.01-30% by weight
After applying an alloy film with a composition of 39 to 68% copper and containing a small amount of impurities to the surface of the heat-resistant insulator by an appropriate method, it is formed into the desired shape, and then the heat-resistant insulator is coated on top of it. The coated, applied, or coated material is maintained at a temperature of 250℃ or higher and lower than the melting point in a non-oxidizing atmosphere or vacuum for 2 seconds or more and 100 hours or less, and then cooled at a cooling rate of 5 to 300℃/h for sufficient annealing. A method of manufacturing an electric resistor element or a sensor coil, characterized in that:
JP11366282A 1982-06-30 1982-06-30 Alloy reduced in change of electric resistance over wide temperature range and preparation thereof Granted JPS596345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11366282A JPS596345A (en) 1982-06-30 1982-06-30 Alloy reduced in change of electric resistance over wide temperature range and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11366282A JPS596345A (en) 1982-06-30 1982-06-30 Alloy reduced in change of electric resistance over wide temperature range and preparation thereof

Publications (2)

Publication Number Publication Date
JPS596345A JPS596345A (en) 1984-01-13
JPH036974B2 true JPH036974B2 (en) 1991-01-31

Family

ID=14617968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11366282A Granted JPS596345A (en) 1982-06-30 1982-06-30 Alloy reduced in change of electric resistance over wide temperature range and preparation thereof

Country Status (1)

Country Link
JP (1) JPS596345A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4621042B2 (en) * 2005-02-25 2011-01-26 コーア株式会社 Metal plate resistor for current detection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217572A (en) * 1985-07-15 1987-01-26 ダイキン工業株式会社 Defroster for air-cooled heat pump type refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4621042B2 (en) * 2005-02-25 2011-01-26 コーア株式会社 Metal plate resistor for current detection

Also Published As

Publication number Publication date
JPS596345A (en) 1984-01-13

Similar Documents

Publication Publication Date Title
US4126449A (en) Zirconium-titanium alloys containing transition metal elements
US4518439A (en) Alloy with small change of electric resistance over wide temperature range and method of producing the same
US4517156A (en) Electrical resistant alloys having a small temperature dependence of electric resistance over a wide temperature range and a method of producing the same
JP7214931B1 (en) Copper alloy material, resistance material for resistor using the same, and resistor
JP7214930B1 (en) Copper alloy material, resistance material for resistor using the same, and resistor
US4374679A (en) Electrical resistant article having a small temperature dependence of electric resistance over a wide temperature range and a method of producing the same
JPH036974B2 (en)
JPH0427286B2 (en)
US4468370A (en) Electrical resistant alloys having a small temperature dependence of electrical resistance over a wide temperature range and a method of producing the same
JP2659716B2 (en) Alloy having low temperature coefficient of electric resistance and low melting point, method for producing the same, and highly stable electric resistor or eddy current displacement sensor using the same
JP2010275590A (en) Fe-Ni-Cr-BASED ISOELASTIC COMPOSITION FOR STRAIN GAUGE AND STRAIN GAUGE MANUFACTURED USING THE COMPOSITION
JPS6152224B2 (en)
JPH0570689B2 (en)
JPH08260077A (en) Electric resistance alloy having high resistance temperature, coefficient, its production and sensor device
JPH0317895B2 (en)
JPH08277429A (en) Electric resistance alloy having high resistance temperature coefficient, its production and sensor device
JPS638175B2 (en)
JPS61119637A (en) Temperature sensor element material, its production and temperature sensor
JPH0427285B2 (en)
JPH0514204B2 (en)
JP4895481B2 (en) Resistance thin film and sputtering target for forming the resistance thin film
KR20240026278A (en) Copper alloy materials, resistance materials and resistors for resistors using the same
JPS6253585B2 (en)
US4080715A (en) Process for production of lamellar graphite-containing material
JPS613857A (en) Copper alloy for wiring connector