JP7214931B1 - Copper alloy material, resistance material for resistor using the same, and resistor - Google Patents

Copper alloy material, resistance material for resistor using the same, and resistor Download PDF

Info

Publication number
JP7214931B1
JP7214931B1 JP2022550192A JP2022550192A JP7214931B1 JP 7214931 B1 JP7214931 B1 JP 7214931B1 JP 2022550192 A JP2022550192 A JP 2022550192A JP 2022550192 A JP2022550192 A JP 2022550192A JP 7214931 B1 JP7214931 B1 JP 7214931B1
Authority
JP
Japan
Prior art keywords
mass
less
copper alloy
copper
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022550192A
Other languages
Japanese (ja)
Other versions
JPWO2023276905A1 (en
Inventor
紳悟 川田
俊太 秋谷
司 高澤
雄太郎 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Publication of JPWO2023276905A1 publication Critical patent/JPWO2023276905A1/ja
Application granted granted Critical
Publication of JP7214931B1 publication Critical patent/JP7214931B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C3/00Non-adjustable metal resistors made of wire or ribbon, e.g. coiled, woven or formed as grids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

例えば抵抗材料として十分に高い体積抵抗率を有するとともに、対銅熱起電力の絶対値が小さく、かつ常温(例えば20℃)から高温(例えば150℃)までの広い温度範囲での抵抗温度係数が負の数であって絶対値の小さい銅合金材ならびにそれを用いた抵抗器用抵抗材料および抵抗器を提供する。銅合金材は、Mn:20.0質量%以上35.0質量%以下、Ni:5.0質量%以上17.0質量%以下、およびCo:0.10質量%以上2.00質量%以下を含有し、残部がCuおよび不可避不純物からなる合金組成を有する。抵抗器用抵抗材料は、この銅合金材によって構成される。また、抵抗器は、この抵抗器用抵抗材料を有する。For example, it has a sufficiently high volume resistivity as a resistance material, a small absolute value of the thermoelectromotive force against copper, and a temperature coefficient of resistance in a wide temperature range from normal temperature (eg, 20 ° C.) to high temperature (eg, 150 ° C.). Provided are a copper alloy material having a negative number and a small absolute value, a resistance material for a resistor using the same, and a resistor. The copper alloy material contains Mn: 20.0% by mass or more and 35.0% by mass or less, Ni: 5.0% by mass or more and 17.0% by mass or less, and Co: 0.10% by mass or more and 2.00% by mass or less. and the balance is Cu and unavoidable impurities. A resistive material for a resistor is composed of this copper alloy material. Also, the resistor has this resistive material for the resistor.

Description

本発明は、銅合金材ならびにそれを用いた抵抗器用抵抗材料および抵抗器に関する。 TECHNICAL FIELD The present invention relates to a copper alloy material, a resistive material for a resistor using the same, and a resistor.

抵抗器に使用される抵抗材の金属材料には、環境温度が変化しても抵抗器の抵抗が安定するように、その指標である抵抗温度係数(TCR)の絶対値が小さいことが要求される。抵抗温度係数とは、温度による抵抗値の変化の大きさを1℃当たりの百万分率(ppm)で表したものであり、TCR(×10-6/℃)={(R-R)/R}×{1/(T-T)}×10という式で表される。ここで、式中のTは試験温度(℃)、Tは基準温度(℃)、Rは試験温度Tにおける抵抗値(Ω)、Rは基準温度Tにおける抵抗値(Ω)を示す。特に、Cu-Mn-Ni合金やCu-Mn-Sn合金は、TCRが非常に小さいため、抵抗材を構成する合金材料として広く用いられている。Metal materials used for resistors are required to have a small absolute value of the temperature coefficient of resistance (TCR), which is an index, so that the resistance of the resistor is stable even if the environmental temperature changes. be. The temperature coefficient of resistance is the magnitude of change in resistance value due to temperature expressed in parts per million (ppm) per 1° C. TCR (×10 −6 /° C.)={(R−R 0 )/R 0 }×{1/(TT 0 )}×10 6 . Here, T in the formula is the test temperature (°C), T0 is the reference temperature (°C), R is the resistance value (Ω) at the test temperature T, and R0 is the resistance value (Ω) at the reference temperature T0 . . In particular, Cu--Mn--Ni alloys and Cu--Mn--Sn alloys are widely used as alloy materials constituting resistor materials because of their extremely low TCR.

しかしながら、たとえば抵抗材料を用いて回路(パターン)を形成することによって所定の抵抗値になるように設計される抵抗器に、これらのCu-Mn-Ni合金やCu-Mn-Sn合金を抵抗材料として用いた場合には、体積抵抗率が50×10-8(Ω・m)未満と小さいことで、抵抗材料の断面積を小さくして抵抗器の抵抗値を大きくする必要がある。このような抵抗器では、回路に一時的に大電流が流された場合や、常にある程度大きな電流が流され続けるような場合に、断面積の小さな抵抗材料に生じるジュール熱が高くなって発熱し、その結果、抵抗材料が熱により破断(溶断)しやすくなってしまうという不都合があった。However, these Cu--Mn--Ni alloys and Cu--Mn--Sn alloys are used in resistors designed to have a predetermined resistance value by forming circuits (patterns) using resistive materials, for example. , the volume resistivity is as low as less than 50×10 −8 (Ω·m), so it is necessary to reduce the cross-sectional area of the resistive material to increase the resistance value of the resistor. In such resistors, when a large current is temporarily passed through the circuit, or when a large current is constantly passed through the circuit, the Joule heat generated in the resistive material with a small cross-sectional area increases and heats up. As a result, there is a problem that the resistance material is easily broken (melted) by heat.

このため、抵抗材料の断面積が小さくなるのを抑制するために、体積抵抗率のより大きな抵抗材料が求められている。 Therefore, in order to prevent the cross-sectional area of the resistive material from becoming smaller, a resistive material with a higher volume resistivity is desired.

例えば、特許文献1には、Mnを23質量%以上28質量%以下の範囲で含有し、かつNiを9質量%以上13質量%以下の範囲で含有する銅合金において、Mnの質量分率とNiの質量分率を、銅に対する熱起電力が20℃で±1μV/℃より小さくなるように構成することで、50×10-8[Ω・m]以上の高い電気抵抗(体積抵抗率ρ)を得ることができるとともに、銅に対する熱起電力(対銅熱起電力、EMF)が小さく、電気抵抗の温度係数が低く、かつ、固有の電気抵抗の時間に対する高い安定性(時間不変性)を有する銅合金を得ることができるとしている。For example, in Patent Document 1, in a copper alloy containing Mn in the range of 23% by mass or more and 28% by mass or less and Ni in the range of 9% by mass or more and 13% by mass or less, the mass fraction of Mn and By configuring the mass fraction of Ni so that the thermoelectromotive force with respect to copper is less than ±1 μV /°C at 20°C, a high electrical resistance (volume resistivity ρ ) can be obtained, the thermoelectromotive force for copper (thermoelectromotive force for copper, EMF) is small, the temperature coefficient of electrical resistance is low, and the inherent electrical resistance is highly stable with respect to time (time invariance) It is possible to obtain a copper alloy having

また、特許文献2には、Mnを21.0質量%以上30.2質量%以下の範囲で含有し、かつNiを8.2質量%以上11.0質量%以下の範囲で含有する銅合金において、20℃から60℃までの温度範囲におけるTCRの値x[ppm/℃]を-10≦x≦-2または2≦x≦10の範囲にし、かつ、体積抵抗率ρを80×10-8[Ω・m]以上115×10-8[Ω・m]以下にすることで、抵抗材料を用いたチップ抵抗器などの抵抗器の回路の断面積が小さくなるのを抑制するとともに、抵抗材料のジュール熱が高くなるのを抑制することができるとしている。Further, in Patent Document 2, a copper alloy containing Mn in the range of 21.0% by mass or more and 30.2% by mass or less and Ni in the range of 8.2% by mass or more and 11.0% by mass or less , the TCR value x [ppm/°C] in the temperature range from 20 ° C to 60 ° C is in the range of -10 ≤ x ≤ -2 or 2 ≤ x ≤ 10, and the volume resistivity ρ is 80 × 10 - 8 [Ω・m] or more and 115×10 −8 [Ω・m] or less suppresses a decrease in the cross-sectional area of the circuit of a resistor such as a chip resistor using a resistive material, It is said that it is possible to suppress the Joule heat of the material from increasing.

特表2016-528376号公報Japanese Patent Publication No. 2016-528376 特開2017-053015号公報JP 2017-053015 A

近年、電気自動車の電装系などにおいて、シャント抵抗器やチップ抵抗器などの抵抗器として、体積抵抗率ρが大きいもののほか、より高温の使用環境に耐える高精度なものが求められており、このような抵抗器に用いられる銅合金としても、より高温の使用環境に耐える高精度なものが求められている。 In recent years, shunt resistors, chip resistors, and other resistors that have a large volume resistivity ρ and high-precision resistors that can withstand even higher temperatures are in demand in the electrical systems of electric vehicles. Copper alloys used in such resistors are also required to have high precision that can withstand higher temperature environments.

これに関し、特許文献1に記載の銅合金では、20℃での対銅熱起電力(EMF)を±1μV/℃より小さくすることが記載されている。また、特許文献1に記載の銅合金では、図3に記載されるように、より高温域を含む20℃から150℃までの温度範囲では、電気抵抗の温度依存性が大きな負の数になるため、高温域において抵抗値に誤差を生じやすいことが知られているが、その絶対値を小さくすることは困難であった。 In relation to this, in the copper alloy described in Patent Document 1, it is described that the copper thermoelectromotive force (EMF) at 20°C is less than ±1 µV/°C. In addition, in the copper alloy described in Patent Document 1, as shown in FIG. 3, the temperature dependence of the electrical resistance becomes a large negative number in the temperature range from 20° C. to 150° C., which includes a higher temperature range. Therefore, it is known that the resistance value tends to have an error in a high temperature range, but it has been difficult to reduce the absolute value.

また、特許文献2に記載の銅合金では、20℃と100℃の温度環境の間で生じる対銅熱起電力(EMF)を±2μV/℃以下にすることや、電気抵抗の温度依存性を、20℃から60℃までの温度範囲で、±50×10-6[℃-1]以下の範囲にすることが記載されているが、EMFの絶対値をより小さくすること、さらに、常温(例えば20℃)から高温(例えば150℃)までの広い温度範囲での抵抗温度係数(TCR)を絶対値の小さい負の数に制御することが求められていた。In addition, in the copper alloy described in Patent Document 2, the thermoelectromotive force (EMF) against copper generated between the temperature environment of 20 ° C. and 100 ° C. is ±2 μV / ° C. or less, and the temperature dependence of the electrical resistance is reduced. , within the temperature range of 20° C. to 60° C., the range is ±50×10 −6 [° C. −1 ] or less. It has been required to control the temperature coefficient of resistance (TCR) to a negative number with a small absolute value in a wide temperature range from 20° C.) to a high temperature (eg 150° C.).

このように、特許文献1および2に記載の銅合金は、体積抵抗率ρを高めるとともに、常温から高温までの広い温度範囲での使用環境も考慮した抵抗温度係数(TCR)および対銅熱起電力(EMF)について、対銅熱起電力(EMF)の絶対値を小さくし、かつ抵抗温度係数(TCR)を絶対値の小さい負の数にする点で、さらに改善の余地があるものであった。 In this way, the copper alloys described in Patent Documents 1 and 2 increase the volume resistivity ρ, and also have a temperature coefficient of resistance (TCR) and a thermal resistance against copper considering the usage environment in a wide temperature range from normal temperature to high temperature. Regarding the power (EMF), there is still room for improvement in terms of reducing the absolute value of the copper thermoelectromotive force (EMF) and setting the temperature coefficient of resistance (TCR) to a negative number with a small absolute value. rice field.

したがって、本発明の目的は、例えば抵抗材料として十分に高い体積抵抗率を有するとともに、対銅熱起電力の絶対値が小さく、かつ常温(例えば20℃)から高温(例えば150℃)までの広い温度範囲での抵抗温度係数が負の数であって絶対値の小さい銅合金材ならびにそれを用いた抵抗器用抵抗材料および抵抗器を提供することにある。 Accordingly, an object of the present invention is to provide a material having a sufficiently high volume resistivity as a resistive material, a small absolute value of thermoelectromotive force against copper, and a wide temperature range from normal temperature (eg, 20° C.) to high temperature (eg, 150° C.). An object of the present invention is to provide a copper alloy material having a negative temperature coefficient of resistance and a small absolute value in a temperature range, a resistance material for a resistor, and a resistor using the copper alloy material.

本発明者らは、Mn:20.0質量%以上35.0質量%以下、Ni:5.0質量%以上17.0質量%以下、およびCo:0.10質量%以上2.00質量%以下を含有し、残部がCuおよび不可避不純物からなる合金組成によることで、例えば抵抗材料として十分に高い体積抵抗率ρを有するとともに、対銅熱起電力(EMF)の絶対値が小さく、かつ常温(例えば20℃)から高温(例えば150℃)までの広い温度範囲での抵抗温度係数が負の数であって絶対値の小さい銅合金材が得られることを見出し、本発明を完成させるに至った。 The present inventors found that Mn: 20.0% by mass or more and 35.0% by mass or less, Ni: 5.0% by mass or more and 17.0% by mass or less, and Co: 0.10% by mass or more and 2.00% by mass Due to the alloy composition containing the following, the balance being Cu and unavoidable impurities, for example, it has a sufficiently high volume resistivity ρ as a resistance material, a small absolute value of the copper thermoelectromotive force (EMF), and a room temperature We have found that a copper alloy material with a negative temperature coefficient of resistance and a small absolute value can be obtained in a wide temperature range from (e.g. 20°C) to high temperatures (e.g. 150°C), and have completed the present invention. rice field.

上記目的を達成するため、本発明の要旨構成は、以下のとおりである。
(1)Mn:20.0質量%以上35.0質量%以下、Ni:5.0質量%以上17.0質量%以下、およびCo:0.10質量%以上2.00質量%以下を含有し、残部がCuおよび不可避不純物からなる合金組成を有する、銅合金材。
(2)Mnの含有量をx[質量%]、Niの含有量をy[質量%]、Coの含有量をz[質量%]とするとき、x、yおよびzは、下記に示す(I)式の関係を満足する、上記(1)に記載の銅合金材。
0.8x-10.5≦y+5z≦0.8x-6.5 ・・・(I)
(3)Mnの含有量をx[質量%]、Niの含有量をy[質量%]とするとき、xに対するyの比が0.40未満である、上記(1)または(2)に記載の銅合金材。
(4)前記合金組成は、Sn:0.01質量%以上3.00質量%以下、Zn:0.01質量%以上5.00質量%以下、Cr:0.01質量%以上0.50質量%以下、Ag:0.01質量%以上0.50質量%以下、Al:0.01質量%以上1.00質量%以下、Mg:0.01質量%以上0.50質量%以下、Si:0.01質量%以上0.50質量%以下、およびP:0.01質量%以上0.50質量%以下からなる群から選択される少なくとも1種をさらに含有する、上記(1)、(2)または(3)に記載の銅合金材。
(5)前記銅合金材が板材、棒材、条材または線材であり、平均結晶粒径が60μm以下である、上記(1)~(4)のいずれか1項に記載の銅合金材。
(6)上記(1)~(5)のいずれか1項に記載の銅合金材からなる、抵抗器用抵抗材料。
(7)上記(6)に記載の抵抗器用抵抗材料を有する、シャント抵抗器またはチップ抵抗器である抵抗器。
In order to achieve the above object, the gist and configuration of the present invention are as follows.
(1) Mn: 20.0% by mass or more and 35.0% by mass or less, Ni: 5.0% by mass or more and 17.0% by mass or less, and Co: 0.10% by mass or more and 2.00% by mass or less A copper alloy material having an alloy composition in which the balance is Cu and inevitable impurities.
(2) When the Mn content is x [mass%], the Ni content is y [mass%], and the Co content is z [mass%], x, y and z are shown below ( I) The copper alloy material according to (1) above, which satisfies the relationship of the formula.
0.8x−10.5≦y+5z≦0.8x−6.5 (I)
(3) The above (1) or (2), wherein the ratio of y to x is less than 0.40, where x [mass%] is the Mn content and y [mass%] is the Ni content A copper alloy material as described.
(4) The alloy composition is Sn: 0.01% by mass or more and 3.00% by mass or less, Zn: 0.01% by mass or more and 5.00% by mass or less, and Cr: 0.01% by mass or more and 0.50% by mass. % or less, Ag: 0.01% by mass or more and 0.50% by mass or less, Al: 0.01% by mass or more and 1.00% by mass or less, Mg: 0.01% by mass or more and 0.50% by mass or less, Si: 0.01% by mass or more and 0.50% by mass or less, and P: 0.01% by mass or more and 0.50% by mass or less, further containing at least one selected from the group consisting of (1) and (2) ) or the copper alloy material according to (3).
(5) The copper alloy material according to any one of (1) to (4) above, wherein the copper alloy material is a plate material, bar material, strip material or wire material, and has an average crystal grain size of 60 μm or less.
(6) A resistance material for a resistor, comprising the copper alloy material according to any one of (1) to (5) above.
(7) A resistor, which is a shunt resistor or a chip resistor, comprising the resistance material for a resistor according to (6) above.

本発明によれば、例えば抵抗材料として十分に高い体積抵抗率を有するとともに、対銅熱起電力の絶対値が小さく、かつ常温(例えば20℃)から高温(例えば150℃)までの広い温度範囲での抵抗温度係数が負の数であって絶対値の小さい銅合金材ならびにそれを用いた抵抗器用抵抗材料および抵抗器を提供することができる。 According to the present invention, for example, it has a sufficiently high volume resistivity as a resistance material, a small absolute value of the thermoelectromotive force against copper, and a wide temperature range from normal temperature (eg, 20 ° C.) to high temperature (eg, 150 ° C.). It is possible to provide a copper alloy material having a negative temperature coefficient of resistance at and a small absolute value, and a resistance material for a resistor and a resistor using the copper alloy material.

Mn、NiおよびCoを含有する銅合金材について、Mnの含有量をx[質量%]、Niの含有量をy[質量%]、Coの含有量をz[質量%]とする場合の、xと(y+5z)の関係を示すグラフであり、xを横軸に、(y+5z)を縦軸にしたものである。For a copper alloy material containing Mn, Ni and Co, when the Mn content is x [mass%], the Ni content is y [mass%], and the Co content is z [mass%], It is a graph showing the relationship between x and (y+5z), with x on the horizontal axis and (y+5z) on the vertical axis. 本発明例および比較例の供試材について、対銅熱起電力(EMF)を求める方法を説明するための模式図である。FIG. 4 is a schematic diagram for explaining a method of determining the copper thermoelectromotive force (EMF) of the test materials of the present invention example and the comparative example.

以下、本発明の銅合金材の好ましい実施形態について、詳細に説明する。なお、本発明の合金の成分組成において、「質量%」を単に「%」と示すこともある。 Preferred embodiments of the copper alloy material of the present invention are described in detail below. In addition, in the component composition of the alloy of the present invention, "% by mass" may be simply indicated as "%".

本発明に従う銅合金材は、Mn:20.0質量%以上35.0質量%以下、Ni:5.0質量%以上17.0質量%以下、およびCo:0.10質量%以上2.00質量%以下を含有し、残部がCuおよび不可避不純物からなる合金組成を有する。 The copper alloy material according to the present invention has Mn: 20.0% by mass or more and 35.0% by mass or less, Ni: 5.0% by mass or more and 17.0% by mass or less, and Co: 0.10% by mass or more and 2.00% by mass. % by mass or less, with the balance being Cu and unavoidable impurities.

このように、本発明に従う銅合金材では、Mnを20.0質量%以上35.0質量%以下の範囲で含有し、Niを5.0質量%以上17.0質量%以下の範囲で含有するとともに、Coを0.10質量%以上2.00質量%以下の範囲で含有することで、Coを含有しない場合と比べて、0℃と80℃の温度環境の間で発生する対銅熱起電力(EMF)(以下、単に「対銅熱起電力」という場合がある)の絶対値が小さくなるため、高温環境下においても、抵抗器の高精度化を進めることができる。また、Mnを20.0質量%以上35.0質量%以下の範囲で含有し、かつNiを5.0質量%以上17.0質量%以下の範囲で含有することで、体積抵抗率ρを高めるとともに、対銅熱起電力の絶対値を小さくすることができる。その結果、本発明に従う銅合金材によることで、抵抗材料としても十分に高い体積抵抗率ρを有するとともに、対銅熱起電力(EMF)の絶対値が小さい銅合金材ならびにそれを用いた抵抗器用抵抗材料および抵抗器を提供することができる。 Thus, the copper alloy material according to the present invention contains Mn in the range of 20.0% by mass or more and 35.0% by mass or less, and Ni in the range of 5.0% by mass or more and 17.0% by mass or less. In addition, by containing Co in the range of 0.10% by mass or more and 2.00% by mass or less, the heat generated between the temperature environment of 0 ° C. and 80 ° C. is reduced compared to the case where Co is not contained. Since the absolute value of the electromotive force (EMF) (hereinafter sometimes simply referred to as “copper thermoelectromotive force”) is reduced, the precision of the resistor can be improved even in a high-temperature environment. Further, by containing Mn in the range of 20.0% by mass or more and 35.0% by mass or less and Ni in the range of 5.0% by mass or more and 17.0% by mass or less, the volume resistivity ρ In addition, the absolute value of the thermoelectromotive force against copper can be reduced. As a result, the copper alloy material according to the present invention has a sufficiently high volume resistivity ρ even as a resistance material, and a copper alloy material with a small absolute value of the copper thermoelectromotive force (EMF), and a resistor using the same Dexterous resistive materials and resistors can be provided.

さらに、本発明に従う銅合金材では、常温(例えば20℃)から高温(例えば150℃)までの広い温度範囲での抵抗温度係数(TCR)(以下、単に「抵抗温度係数」という場合がある)の絶対値を小さくすることも可能である。これに関し、上述の特許文献1、2記載の銅合金では、電気抵抗の温度依存性について、20℃から60℃までの温度範囲で、±50×10-6[℃-1]以下の範囲であることが記載されている。これに関しては、特許文献1の図3に記載されるように、より高温域を含む20℃から150℃までの温度範囲では、電気抵抗の温度依存性が大きな負の数になるため、高温域において抵抗値に誤差を生じやすいことが知られている。この点、本発明に従う銅合金材では、常温(例えば20℃)から高温(例えば150℃)までの広い温度範囲での抵抗温度係数(TCR)の絶対値を小さくすることができる。Furthermore, in the copper alloy material according to the present invention, the temperature coefficient of resistance (TCR) in a wide temperature range from room temperature (for example, 20°C) to high temperature (for example, 150°C) (hereinafter sometimes simply referred to as "temperature coefficient of resistance") It is also possible to reduce the absolute value of Regarding this, in the copper alloys described in Patent Documents 1 and 2 above, the temperature dependence of the electrical resistance is ±50 × 10 -6 [° C. -1 ] or less in the temperature range from 20 ° C. to 60 ° C. Something is stated. In this regard, as described in FIG. 3 of Patent Document 1, in the temperature range from 20° C. to 150° C., which includes a higher temperature range, the temperature dependence of the electrical resistance becomes a large negative number. It is known that errors in resistance values are likely to occur in In this regard, the copper alloy material according to the present invention can reduce the absolute value of the temperature coefficient of resistance (TCR) over a wide temperature range from room temperature (eg, 20° C.) to high temperature (eg, 150° C.).

また、本発明に従う銅合金材では、常温(例えば20℃)から高温(例えば150℃)までの抵抗温度係数(TCR)(以下、単に「抵抗温度係数」という場合がある)を負にすることも可能である。より具体的には、Mnを20.0質量%以上35.0質量%以下の範囲で含有し、Niを5.0質量%以上15.0質量%以下の範囲で含有するとともに、Coを0.10質量%以上2.00質量%以下の範囲で含有することで、より高温域を含む20℃から150℃までの温度範囲で、抵抗温度係数(TCR)の数値を負の値にすることができる。これにより、銅合金材を抵抗器などの抵抗材料として用いた場合に、銅合金材に接合される導体である金属が有する、高い抵抗温度係数による悪影響を軽減することができる。例えば、導体である金属が銅である場合、銅の抵抗温度係数は約4000ppm/℃と大きいため、導体の温度変化によって抵抗値に差異が生じていた。この点、抵抗温度係数(TCR)が負である銅合金材を用いることで、導体の温度変化による抵抗値への悪影響を軽減することが可能である。 In addition, in the copper alloy material according to the present invention, the temperature coefficient of resistance (TCR) from room temperature (for example, 20°C) to high temperature (for example, 150°C) (hereinafter sometimes simply referred to as "temperature coefficient of resistance") is made negative. is also possible. More specifically, Mn is contained in the range of 20.0% by mass or more and 35.0% by mass or less, Ni is contained in the range of 5.0% by mass or more and 15.0% by mass or less, and Co is 0%. .The temperature coefficient of resistance (TCR) becomes a negative value in the temperature range from 20°C to 150°C, including the higher temperature range, by containing it in the range of 10% by mass or more and 2.00% by mass or less. can be done. As a result, when the copper alloy material is used as a resistive material such as a resistor, it is possible to reduce the adverse effects of the high temperature coefficient of resistance of the metal that is the conductor joined to the copper alloy material. For example, when the conductor metal is copper, the temperature coefficient of resistance of copper is as large as about 4000 ppm/° C., and thus the resistance value varies depending on the temperature change of the conductor. In this respect, by using a copper alloy material having a negative temperature coefficient of resistance (TCR), it is possible to reduce the adverse effect on the resistance value due to the temperature change of the conductor.

したがって、本発明に従う銅合金材では、高い体積抵抗率ρを有するとともに、対銅熱起電力(EMF)の絶対値が小さく、かつ抵抗温度係数(TCR)が負の数であって絶対値の小さい、銅合金材ならびにそれを用いた抵抗器用抵抗材料および抵抗器を提供することも可能である。 Therefore, the copper alloy material according to the present invention has a high volume resistivity ρ, a small absolute value of the thermoelectromotive force (EMF) against copper, and a negative temperature coefficient of resistance (TCR) of which the absolute value is It is also possible to provide a small copper alloy material, a resistance material for a resistor and a resistor using the same.

[1]銅合金材の組成
<必須含有成分>
本発明の銅合金材の合金組成は、必須含有成分として、Mn:20.0質量%以上35.0質量%以下、Ni:5.0質量%以上17.0質量%以下、およびCo:0.10質量%以上2.00質量%以下を含有するものである。
[1] Composition of copper alloy material <essential ingredients>
The alloy composition of the copper alloy material of the present invention includes, as essential components, Mn: 20.0% by mass or more and 35.0% by mass or less, Ni: 5.0% by mass or more and 17.0% by mass or less, and Co: 0 .10% by mass or more and 2.00% by mass or less.

(Mn:20.0質量%以上35.0質量%以下)
Mn(マンガン)は、体積抵抗率ρを高めるとともに、抵抗温度係数(TCR)を正の方向に調整することで、抵抗温度係数(TCR)として絶対値の小さい負の値を得やすくする元素である。この作用を発揮するとともに、均質な銅合金材を得るためには、Mnは、20.0質量%以上含有することが好ましく、22.0質量%以上含有することがより好ましく、24.0質量%以上含有することがさらに好ましい。ここで、Mn含有量を22.0質量%以上または24.0質量%以上に増加させることで、銅合金材の体積抵抗率ρをより一層高めることができる。他方で、Mn含有量が35.0質量%を超えると、対銅熱起電力(EMF)および抵抗温度係数(TCR)の絶対値を小さくすることが困難になる。特に、Mn含有量が35.0質量%を超えると、対銅熱起電力(EMF)が負の方向に大きくなりやすい。このため、Mn含有量は、20.0質量%以上35.0質量%以下の範囲にすることが好ましい。
(Mn: 20.0% by mass or more and 35.0% by mass or less)
Mn (manganese) is an element that increases the volume resistivity ρ and adjusts the temperature coefficient of resistance (TCR) in the positive direction, thereby making it easier to obtain a negative temperature coefficient of resistance (TCR) with a small absolute value. be. In order to exhibit this effect and obtain a homogeneous copper alloy material, the Mn content is preferably 20.0% by mass or more, more preferably 22.0% by mass or more, and 24.0% by mass. % or more is more preferable. Here, by increasing the Mn content to 22.0% by mass or more or 24.0% by mass or more, the volume resistivity ρ of the copper alloy material can be further increased. On the other hand, when the Mn content exceeds 35.0% by mass, it becomes difficult to reduce the absolute values of the copper thermoelectromotive force (EMF) and the temperature coefficient of resistance (TCR). In particular, when the Mn content exceeds 35.0% by mass, the thermoelectromotive force (EMF) against copper tends to increase in the negative direction. Therefore, the Mn content is preferably in the range of 20.0% by mass or more and 35.0% by mass or less.

(Ni:5.0質量%以上17.0質量%以下)
Ni(ニッケル)は、対銅熱起電力(EMF)の絶対値を小さくする元素である。この作用を発揮するには、Niは、5.0質量%以上含有することが好ましい。他方で、Ni含有量が多いと、抵抗温度係数(TCR)が絶対値の大きな負の値になりやすい。このため、Ni含有量は、5.0質量%以上17.0質量%以下の範囲であることが好ましい。特に、本発明の銅合金材におけるNi含有量は、Mnの含有量をx[質量%]、Niの含有量をy[質量%]とするとき、xに対するyの比が0.40未満であることが好ましい。xに対するyの比を小さくすることで、抵抗温度係数(TCR)の絶対値をさらに小さくすることができる。このため、xに対するyの比は、0.40未満であることが好ましく、0.38以下であることがより好ましく、0.36以下であることがさらに好ましい。なお、銅合金材におけるNiの含有量は、抵抗温度係数(TCR)の絶対値を小さくする観点から、5.0質量%以上10.0質量%以下の範囲にしてもよい。
(Ni: 5.0% by mass or more and 17.0% by mass or less)
Ni (nickel) is an element that reduces the absolute value of the copper thermoelectromotive force (EMF). In order to exhibit this effect, Ni is preferably contained in an amount of 5.0% by mass or more. On the other hand, when the Ni content is high, the temperature coefficient of resistance (TCR) tends to be a negative value with a large absolute value. Therefore, the Ni content is preferably in the range of 5.0% by mass or more and 17.0% by mass or less. In particular, the Ni content in the copper alloy material of the present invention is such that the ratio of y to x is less than 0.40, where x [mass%] is the Mn content and y [mass%] is the Ni content. Preferably. By reducing the ratio of y to x, the absolute value of the temperature coefficient of resistance (TCR) can be further reduced. Therefore, the ratio of y to x is preferably less than 0.40, more preferably 0.38 or less, and even more preferably 0.36 or less. From the viewpoint of reducing the absolute value of the temperature coefficient of resistance (TCR), the Ni content in the copper alloy material may be in the range of 5.0% by mass or more and 10.0% by mass or less.

(Co:0.10質量%以上2.00質量%以下)
Co(コバルト)は、対銅熱起電力(EMF)を正の方向に調整することで、対銅熱起電力(EMF)の絶対値を小さくする元素である。この作用を発揮するには、Coは、0.10質量%以上含有することが好ましく、0.20質量%以上含有することがより好ましく、0.30質量%以上含有することがさらに好ましい。特に、本発明の銅合金材では、CoとNiを併用することで、Niだけを含む場合と比べ、対銅熱起電力(EMF)と抵抗温度係数(TCR)の絶対値を、いずれも小さくすることができる。また、Co含有量を0.10質量%以上2.00質量%以下の範囲にすることで、Fe(鉄)などを含む場合と比べて、単相が得られやすくなるため、電気的特性のばらつきが小さい銅合金材の製造を行ないやすくすることができる。他方で、Coの含有量が多いと、抵抗温度係数(TCR)が絶対値の大きな負の値になりやすい。また、対銅熱起電力(EMF)が絶対値の大きな正の値になりやすい。したがって、Co含有量は、0.10質量%以上2.00質量%以下の範囲にすることが好ましい。
(Co: 0.10% by mass or more and 2.00% by mass or less)
Co (cobalt) is an element that reduces the absolute value of the copper thermoelectromotive force (EMF) by adjusting the copper thermoelectromotive force (EMF) in the positive direction. To exhibit this effect, the Co content is preferably 0.10% by mass or more, more preferably 0.20% by mass or more, and even more preferably 0.30% by mass or more. In particular, in the copper alloy material of the present invention, by using both Co and Ni, both the absolute values of the copper thermoelectromotive force (EMF) and the temperature coefficient of resistance (TCR) are reduced compared to the case where only Ni is contained. can do. In addition, by setting the Co content in the range of 0.10% by mass or more and 2.00% by mass or less, it becomes easier to obtain a single phase compared to the case where Fe (iron) or the like is included. It is possible to facilitate the production of copper alloy materials with small variations. On the other hand, when the Co content is high, the temperature coefficient of resistance (TCR) tends to be a negative value with a large absolute value. In addition, the copper thermoelectromotive force (EMF) tends to be a positive value with a large absolute value. Therefore, the Co content is preferably in the range of 0.10% by mass or more and 2.00% by mass or less.

本発明の銅合金材は、Mn、NiおよびCoを含有するとともに、Mnの含有量をx[質量%]、Niの含有量をy[質量%]、Coの含有量をz[質量%]とするとき、x、yおよびzは、下記に示す(I)式の関係を満足することが好ましい。
0.8x-10.5≦y+5z≦0.8x-6.5 ・・・(I)
The copper alloy material of the present invention contains Mn, Ni and Co, and has a Mn content of x [mass%], a Ni content of y [mass%], and a Co content of z [mass%]. , x, y and z preferably satisfy the relationship of formula (I) shown below.
0.8x−10.5≦y+5z≦0.8x−6.5 (I)

このうち、0.8x-10.5≦y+5zの関係を満たすことで、対銅熱起電力(EMF)が負の方向に大きな値を取り難くなる。他方で、y+5z≦0.8x-6.5の関係を満たすことで、対銅熱起電力(EMF)が正の方向に大きな値を取り難くなる。 By satisfying the relationship of 0.8x−10.5≦y+5z, the thermoelectromotive force (EMF) against copper is less likely to take a large value in the negative direction. On the other hand, satisfying the relationship y+5z≦0.8x−6.5 makes it difficult for the copper thermoelectromotive force (EMF) to take a large value in the positive direction.

図1は、Mn、NiおよびCoを含有する銅合金材について、Mnの含有量をx[質量%]、Niの含有量をy[質量%]、Coの含有量をz[質量%]とする場合の、xと(y+5z)の関係を示すグラフであり、xを横軸に、(y+5z)を縦軸にしたものである。図1のグラフでは、対銅熱起電力(EMF)の絶対値が0.5μV/℃以下の銅合金材を、対銅熱起電力(EMF)の絶対値が小さく、抵抗材料として良好であるとして「〇」をプロットしている。また、対銅熱起電力(EMF)の絶対値が0.5μV/℃を超える銅合金材を、対銅熱起電力(EMF)の絶対値が大きく、抵抗材料として不合格であるとして「×」をプロットしている。 FIG. 1 shows, for a copper alloy material containing Mn, Ni and Co, the Mn content is x [mass%], the Ni content is y [mass%], and the Co content is z [mass%]. It is a graph showing the relationship between x and (y+5z) in the case where x is on the horizontal axis and (y+5z) is on the vertical axis. In the graph of FIG. 1, a copper alloy material with an absolute value of the thermoelectromotive force (EMF) to copper of 0.5 μV/° C. or less has a small absolute value of the thermoelectromotive force (EMF) to copper and is good as a resistance material. "0" is plotted as In addition, a copper alloy material with an absolute value of the thermoelectromotive force (EMF) against copper (EMF) exceeding 0.5 μV/° C. is judged to be disqualified as a resistive material due to the large absolute value of the thermoelectromotive force (EMF) against copper. ” is plotted.

ここで、Mn、NiおよびCoを含有し、かつ上記(I)式の関係を満足する銅合金材、より具体的に、後述する本発明例1~18および比較例4の銅合金材は、対銅熱起電力(EMF)の絶対値が0.5μV/℃以下であり、図1のグラフにおいて、いずれも「〇」でプロットされる。他方で、Mn、NiおよびCoを含有する銅合金材であって、上記(I)式の関係を満足しない銅合金材、例えば後述する比較例2、3、5~7の銅合金材は、対銅熱起電力(EMF)の絶対値が0.5μV/℃を超えており、図1のグラフにおいて、いずれも「×」でプロットされる。 Here, the copper alloy materials containing Mn, Ni and Co and satisfying the relationship of the above formula (I), more specifically, the copper alloy materials of Examples 1 to 18 of the present invention and Comparative Example 4 described later, The absolute value of the copper thermoelectromotive force (EMF) is 0.5 μV/° C. or less, and all of them are plotted with “◯” in the graph of FIG. 1 . On the other hand, the copper alloy materials containing Mn, Ni and Co that do not satisfy the relationship of the above formula (I), for example, the copper alloy materials of Comparative Examples 2, 3, 5 to 7 described later, The absolute value of the copper thermoelectromotive force (EMF) exceeds 0.5 μV/° C., and both are plotted with “×” in the graph of FIG. 1 .

このように、銅合金材の組成が、上記(I)式の関係を満足することで、対銅熱起電力(EMF)の絶対値が小さい(例えば、対銅熱起電力(EMF)の絶対値が0.5μV/℃以下となる)銅合金材を得易くすることができる。 In this way, when the composition of the copper alloy material satisfies the relationship of the above formula (I), the absolute value of the thermoelectromotive force (EMF) against copper is small (for example, the absolute value of the thermoelectromotive force (EMF) against copper value is 0.5 μV/° C. or less), making it easier to obtain a copper alloy material.

なお、図1には、上記(I)式の関係を満足しない銅合金材として、比較例2、3、5~7のほかに、Mn、NiおよびCoを含有する複数の銅合金材が記載されているが、いずれも対銅熱起電力(EMF)の絶対値が0.5μV/℃を超えており、図1のグラフでは「×」でプロットされる。 In addition to Comparative Examples 2, 3, 5 to 7, a plurality of copper alloy materials containing Mn, Ni and Co are shown in FIG. 1 as copper alloy materials that do not satisfy the relationship of the above formula (I). However, the absolute value of copper thermoelectromotive force (EMF) exceeds 0.5 μV/° C., which is plotted with “x” in the graph of FIG.

<任意添加成分>
本発明の銅合金材は、任意添加成分として、Sn:0.01質量%以上3.00質量%以下、Zn:0.01質量%以上5.00質量%以下、Cr:0.01質量%以上0.50質量%以下、Ag:0.01質量%以上0.50質量%以下、Al:0.01質量%以上1.00質量%以下、Mg:0.01質量%以上0.50質量%以下、Si:0.01質量%以上0.50質量%以下、およびP:0.01質量%以上0.50質量%以下からなる群から選択される少なくとも1種を、さらに含有することができる。
<Optional Addition Ingredients>
The copper alloy material of the present invention contains, as optional additive components, Sn: 0.01% by mass or more and 3.00% by mass or less, Zn: 0.01% by mass or more and 5.00% by mass or less, Cr: 0.01% by mass. 0.50% by mass or less, Ag: 0.01% by mass or more and 0.50% by mass or less, Al: 0.01% by mass or more and 1.00% by mass or less, Mg: 0.01% by mass or more and 0.50% by mass % or less, Si: 0.01 mass % or more and 0.50 mass % or less, and P: 0.01 mass % or more and 0.50 mass % or less. can.

(Sn:0.01質量%以上3.00質量%以下)
Sn(錫)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Snを0.01質量%以上含有することが好ましい。他方で、Sn含有量は、3.00質量%以下にすることで、銅合金材が脆化することによる製造性の低下を起こり難くすることができる。
(Sn: 0.01% by mass or more and 3.00% by mass or less)
Sn (tin) is a component that can be used to adjust the volume resistivity ρ. In order to exhibit this effect, it is preferable to contain 0.01% by mass or more of Sn. On the other hand, by setting the Sn content to 3.00% by mass or less, it is possible to make it difficult for the copper alloy material to become embrittled, thereby reducing manufacturability.

(Zn:0.01質量%以上5.00質量%以下)
Zn(亜鉛)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Znを0.01質量%以上含有することが好ましい。他方で、Zn含有量は、体積抵抗率ρ、抵抗温度係数(TCR)、対銅熱起電力(EMF)といった、抵抗器の電気的な性能の安定性に悪影響を及ぼす恐れがあるため、5.00質量%以下にすることが好ましい。
(Zn: 0.01% by mass or more and 5.00% by mass or less)
Zn (zinc) is a component that can be used to adjust the volume resistivity ρ. In order to exhibit this effect, it is preferable to contain 0.01% by mass or more of Zn. On the other hand, the Zn content can adversely affect the stability of the resistor's electrical performance, such as volume resistivity ρ, temperature coefficient of resistance (TCR), and copper thermoelectric force (EMF). It is preferable to make it 0.00 mass % or less.

(Cr:0.01質量%以上0.50質量%以下)
Cr(クロム)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Crを0.01質量%以上含有することが好ましい。他方で、Cr含有量は、体積抵抗率ρ、抵抗温度係数(TCR)、対銅熱起電力(EMF)といった、抵抗器の電気的な性能の安定性に悪影響を及ぼす恐れがあるため、0.50質量%以下にすることが好ましい。
(Cr: 0.01% by mass or more and 0.50% by mass or less)
Cr (chromium) is a component that can be used to adjust the volume resistivity ρ. In order to exhibit this effect, it is preferable to contain 0.01% by mass or more of Cr. On the other hand, the Cr content can adversely affect the stability of the resistor's electrical performance, such as volume resistivity ρ, temperature coefficient of resistance (TCR), and copper thermoelectric force (EMF). 0.50 mass % or less is preferable.

(Ag:0.01質量%以上0.50質量%以下)
銀(Ag)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Agを0.01質量%以上含有することが好ましい。他方で、Ag含有量は、体積抵抗率ρ、抵抗温度係数(TCR)、対銅熱起電力(EMF)といった、抵抗器の電気的な性能の安定性に悪影響を及ぼす恐れがあるため、0.50質量%以下にすることが好ましい。
(Ag: 0.01% by mass or more and 0.50% by mass or less)
Silver (Ag) is a component that can be used to adjust the volume resistivity ρ. In order to exhibit this effect, it is preferable to contain 0.01% by mass or more of Ag. On the other hand, the Ag content can adversely affect the stability of the resistor's electrical performance, such as volume resistivity ρ, temperature coefficient of resistance (TCR), and copper thermoelectric force (EMF). 0.50 mass % or less is preferable.

(Al:0.01質量%以上1.00質量%以下)
Al(アルミニウム)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Alを0.01質量%以上含有することが好ましい。他方で、Al含有量は、銅合金材を脆化させる恐れがあるため、1.00質量%以下にすることが好ましい。
(Al: 0.01% by mass or more and 1.00% by mass or less)
Al (aluminum) is a component that can be used to adjust the volume resistivity ρ. In order to exhibit this effect, it is preferable to contain 0.01% by mass or more of Al. On the other hand, the Al content is preferably 1.00% by mass or less because it may embrittle the copper alloy material.

(Mg:0.01質量%以上0.50質量%以下)
Mg(マグネシウム)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Mgを0.01質量%以上含有することが好ましい。他方で、Mg含有量は、銅合金材を脆化させる恐れがあるため、0.50質量%以下にすることが好ましい。
(Mg: 0.01% by mass or more and 0.50% by mass or less)
Mg (magnesium) is a component that can be used to adjust the volume resistivity ρ. In order to exhibit this effect, it is preferable to contain 0.01% by mass or more of Mg. On the other hand, the Mg content is preferably 0.50% by mass or less because it may embrittle the copper alloy material.

(Si:0.01質量%以上0.50質量%以下)
Si(ケイ素)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Siを0.01質量%以上含有することが好ましい。他方で、Si含有量は、銅合金材を脆化させる恐れがあるため、0.50質量%以下にすることが好ましい。
(Si: 0.01% by mass or more and 0.50% by mass or less)
Si (silicon) is a component that can be used to adjust the volume resistivity ρ. In order to exhibit this effect, it is preferable to contain 0.01% by mass or more of Si. On the other hand, the Si content is preferably 0.50% by mass or less because it may embrittle the copper alloy material.

(P:0.01質量%以上0.50質量%以下)
P(リン)は、体積抵抗率ρの調整に用いることができる成分である。この作用を発揮するには、Pを0.01質量%以上含有することが好ましい。他方で、P含有量は、銅合金材を脆化させる恐れがあるため、0.50質量%以下にすることが好ましい。
(P: 0.01% by mass or more and 0.50% by mass or less)
P (phosphorus) is a component that can be used to adjust the volume resistivity ρ. In order to exhibit this action, it is preferable to contain 0.01% by mass or more of P. On the other hand, since the P content may embrittle the copper alloy material, it is preferable to set it to 0.50% by mass or less.

(任意添加成分の合計量:0.01質量%以上5.00質量%以下)
これらの任意添加成分は、上述した任意添加成分による効果を得るため、合計で0.01質量%以上含有することが好ましい。他方で、これらの任意添加成分は、多量に含むと必須含有成分との間で化合物を生じやすくなるため、合計で5.00質量%以下にすることが好ましい。
(Total amount of optional additive components: 0.01% by mass or more and 5.00% by mass or less)
In order to obtain the effects of the optional additive components described above, the total content of these optional additive components is preferably 0.01% by mass or more. On the other hand, if these optional additive components are included in a large amount, they tend to form compounds with the essential components, so the total amount is preferably 5.00% by mass or less.

<残部:Cuおよび不可避不純物>
上述した必須含有成分および任意添加成分以外は、残部がCu(銅)および不可避不純物からなる。なお、ここでいう「不可避不純物」とは、おおむね銅系製品において、原料中に存在するものや、製造工程において不可避的に混入するもので、本来は不要なものであるが、微量であり、銅系製品の特性に影響を及ぼさないため許容されている不純物である。不可避不純物として挙げられる成分としては、例えば、硫黄(S)、炭素(C)、酸素(O)などの非金属元素や、アンチモン(Sb)などの金属元素が挙げられる。なお、これらの成分含有量の上限は、上記成分ごとに0.05質量%、上記成分の総量で0.10質量%とすることができる。
<Remainder: Cu and inevitable impurities>
The remainder consists of Cu (copper) and unavoidable impurities other than the essential ingredients and optional additive ingredients described above. Incidentally, the "unavoidable impurities" referred to here generally refer to those present in the raw materials of copper-based products and those that are unavoidably mixed in during the manufacturing process. It is an impurity that is allowed because it does not affect the properties of copper-based products. Inevitable impurities include, for example, nonmetallic elements such as sulfur (S), carbon (C) and oxygen (O), and metallic elements such as antimony (Sb). In addition, the upper limit of the content of these components can be 0.05% by mass for each of the above components and 0.10% by mass for the total amount of the above components.

[2]銅合金材の形状と金属組織
本発明の銅合金材の形状は、特に限定されるものではないが、後述する熱間または冷間での加工工程を行ないやすくする観点では、板材、棒材、条材または線材であることが好ましい。このうち、板材や条材のように、圧延によって形成される銅合金材では、圧延方向を延伸方向とすることができる。また、平角線材や丸線材などの線材や、棒材のように、伸線や引抜、押出によって形成される銅合金材では、伸線方向、引抜方向および押出方向のいずれかを延伸方向とすることができる。
[2] Shape and metal structure of copper alloy material The shape of the copper alloy material of the present invention is not particularly limited, but from the viewpoint of facilitating the hot or cold working process described later, a plate material, A bar, strip or wire is preferred. Of these, in the case of a copper alloy material formed by rolling, such as a plate or strip, the rolling direction can be the stretching direction. In the case of wire rods such as rectangular wire rods and round wire rods, and copper alloy materials formed by wire drawing, drawing, and extrusion, such as bars, any one of the wire drawing direction, the drawing direction, and the extrusion direction shall be the drawing direction. be able to.

また、本発明の銅合金材は、板材、棒材、条材または線材であるとともに、その平均結晶粒径が、60μm以下であることが好ましい。ここで、銅合金材に含まれる結晶の平均結晶粒径を60μm以下にすることで、銅合金材に粗大な結晶粒が形成され難くなるため、抵抗温度係数(TCR)の絶対値と、対銅熱起電力(EMF)の絶対値を、ともに小さくすることができる。特に、本発明の銅合金材では、Coを含有することで、相変態が起こり難くなるため、平均結晶粒径が60μm以下の銅合金材を得易くすることができる。他方で、平均結晶粒径の下限は、特に限定されるものではないが、製造上の観点から、0.1μm以上としてもよい。なお、結晶の平均結晶粒径は、結晶が等軸状に形成されておらず、延伸方向に沿った圧延や伸線などの加工によって、結晶粒の大きさに異方性があるような場合は、延伸方向に対して直交する面で測定を行うものとする。 Moreover, the copper alloy material of the present invention is preferably a plate material, bar material, strip material or wire material, and has an average crystal grain size of 60 μm or less. Here, by setting the average crystal grain size of the crystals contained in the copper alloy material to 60 μm or less, it becomes difficult to form coarse crystal grains in the copper alloy material, so the absolute value of the temperature coefficient of resistance (TCR) and the Both can reduce the absolute value of the copper thermoelectromotive force (EMF). In particular, since the copper alloy material of the present invention contains Co, phase transformation hardly occurs, so that it is possible to easily obtain a copper alloy material having an average crystal grain size of 60 μm or less. On the other hand, the lower limit of the average crystal grain size is not particularly limited, but may be 0.1 μm or more from the viewpoint of manufacturing. The average crystal grain size of the crystals is determined when the crystals are not formed in an equiaxed shape and the size of the crystal grains is anisotropic due to processing such as rolling or wire drawing along the stretching direction. shall be measured in a plane perpendicular to the stretching direction.

ここで、本明細書における平均結晶粒径の測定は、JIS H0501に記載される伸銅品結晶粒度試験方法に準拠して行なうことができる。より具体的には、銅合金材の断面が露出するように樹脂に埋め込んで供試材を作製した後、延伸方向に対して直交する断面を研磨し、次いでクロム酸水溶液を用いてウェットエッチングを行ない、露出する結晶粒を走査型電子顕微鏡(SEM)により観察して結晶粒径(または結晶粒度)を測定することにより行なうことができる。特に、延伸方向に対して直交する面における平均結晶粒径を測定する場合は、銅合金材の延伸方向に対して直交する断面が露出するように樹脂に埋め込んで供試材を作製する。 Here, the measurement of the average crystal grain size in this specification can be performed according to the grain size test method for wrought copper products described in JIS H0501. More specifically, after preparing a test material by embedding the copper alloy material in resin so that the cross section is exposed, the cross section perpendicular to the stretching direction is polished, and then wet etching is performed using a chromic acid aqueous solution. It can be carried out by observing the exposed crystal grains with a scanning electron microscope (SEM) to measure the crystal grain size (or crystal grain size). In particular, when measuring the average crystal grain size in the plane orthogonal to the stretching direction, a test material is prepared by embedding in resin so that the cross section orthogonal to the stretching direction of the copper alloy material is exposed.

[3]銅合金材の製造方法の一例
上述した銅合金材は、合金組成や製造プロセスを組み合わせて制御することによって実現することができ、その製造プロセスは特に限定されない。その中でも、上述した銅合金材を得ることが可能な、製造プロセスの一例として、以下の方法を挙げることができる。
[3] An example of a method for producing a copper alloy material The copper alloy material described above can be realized by controlling a combination of the alloy composition and the production process, and the production process is not particularly limited. Among them, the following method can be given as an example of a manufacturing process capable of obtaining the copper alloy material described above.

本発明の銅合金材の製造方法の一例として、上述した銅合金材の合金組成と実質的に同じ合金組成を有する銅合金素材に、少なくとも、鋳造工程[工程1]、均質化熱処理工程[工程2]、熱間加工工程[工程3]、冷間加工工程[工程4]、焼鈍工程[工程5]を順次行なうものである。このうち、鋳造工程[工程1]では、不活性ガス雰囲気中もしくは真空中で銅合金素材を溶融させてインゴットを作製する。また、均質化熱処理工程[工程2]では、加熱温度を750℃以上900℃以下の範囲とし、加熱温度での保持時間を10分間以上10時間以下の範囲とする。また、焼鈍工程[工程5]では、加熱温度を600℃以上800℃以下の範囲とし、加熱温度での保持時間を1分以上2時間以下の範囲とする。 As an example of the method for producing a copper alloy material of the present invention, a copper alloy material having substantially the same alloy composition as the above-described copper alloy material is subjected to at least a casting step [step 1], a homogenization heat treatment step [step 2], a hot working step [step 3], a cold working step [step 4], and an annealing step [step 5]. Among these processes, in the casting process [process 1], an ingot is produced by melting a copper alloy material in an inert gas atmosphere or in a vacuum. In addition, in the homogenization heat treatment step [step 2], the heating temperature is set in the range of 750° C. or more and 900° C. or less, and the holding time at the heating temperature is set in the range of 10 minutes or more and 10 hours or less. Further, in the annealing step [Step 5], the heating temperature is in the range of 600° C. or more and 800° C. or less, and the holding time at the heating temperature is in the range of 1 minute or more and 2 hours or less.

(i)鋳造工程[工程1]
鋳造工程[工程1]は、高周波溶解炉を用いて、不活性ガス雰囲気中もしくは真空中で、上述の合金組成を有する銅合金素材を溶融させ、これを鋳造することによって、所定形状(例えば厚さ30mm、幅50mm、長さ300mm)の鋳塊(インゴット)を作製する。なお、銅合金素材の合金組成は、製造の各工程において、添加成分によっては溶解炉に付着したり揮発したりして製造される銅合金材の合金組成とは必ずしも完全には一致しない場合があるが、銅合金材の合金組成と実質的に同じ合金組成を有している。
(i) Casting step [Step 1]
In the casting step [step 1], a high-frequency melting furnace is used to melt a copper alloy material having the alloy composition described above in an inert gas atmosphere or in a vacuum, and by casting it, a predetermined shape (e.g., thickness An ingot having a height of 30 mm, a width of 50 mm and a length of 300 mm is produced. In addition, the alloy composition of the copper alloy material may not necessarily match completely with the alloy composition of the copper alloy material manufactured by adhering or volatilizing in the melting furnace depending on the additive components in each manufacturing process. However, it has substantially the same alloy composition as that of the copper alloy material.

(ii)均質化熱処理工程[工程2]
均質化熱処理工程[工程2]は、鋳造工程[工程1]を行なった後の鋳塊に対して、均質化のための熱処理を行なう工程である。ここで、均質化熱処理工程[工程2]における熱処理の条件は、結晶粒の粗大化を抑制する観点から、加熱温度を750℃以上900℃以下の範囲にし、かつ加熱温度での保持時間を10分間以上10時間以下の範囲にすることが好ましい。
(ii) Homogenization heat treatment step [step 2]
The homogenization heat treatment step [step 2] is a step of subjecting the ingot after the casting step [step 1] to a heat treatment for homogenization. Here, the heat treatment conditions in the homogenization heat treatment step [step 2] are such that the heating temperature is in the range of 750 ° C. or higher and 900 ° C. or lower and the holding time at the heating temperature is 10 from the viewpoint of suppressing the coarsening of the crystal grains. It is preferable to set the time in the range of 1 minute to 10 hours.

(iii)熱間加工工程[工程3]
熱間加工工程[工程3]は、均質化熱処理を行なった鋳塊に対して、所定の厚さや寸法になるまで熱間で圧延や伸線などを施して、熱延材を作製する工程である。ここで、熱間加工工程[工程3]には、熱間圧延工程と、熱間延伸(伸線)工程の両方が含まれる。また、熱間加工工程[工程3]の条件は、加工温度は750℃以上900℃以下の範囲であることが好ましく、均質化熱処理工程[工程2]における加熱温度と同じであってもよい。また、熱間加工工程[工程3]における加工率は、10%以上であることが好ましい。
(iii) hot working step [step 3]
The hot working process [process 3] is a process in which the ingot that has been subjected to homogenization heat treatment is hot rolled or drawn until it reaches a predetermined thickness and size to produce a hot-rolled material. be. Here, the hot working step [step 3] includes both the hot rolling step and the hot drawing (wire drawing) step. In addition, as for the conditions of the hot working step [step 3], the working temperature is preferably in the range of 750° C. or higher and 900° C. or lower, and may be the same as the heating temperature in the homogenization heat treatment step [step 2]. Moreover, the working rate in the hot working step [Step 3] is preferably 10% or more.

ここで、「加工率」は、圧延や伸線などの加工を施す前の断面積から、加工後の断面積を引いた値を、加工前の断面積で除して100を乗じ、パーセントで表した値であり、下記式で表される。
[加工率]={([加工前の断面積]-[加工後の断面積])/[加工前の断面積]}×100(%)
Here, the "processing rate" is the cross-sectional area before processing such as rolling or wire drawing minus the cross-sectional area after processing, divided by the cross-sectional area before processing, multiplied by 100, and expressed as a percentage. It is a value expressed by the following formula.
[Processing rate] = {([cross-sectional area before processing] - [cross-sectional area after processing]) / [cross-sectional area before processing]} x 100 (%)

熱間加工工程[工程3]後の熱延材は、冷却することが好ましい。ここで、熱延材に対する冷却の手段は、特に限定されないが、例えば結晶粒の粗大化を起こり難くすることができる観点では、できるだけ冷却速度を大きくする手段であることが好ましく、例えば水冷などの手段により、冷却速度を10℃/秒以上にすることが好ましい。 It is preferable to cool the hot-rolled material after the hot working step [step 3]. Here, the means for cooling the hot-rolled material is not particularly limited, but from the viewpoint of making coarsening of the crystal grains difficult, for example, it is preferable to use means for increasing the cooling rate as much as possible, such as water cooling. It is preferable to set the cooling rate to 10° C./second or more by means.

ここで、冷却後の熱延材に対して、表面を削り取る面削を行なってもよい。面削を行なうことで、熱間加工工程[工程3]で生じた表面の酸化膜や欠陥を除去することができる。面削の条件は、通常行なわれている条件であればよく、特に限定されない。面削により熱延材の表面から削り取る量は、熱間加工工程[工程3]の条件に基づいて適宜調整することができ、例えば熱延材の表面から0.5~4mm程度とすることができる。 Here, the surface of the hot-rolled material after cooling may be chamfered. Chamfering can remove surface oxide films and defects generated in the hot working step [step 3]. The facing conditions are not particularly limited as long as they are the conditions that are normally used. The amount to be removed from the surface of the hot-rolled material by chamfering can be appropriately adjusted based on the conditions of the hot working step [Step 3]. For example, it can be about 0.5 to 4 mm from the surface of the hot-rolled material. can.

(iv)冷間加工工程[工程4]
冷間加工工程[工程4]は、熱間加工工程[工程3]を行なった後の熱延材に、製品の板厚あるいは線径、寸法に合わせて、任意の加工率で、冷間で圧延や伸線などの加工を施す工程である。ここで、冷間加工工程[工程4]には、冷間圧延工程と、冷間延伸(伸線)工程の両方が含まれる。また、冷間加工工程[工程4]における圧延や伸線などの条件は、熱延材の大きさに合わせて設定することができる。特に、後述する焼鈍工程[工程5]で、再結晶による均一な結晶粒の生成を促す観点では、冷間加工工程[工程4]における総加工率を50%以上とすることが好ましい。
(iv) cold working step [step 4]
In the cold working process [process 4], the hot-rolled material after the hot working process [process 3] is cold-worked at an arbitrary working rate according to the thickness or wire diameter and dimensions of the product. This is the process of applying processing such as rolling and wire drawing. Here, the cold working step [step 4] includes both the cold rolling step and the cold drawing (wire drawing) step. Further, the conditions for rolling, wire drawing, etc. in the cold working step [Step 4] can be set according to the size of the hot-rolled material. In particular, in the annealing step [step 5] described later, from the viewpoint of promoting the formation of uniform crystal grains by recrystallization, the total working ratio in the cold working step [step 4] is preferably 50% or more.

(v)焼鈍工程[工程5]
焼鈍工程[工程5]は、冷間加工工程[工程4]を行なった後の冷延材に対して熱処理を施して再結晶させる焼鈍の工程である。ここで、焼鈍工程[工程5]における熱処理の条件は、加熱温度が600℃以上800℃以下の範囲であり、かつ加熱温度での保持時間が1分以上2時間以下の範囲である。他方で、加熱温度が600℃未満の場合や、保持時間が1分未満の場合、銅合金材を再結晶させることが困難になる。また、加熱温度が800℃を超える場合や、保持時間が2時間を超える場合、結晶粒の粗大化によって、抵抗温度係数(TCR)および対銅熱起電力(EMF)の絶対値が大きくなりやすい。
(v) Annealing step [step 5]
The annealing step [step 5] is an annealing step in which the cold-rolled material after the cold working step [step 4] is subjected to heat treatment to recrystallize. Here, the conditions for the heat treatment in the annealing step [step 5] are that the heating temperature is in the range of 600° C. or more and 800° C. or less, and the holding time at the heating temperature is in the range of 1 minute or more and 2 hours or less. On the other hand, when the heating temperature is less than 600° C. or the holding time is less than 1 minute, it becomes difficult to recrystallize the copper alloy material. In addition, when the heating temperature exceeds 800 ° C. or the holding time exceeds 2 hours, the absolute values of the temperature coefficient of resistance (TCR) and the copper thermoelectromotive force (EMF) tend to increase due to coarsening of the crystal grains. .

ここで、焼鈍工程[工程5]を行なった後の冷延材に対して、冷間加工工程[工程4]および焼鈍工程[工程5]を繰り返し行なってもよい。これにより、銅合金材が所望の形状を有する板材や棒材、条材、線材になるとともに、粗大な結晶粒が形成され難くなるため、体積抵抗率、抵抗温度係数および対銅熱起電力において、所望の特性を示す銅合金材を得ることができる。 Here, the cold-rolled material after the annealing step [step 5] may be repeatedly subjected to the cold working step [step 4] and the annealing step [step 5]. As a result, the copper alloy material becomes plate material, bar material, strip material, and wire material having a desired shape, and coarse crystal grains are less likely to be formed. , a copper alloy material exhibiting desired properties can be obtained.

[8]銅合金材の用途
本発明の銅合金材は、板材や棒材のほか、リボン材などの条材や、平角線材や丸線材などの線材の形態を取ることができ、抵抗器、例えばシャント抵抗器やチップ抵抗器などに用いられる抵抗器用抵抗材料として、極めて有用である。すなわち、抵抗器用抵抗材料は、上述の銅合金材からなることが好ましい。また、シャント抵抗器またはチップ抵抗器などの抵抗器は、上述の銅合金材からなる抵抗器用抵抗材料を有することが好ましい。
[8] Uses of copper alloy material The copper alloy material of the present invention can be in the form of strip materials such as ribbon materials, wire materials such as rectangular wires and round wires, in addition to plates and bars. For example, it is extremely useful as a resistive material for resistors used in shunt resistors and chip resistors. That is, it is preferable that the resistive material for a resistor is made of the copper alloy material described above. Also, resistors such as shunt resistors or chip resistors preferably have a resistive material for resistors made of the copper alloy material described above.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and includes various aspects within the scope of the present invention, including all aspects included in the concept of the present invention and the scope of claims. can be modified to

次に、本発明の効果をさらに明確にするために、本発明例および比較例について説明するが、本発明はこれら実施例に限定されるものではない。 Next, examples of the present invention and comparative examples will be described in order to further clarify the effects of the present invention, but the present invention is not limited to these examples.

(本発明例1~13および比較例1~8)
表1に示す合金組成を有する銅合金素材を溶解し、これを溶湯から冷却して鋳造する鋳造工程[工程1]を行なって鋳塊を得た。ここで、比較例1の合金組成は、上述の特許文献1に記載される銅合金と同じ合金組成を有するものである。また、比較例8の合金組成は、上述の特許文献2に記載される銅合金と同じ合金組成を有するものである。
(Invention Examples 1 to 13 and Comparative Examples 1 to 8)
A casting step [step 1] was performed in which a copper alloy material having an alloy composition shown in Table 1 was melted, cooled from the molten metal, and cast to obtain an ingot. Here, the alloy composition of Comparative Example 1 has the same alloy composition as the copper alloy described in Patent Document 1 above. Also, the alloy composition of Comparative Example 8 has the same alloy composition as the copper alloy described in Patent Document 2 above.

この鋳塊に対して、800℃の加熱温度および5時間の保持時間で熱処理を行なう均質化熱処理工程[工程2]を行ない、次いで、800℃の加工温度で、総加工率が73%(加工前の厚みが30mm、加工後の厚みが8mm)となるように、長手方向に沿って圧延する熱間加工工程[工程3]を行なって熱延材を得た。その後、水冷により室温まで冷却して、表面に形成された酸化膜を除去する面削を行なった。 This ingot is subjected to a homogenization heat treatment step [Step 2] in which heat treatment is performed at a heating temperature of 800 ° C. and a holding time of 5 hours. A hot-rolled material was obtained by performing a hot working step [Step 3] of rolling along the longitudinal direction so that the thickness before working was 30 mm and the thickness after working was 8 mm. After that, the substrate was cooled to room temperature by water cooling, and was chamfered to remove the oxide film formed on the surface.

熱間加工工程[工程3]後の熱延材に対して、88%の総加工率(加工前の厚みが8mm、加工後の厚みが1mm)で長手方向に沿って圧延する、冷間加工工程[工程4]を行なった。冷間加工工程[工程4]を行なった後の圧延材に対して、600℃以上800℃以下の範囲の加熱温度で、1分以上2時間以下の保持時間で熱処理を行なう焼鈍工程[工程5]を行なった。 The hot-rolled material after the hot working step [Step 3] is rolled along the longitudinal direction at a total working rate of 88% (thickness before working is 8 mm, thickness after working is 1 mm). Step [Step 4] was performed. An annealing step [step 5] in which the rolled material after the cold working step [step 4] is subjected to heat treatment at a heating temperature in the range of 600 ° C. or higher and 800 ° C. or lower for a holding time of 1 minute or more and 2 hours or less. ] was performed.

さらに、焼鈍工程[工程5]を行なった後の熱延材に対して、70%の総加工率(加工前の厚みが1mm、加工後の厚みが0.3mm)で長手方向に沿って圧延する、2回目の冷間加工工程[工程4]を行なった。2回目の冷間加工工程[工程4]を行なった後の冷延材に対して、600℃以上800℃以下の範囲の加熱温度で、1分以上2時間以下の保持時間で熱処理を行なう、2回目の焼鈍工程[工程5]を行なった。このようにして、結晶粒径が調整された本発明例1~13および比較例1~8の銅合金板材を作製した。 Furthermore, the hot-rolled material after the annealing step [step 5] is rolled along the longitudinal direction at a total working rate of 70% (thickness before working is 1 mm, thickness after working is 0.3 mm). Then, the second cold working step [step 4] was performed. The cold-rolled material after the second cold working step [step 4] is subjected to heat treatment at a heating temperature in the range of 600 ° C. or higher and 800 ° C. or lower for a holding time of 1 minute or more and 2 hours or less. A second annealing step [step 5] was performed. In this way, the copper alloy sheet materials of Inventive Examples 1 to 13 and Comparative Examples 1 to 8 with the grain size adjusted were produced.

なお、表1では、銅合金素材の合金組成に含まれない成分の欄には横線「-」を記載し、該当する成分を含まない、または含有していたとしても検出限界値未満であることを明らかにした。 In Table 1, a horizontal line "-" is written in the column of the component not included in the alloy composition of the copper alloy material, and the corresponding component is not included, or even if it is included, it is less than the detection limit value. clarified.

(本発明例14)
表1に示す合金組成を有する銅合金素材を溶解し、これを溶湯から300℃まで冷却して鋳造する鋳造工程[工程1]を行なって直径30mmの鋳塊を得た。この鋳塊に対して、800℃の加熱温度および5時間の保持時間で熱処理を行なう均質化熱処理工程[工程2]を行ない、次いで、800℃の加工温度で、総加工率が11%となるように、1回の圧延で長手方向に沿って延伸する熱間加工工程[工程3]を行なって、熱延材である棒材を得た(加工前の鋳塊の直径が30mm、加工後の棒材の直径が10mm)。その後、水冷により室温まで冷却して、表面に形成された酸化膜を除去する面削を行なった。
(Invention Example 14)
A casting step [Step 1] was performed in which a copper alloy material having an alloy composition shown in Table 1 was melted, cooled to 300° C. from the molten metal, and cast to obtain an ingot with a diameter of 30 mm. This ingot is subjected to a homogenization heat treatment step [Step 2] in which heat treatment is performed at a heating temperature of 800 ° C. and a holding time of 5 hours, and then at a processing temperature of 800 ° C., the total processing rate becomes 11%. As described above, a hot working step [step 3] in which rolling is performed once in the longitudinal direction to obtain a bar that is a hot rolled material (the diameter of the ingot before processing is 30 mm, after processing 10 mm in diameter). After that, the substrate was cooled to room temperature by water cooling, and was chamfered to remove the oxide film formed on the surface.

熱間加工工程[工程3]後の棒材を、円形ダイスで引き抜くことで、95%の総加工率となるように伸線する、冷間加工工程[工程4]を行なった(加工前の棒材の直径が9mm、加工後の丸線材の直径が1.95mm)。冷間加工工程[工程4]を行なった後の冷延材に対して、600℃以上800℃以下の範囲の加熱温度で、1分以上2時間以下の保持時間で熱処理を行なう焼鈍工程[工程5]を行なった。このようにして、結晶粒径が調整された本発明例14の銅合金線材を作製した。 A cold working process [process 4] was performed in which the bar material after the hot working process [process 3] was drawn with a circular die so that the total working rate was 95% (before working The diameter of the bar is 9 mm, and the diameter of the round wire after processing is 1.95 mm). An annealing step [step] in which the cold-rolled material after the cold working step [step 4] is heat treated at a heating temperature in the range of 600 ° C or higher and 800 ° C or lower for a holding time of 1 minute or more and 2 hours or less 5] was performed. In this way, a copper alloy wire rod of Inventive Example 14 with an adjusted crystal grain size was produced.

(本発明例15~18)
本発明例14と同様に得られる、熱間加工工程[工程3]後の棒材を、四隅の曲率半径が0.1mmの平角ダイスで引き抜くことで、95%の総加工率となるように伸線する、冷間加工工程[工程4]を行なった(加工前の棒材の直径が9mm、加工後の平角線の厚さ1mm幅3mm)。冷間加工工程[工程4]を行なった後の冷延材に対して、600℃以上800℃以下の範囲の加熱温度で、1分以上2時間以下の保持時間で熱処理を行なう焼鈍工程[工程5]を行なった。
(Invention Examples 15 to 18)
The bar after the hot working step [step 3] obtained in the same manner as in Example 14 of the present invention was drawn with a rectangular die having a curvature radius of 0.1 mm at the four corners, so that the total working rate was 95%. A cold working step [step 4] of wire drawing was performed (the diameter of the bar before working was 9 mm, and the rectangular wire after working had a thickness of 1 mm and a width of 3 mm). An annealing step [step] in which the cold-rolled material after the cold working step [step 4] is heat treated at a heating temperature in the range of 600 ° C or higher and 800 ° C or lower for a holding time of 1 minute or more and 2 hours or less 5] was performed.

さらに、焼鈍工程[工程5]を行なった後の熱延材に対して、70%の総加工率(加工前の厚みが1mm、加工後の厚みが0.3mm)で長手方向に沿って圧延する、2回目の冷間加工工程[工程4]を行なった。2回目の冷間加工工程[工程4]を行なった後の冷延材に対して、600℃以上800℃以下の範囲の加熱温度で、1分以上2時間以下の保持時間で熱処理を行なう、2回目の焼鈍工程[工程5]を行なった。このようにして、結晶粒径が調整された本発明例15~18の銅合金線材を作製した。 Furthermore, the hot-rolled material after the annealing step [step 5] is rolled along the longitudinal direction at a total working rate of 70% (thickness before working is 1 mm, thickness after working is 0.3 mm). Then, the second cold working step [step 4] was performed. The cold-rolled material after the second cold working step [step 4] is subjected to heat treatment at a heating temperature in the range of 600 ° C. or higher and 800 ° C. or lower for a holding time of 1 minute or more and 2 hours or less. A second annealing step [step 5] was performed. In this manner, copper alloy wires of Examples 15 to 18 of the present invention with adjusted crystal grain sizes were produced.

[各種測定および評価方法]
上記本発明例および比較例に係る銅合金材(銅合金板材、銅合金線材)を用いて、下記に示す特性評価を行なった。各特性の評価条件は下記のとおりである。
[Various measurement and evaluation methods]
Using the copper alloy materials (copper alloy sheet material, copper alloy wire material) according to the present invention examples and comparative examples, the following characteristic evaluations were performed. Evaluation conditions for each property are as follows.

[1]平均結晶粒径の測定
作製した銅合金材について、銅合金材の延伸方向に対して直交する断面が露出するように樹脂に埋め込んで供試材を作製した後、延伸方向に対して直交する断面を研磨した。次いで、研磨後の供試材について、クロム酸水溶液を用いてウェットエッチングを行なった後、露出する結晶粒について、走査型電子顕微鏡(SEM)((株)島津製作所製、型番:SSX-550)を用いて、平均結晶粒径に応じて50倍~2000倍の倍率で3視野を観察し、JIS H 0501に記載される伸銅品結晶粒度試験方法の内の切断法によって結晶粒度を測定し、3視野における結晶粒度の平均値として平均結晶粒径を算出した。結果を表2に示す。
[1] Measurement of average crystal grain size The prepared copper alloy material was embedded in resin so that the cross section perpendicular to the stretching direction of the copper alloy material was exposed. Orthogonal cross sections were polished. Next, the polished test material was wet-etched using an aqueous chromic acid solution, and the exposed crystal grains were observed with a scanning electron microscope (SEM) (manufactured by Shimadzu Corporation, model number: SSX-550). , three fields of view are observed at a magnification of 50 to 2000 times depending on the average grain size, and the grain size is measured by the cutting method in the grain size test method for wrought copper products described in JIS H 0501. , the average crystal grain size was calculated as the average value of the crystal grain sizes in the three fields of view. Table 2 shows the results.

[2]体積抵抗率の測定
板材を得た本発明例1~13および比較例1~8については、得られた厚さ0.3mmの板材を幅10mm、長さ300mmに切断し、供試材を作製した。また、丸線材または平角線材を得た本発明例14~18については、得られた丸線または平角線を長さ300mmに切断し、供試材を作製した。
[2] Measurement of Volume Resistivity For Inventive Examples 1 to 13 and Comparative Examples 1 to 8 in which the plate material was obtained, the obtained plate material with a thickness of 0.3 mm was cut into a width of 10 mm and a length of 300 mm. material was produced. For Inventive Examples 14 to 18 in which a round wire or rectangular wire was obtained, the obtained round wire or rectangular wire was cut to a length of 300 mm to prepare a test material.

体積抵抗率ρの測定は、電圧端子間距離を200mm、測定電流を100mAとして、室温23℃で、JIS C2525に規定された方法に準じた四端子法によって電圧を測定し、得られた値から体積抵抗率ρ[μΩ・cm]を求めた。 The volume resistivity ρ is measured by the four-terminal method according to the method specified in JIS C2525 at a room temperature of 23 ° C. with a distance between the voltage terminals of 200 mm and a measurement current of 100 mA. A volume resistivity ρ [μΩ·cm] was obtained.

測定された体積抵抗率ρについて、80μΩ・cm以上であった場合を体積抵抗率ρが十分に大きく、抵抗材料として優れているとして「◎」と評価した。また、体積抵抗率ρが70μΩ・cm以上80μΩ・cm未満であった場合を、体積抵抗率ρが大きく、抵抗材料として良好であるとして「○」と評価した。他方で、体積抵抗率ρが70μΩ・cm未満であった場合を、体積抵抗率ρが小さく抵抗材料としては不良であるとして「×」と評価した。本実施例では、「◎」と「○」を合格レベルとして評価した。結果を表2に示す。 Regarding the measured volume resistivity ρ, when the volume resistivity ρ was 80 μΩ·cm or more, the volume resistivity ρ was sufficiently large, and it was evaluated as “⊚” as being excellent as a resistive material. In addition, when the volume resistivity ρ was 70 μΩ·cm or more and less than 80 μΩ·cm, the volume resistivity ρ was large and was evaluated as “good” as a good resistance material. On the other hand, when the volume resistivity ρ was less than 70 μΩ·cm, the volume resistivity ρ was low, and it was evaluated as “×” as a poor resistance material. In this example, "⊚" and "◯" were evaluated as pass levels. Table 2 shows the results.

[3]対銅熱起電力(EMF)の測定方法
板材を得た本発明例1~13および比較例1~8については、得られた厚さ0.3mmの板材を幅10mm、長さ1000mmに切断し、供試材を作製した。また、丸線材または平角線材を得た本発明例14~18については、得られた丸線または平角線を長さ1000mmに切断し、供試材を作製した。
[3] Measurement method of thermoelectromotive force (EMF) against copper For Inventive Examples 1 to 13 and Comparative Examples 1 to 8 in which the plate material was obtained, the obtained plate material with a thickness of 0.3 mm was 10 mm in width and 1000 mm in length. It was cut into pieces to prepare a test material. In addition, for Examples 14 to 18 of the present invention in which a round wire or rectangular wire was obtained, the obtained round wire or rectangular wire was cut to a length of 1000 mm to prepare a test material.

供試材の対銅熱起電力(EMF)の測定は、JIS C2527に沿って行なった。より具体的には、図2に示すように、供試材1の対銅熱起電力(EMF)の測定は、十分に焼鈍された直径1mmの純銅線を標準銅線2として用い、供試材1および標準銅線2の一方の端部を接続させた測温接点Pを、80℃の恒温槽41で保温している温水に浸漬させるとともに、供試材1および標準銅線2の他方の端部をそれぞれ銅線31、32に接続させた基準接点P21、P22を、氷点装置42で保冷している0℃の氷水に浸漬させたときの起電力を、電圧測定器43で測定した。得られた起電力について、温度差である80[℃]で割ることで、対銅熱起電力EMF(μV/℃)を求めた。The measurement of the copper thermoelectromotive force (EMF) of the test material was performed according to JIS C2527. More specifically, as shown in FIG. 2, the copper thermoelectromotive force (EMF) of the test material 1 is measured using a fully annealed pure copper wire with a diameter of 1 mm as the standard copper wire 2, The temperature measuring junction P1 to which one end of the material 1 and the standard copper wire 2 are connected is immersed in hot water kept in a constant temperature bath 41 at 80 ° C., and the test material 1 and the standard copper wire 2 The electromotive force when the reference contacts P 21 and P 22 with the other ends connected to the copper wires 31 and 32, respectively, are immersed in 0° C. measured in By dividing the obtained electromotive force by 80 [° C.], which is the temperature difference, the thermoelectromotive force EMF (μV/° C.) against copper was obtained.

測定された対銅熱起電力(EMF)について、絶対値が0.5μV/℃以下であった場合を、対銅熱起電力(EMF)の絶対値が小さく、抵抗材料として良好であるとして「◎」と評価した。他方で、対銅熱起電力(EMF)の絶対値が0.5μV/℃より大きい場合を、対銅熱起電力(EMF)の絶対値が大きく、抵抗材料として不良であるとして「×」と評価した。結果を表2に示す。 Regarding the measured thermoelectromotive force against copper (EMF), when the absolute value is 0.5 μV / ° C. or less, the absolute value of the thermoelectromotive force against copper (EMF) is small and it is considered to be good as a resistive material. ◎”. On the other hand, when the absolute value of the thermoelectromotive force (EMF) against copper is greater than 0.5 μV/° C., the absolute value of the thermoelectromotive force (EMF) against copper is large, and it is regarded as being unsatisfactory as a resistive material, and is marked as “x”. evaluated. Table 2 shows the results.

[4]抵抗温度係数(TCR)の測定方法
板材を得た本発明例1~13および比較例1~8については、得られた厚さ0.3mmの板材を幅10mm、長さ300mmに切断し、供試材を作製した。また、丸線材または平角線材を得た本発明例14~18については、得られた丸線または平角線を長さ300mmに切断し、供試材を作製した。
[4] Measurement method of temperature coefficient of resistance (TCR) For Inventive Examples 1 to 13 and Comparative Examples 1 to 8 in which the plate material was obtained, the obtained plate material with a thickness of 0.3 mm was cut into a width of 10 mm and a length of 300 mm. Then, a test material was produced. For Inventive Examples 14 to 18 in which a round wire or rectangular wire was obtained, the obtained round wire or rectangular wire was cut to a length of 300 mm to prepare a test material.

抵抗温度係数(TCR)の測定は、電圧端子間距離を200mm、測定電流を100mAとして、JIS C2526に規定された方法に準じた四端子法によって、供試材の温度を150℃に加熱したときの電圧を測定し、得られた値から150℃での抵抗値R150℃[mΩ]を求めた。次いで、供試材の温度を20℃に冷却したときの電圧を測定し、得られた値から20℃での抵抗値R20℃[mΩ]を求めた。そして、得られる抵抗値であるR150℃およびR20℃の値から、TCR={(R150℃[mΩ]-R20℃[mΩ])/R20℃[mΩ]}×{1/(150[℃]-20[℃])}×10の式から、抵抗温度係数(ppm/℃)を算出した。The temperature coefficient of resistance (TCR) is measured by the four-terminal method according to the method specified in JIS C2526, with the distance between the voltage terminals set to 200 mm and the measurement current set to 100 mA. was measured, and the resistance value R 150° C. [mΩ] at 150° C. was obtained from the obtained value. Next, the voltage was measured when the temperature of the test material was cooled to 20°C, and the resistance value R 20°C [mΩ] at 20°C was obtained from the obtained value. Then, from the obtained resistance values of R 150° C. and R 20° C. , TCR={(R 150° C. [mΩ]−R 20° C. [mΩ])/R 20° C. [mΩ]}×{1/( The temperature coefficient of resistance (ppm/°C) was calculated from the formula: 150[°C]-20[°C])}×10 6 .

測定された抵抗温度係数(TCR)について、-50ppm/℃以上0ppm/℃以下であった場合を、抵抗温度係数(TCR)が負の数であり、かつ絶対値が小さい点で優れているとして「◎」と評価した。また、抵抗温度係数(TCR)が-60ppm/℃以上-50ppm/℃未満の場合を、抵抗温度係数(TCR)が負の数であり、かつ絶対値が小さい点で良好であるとして「〇」と評価した。他方で、抵抗温度係数(TCR)が-60ppm/℃未満であった場合を、抵抗温度係数(TCR)が負の数であるものの、絶対値が大きい点で優れていないとして「×」と評価した。また、抵抗温度係数(TCR)が0ppm/℃を超える場合も、抵抗温度係数(TCR)が正の値である点で優れていないとして「×」と評価した。結果を表2に示す。 Regarding the measured temperature coefficient of resistance (TCR), when it is -50 ppm/° C. or more and 0 ppm/° C. or less, the temperature coefficient of resistance (TCR) is a negative number and is excellent in that the absolute value is small. It was evaluated as "A". In addition, when the temperature coefficient of resistance (TCR) is -60 ppm/°C or more and less than -50 ppm/°C, the temperature coefficient of resistance (TCR) is a negative number and the absolute value is small. and evaluated. On the other hand, when the temperature coefficient of resistance (TCR) is less than -60 ppm/°C, the temperature coefficient of resistance (TCR) is a negative number, but the absolute value is large, so it is evaluated as "x". bottom. Also, when the temperature coefficient of resistance (TCR) exceeded 0 ppm/° C., the positive value of the temperature coefficient of resistance (TCR) was evaluated as "x" because it was not excellent. Table 2 shows the results.

[5]総合評価
これら体積抵抗率ρ、対銅熱起電力(EMF)および抵抗温度係数(TCR)に関する3つの評価結果のうち、3つとも「◎」と評価した場合を、体積抵抗率ρ、対銅熱起電力(EMF)および抵抗温度係数(TCR)がいずれも優れているとして「◎」と評価した。また、これらの3つの評価結果のうち、1つまたは2つで「◎」と評価し、かつ残りを「○」と評価した場合を、体積抵抗率ρ、対銅熱起電力(EMF)および抵抗温度係数(TCR)の特性が良好であるとして「○」と評価した。他方で、体積抵抗率ρ、対銅熱起電力(EMF)および抵抗温度係数(TCR)に関する3つの評価結果のうち、いずれかの評価結果が「×」になった場合を、体積抵抗率ρ、対銅熱起電力(EMF)および抵抗温度係数(TCR)の特性が不十分であるとして「×」と評価した。結果を表2に示す。
[5] Comprehensive evaluation If all three of the three evaluation results regarding volume resistivity ρ, copper thermoelectromotive force (EMF), and temperature coefficient of resistance (TCR) are evaluated as “◎”, the volume resistivity ρ , the thermoelectromotive force (EMF) against copper and the temperature coefficient of resistance (TCR) were both excellent, and were evaluated as "⊚". In addition, when one or two of these three evaluation results are evaluated as "◎" and the rest are evaluated as "○", the volume resistivity ρ, the copper thermoelectromotive force (EMF) and It was evaluated as "good" because the characteristics of temperature coefficient of resistance (TCR) were good. On the other hand, if any of the three evaluation results regarding the volume resistivity ρ, the copper thermoelectromotive force (EMF), and the temperature coefficient of resistance (TCR) is “×”, the volume resistivity ρ , and evaluated as "x" because the characteristics of copper thermoelectromotive force (EMF) and temperature coefficient of resistance (TCR) are insufficient. Table 2 shows the results.

Figure 0007214931000001
Figure 0007214931000001

Figure 0007214931000002
Figure 0007214931000002

表1および表2の結果から、本発明例1~18の銅合金材は、合金組成が本発明の適正範囲内であるとともに、体積抵抗率ρ、対銅熱起電力(EMF)および抵抗温度係数(TCR)に関する3つの評価結果が、いずれも「◎」または「○」と評価されており、総合評価においても「◎」または「〇」と評価されるものであった。 From the results in Tables 1 and 2, the copper alloy materials of Examples 1 to 18 of the present invention have an alloy composition within the appropriate range of the present invention, and the volume resistivity ρ, the copper thermoelectromotive force (EMF), and the resistance temperature All of the three evaluation results regarding the coefficient (TCR) were evaluated as "excellent" or "good", and the overall evaluation was also evaluated as "excellent" or "excellent".

したがって、本発明例1~18の銅合金材は、いずれも総合評価において「◎」または「〇」と評価されるものであったため、高い体積抵抗率ρを有し、かつ対銅熱起電力(EMF)の絶対値が小さく、かつ常温(例えば20℃)から高温(例えば150℃)までの広い温度範囲での抵抗温度係数が負の数であって絶対値の小さいものであった。 Therefore, the copper alloy materials of Examples 1 to 18 of the present invention were all evaluated as "◎" or "◯" in the comprehensive evaluation, so they had a high volume resistivity ρ and a copper thermoelectromotive force. The absolute value of (EMF) was small, and the temperature coefficient of resistance was negative and small in a wide temperature range from room temperature (eg, 20° C.) to high temperature (eg, 150° C.).

一方、比較例1~8の銅合金材はいずれも、合金組成が本発明の適正範囲外であった。そのため、比較例1~8の銅合金材は、体積抵抗率ρ、対銅熱起電力(EMF)および抵抗温度係数(TCR)のうち少なくともいずれかにおいて「×」と評価されていた。 On the other hand, all of the copper alloy materials of Comparative Examples 1 to 8 had alloy compositions outside the appropriate range of the present invention. Therefore, the copper alloy materials of Comparative Examples 1 to 8 were evaluated as "x" in at least one of the volume resistivity ρ, copper thermoelectromotive force (EMF), and temperature coefficient of resistance (TCR).

さらに、本発明例7では、Mnを25.0質量%含有し、かつNiを10.0質量%含有する場合において、Coを0.10質量%含有することで、Coを含有せずに総合評価が「×」と評価された比較例1と比べて、特に対銅熱起電力(EMF)の絶対値が小さくなっているため、総合評価において「〇」と評価されていることが分かった。 Furthermore, in Example 7 of the present invention, in the case of containing 25.0% by mass of Mn and 10.0% by mass of Ni, by containing 0.10% by mass of Co, the overall Compared to Comparative Example 1, which was evaluated as "x", the absolute value of the copper thermoelectromotive force (EMF) is particularly small, so it was found that it was evaluated as "○" in the overall evaluation. .

1 供試材
2 標準銅線
31、32 銅線
41 恒温槽
42 氷点装置
43 電圧測定器
測温接点
21、P22 基準接点
1 test material 2 standard copper wire 31, 32 copper wire 41 constant temperature bath 42 freezing point device 43 voltage measuring instrument P1 temperature measuring junction P21 , P22 reference junction

Claims (6)

Mn:20.0質量%以上35.0質量%以下、
Ni:5.0質量%以上17.0質量%以下、および
Co:0.10質量%以上2.00質量%以下
を含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金材からなる、抵抗器用抵抗材料
Mn: 20.0% by mass or more and 35.0% by mass or less,
From a copper alloy material having an alloy composition containing Ni: 5.0% by mass or more and 17.0% by mass or less, Co: 0.10% by mass or more and 2.00% by mass or less, and the balance being Cu and unavoidable impurities Resistive materials for resistors .
前記銅合金材は、Mnの含有量をx[質量%]、Niの含有量をy[質量%]、Coの含有量をz[質量%]とするとき、x、yおよびzは、下記に示す(I)式の関係を満足する、請求項1に記載の抵抗器用抵抗材料
0.8x-10.5≦y+5z≦0.8x-6.5 ・・・(I)
The copper alloy material has a Mn content of x [mass%], a Ni content of y [mass%], and a Co content of z [mass%]. 2. The resistive material for a resistor according to claim 1, which satisfies the relationship of formula (I) shown in .
0.8x−10.5≦y+5z≦0.8x−6.5 (I)
前記銅合金材は、Mnの含有量をx[質量%]、Niの含有量をy[質量%]とするとき、xに対するyの比が0.40未満である、請求項1に記載の抵抗器用抵抗材料2. The copper alloy material according to claim 1, wherein the ratio of y to x is less than 0.40, where x [mass %] is the Mn content and y [mass %] is the Ni content. Resistive material for resistors . 前記合金組成は、
Sn:0.01質量%以上3.00質量%以下、
Zn:0.01質量%以上5.00質量%以下、
Cr:0.01質量%以上0.50質量%以下、
Ag:0.01質量%以上0.50質量%以下、
Al:0.01質量%以上1.00質量%以下、
Mg:0.01質量%以上0.50質量%以下、
Si:0.01質量%以上0.50質量%以下、および
P:0.01質量%以上0.50質量%以下からなる群から選択される少なくとも1種をさらに含有する、請求項1に記載の抵抗器用抵抗材料
The alloy composition is
Sn: 0.01% by mass or more and 3.00% by mass or less,
Zn: 0.01% by mass or more and 5.00% by mass or less,
Cr: 0.01% by mass or more and 0.50% by mass or less,
Ag: 0.01% by mass or more and 0.50% by mass or less,
Al: 0.01% by mass or more and 1.00% by mass or less,
Mg: 0.01% by mass or more and 0.50% by mass or less,
Si: 0.01% by mass or more and 0.50% by mass or less, and P: 0.01% by mass or more and 0.50% by mass or less. resistance material for resistors.
前記銅合金材が板材、棒材、条材または線材であり、平均結晶粒径が60μm以下である、請求項1に記載の抵抗器用抵抗材料2. The resistance material for a resistor according to claim 1, wherein said copper alloy material is a plate material, bar material, strip material or wire material, and has an average crystal grain size of 60 [mu]m or less. 請求項に記載の抵抗器用抵抗材料を有する、シャント抵抗器またはチップ抵抗器である抵抗器。 A resistor, which is a shunt resistor or a chip resistor, comprising the resistive material for a resistor according to claim 1 .
JP2022550192A 2021-06-28 2022-06-24 Copper alloy material, resistance material for resistor using the same, and resistor Active JP7214931B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021107027 2021-06-28
JP2021107027 2021-06-28
PCT/JP2022/025408 WO2023276905A1 (en) 2021-06-28 2022-06-24 Copper alloy material, resistive material for resistors using same, and resistor

Publications (2)

Publication Number Publication Date
JPWO2023276905A1 JPWO2023276905A1 (en) 2023-01-05
JP7214931B1 true JP7214931B1 (en) 2023-01-30

Family

ID=84691437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022550192A Active JP7214931B1 (en) 2021-06-28 2022-06-24 Copper alloy material, resistance material for resistor using the same, and resistor

Country Status (4)

Country Link
JP (1) JP7214931B1 (en)
KR (1) KR20240026277A (en)
CN (1) CN117157419A (en)
WO (1) WO2023276905A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7354481B1 (en) * 2022-02-18 2023-10-02 古河電気工業株式会社 Copper alloy materials, resistor materials and resistors using copper alloy materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4114725B1 (en) * 1964-04-17 1966-08-19
JPS5641096A (en) * 1979-09-10 1981-04-17 Mitsubishi Metal Corp Low melting point cu-mn system soldering material having excellent wetting property and fluidity
JPS6238797A (en) * 1985-08-14 1987-02-19 Shippo Metal Kogyo Kk Brazing filler metal
JPS644446A (en) * 1987-06-26 1989-01-09 Toshiba Corp Nonmagnetic jig
WO2020196791A1 (en) * 2019-03-28 2020-10-01 古河電気工業株式会社 Copper alloy bar, production method for copper alloy bar, resistor resistive material using copper alloy bar, and resistor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013010301A1 (en) 2013-06-19 2014-12-24 Isabellenhütte Heusler Gmbh & Co. Kg Resistance alloy, component manufactured therefrom and manufacturing method therefor
JP2017053015A (en) 2015-09-11 2017-03-16 日立金属株式会社 Resistive material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4114725B1 (en) * 1964-04-17 1966-08-19
JPS5641096A (en) * 1979-09-10 1981-04-17 Mitsubishi Metal Corp Low melting point cu-mn system soldering material having excellent wetting property and fluidity
JPS6238797A (en) * 1985-08-14 1987-02-19 Shippo Metal Kogyo Kk Brazing filler metal
JPS644446A (en) * 1987-06-26 1989-01-09 Toshiba Corp Nonmagnetic jig
WO2020196791A1 (en) * 2019-03-28 2020-10-01 古河電気工業株式会社 Copper alloy bar, production method for copper alloy bar, resistor resistive material using copper alloy bar, and resistor

Also Published As

Publication number Publication date
WO2023276905A1 (en) 2023-01-05
CN117157419A (en) 2023-12-01
TW202309304A (en) 2023-03-01
KR20240026277A (en) 2024-02-27
JPWO2023276905A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
JP3520034B2 (en) Copper alloy materials for electronic and electrical equipment parts
JP5441876B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4799701B1 (en) Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same
US11732329B2 (en) Copper alloy, copper alloy plastic-processed material, component for electronic and electric devices, terminal, bus bar, and heat-diffusing substrate
JP6680041B2 (en) Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
EP2623619A1 (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
JP2011208232A (en) Cu-Co-Si ALLOY MATERIAL
JP7214931B1 (en) Copper alloy material, resistance material for resistor using the same, and resistor
JP7214930B1 (en) Copper alloy material, resistance material for resistor using the same, and resistor
US20220396853A1 (en) Copper alloy, copper alloy plastic working material, component for electronic/electrical equipment, terminal, busbar, and heat- diffusing substrate
JP2007246931A (en) Copper alloy for electrical and electronic equipment parts having excellent electric conductivity
TWI835180B (en) Copper alloy materials and resistance materials for resistors using the copper alloy materials and resistors
US20220403485A1 (en) Copper alloy, copper alloy plastic working material, electronic/electrical device component, terminal, busbar, and heat-diffusing substrate
JP7354481B1 (en) Copper alloy materials, resistor materials and resistors using copper alloy materials
JP7167385B1 (en) Copper alloy material, resistance material for resistor using the same, and resistor
TWI828212B (en) Copper alloy materials and resistance materials for resistors using the copper alloy materials and resistors
JP2022022731A (en) Resistor and method for manufacturing the same
JP2011190469A (en) Copper alloy material, and method for producing the same
JP7307297B1 (en) Copper alloy sheet material and manufacturing method thereof
WO2023140314A1 (en) Copper alloy sheet material and method for manufacturing same
WO2023157614A1 (en) Copper alloy sheet material and method for manufacturing same
JP2012211355A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND METHOD OF MANUFACTURING THE SAME
JP2020158818A (en) Cu-Co-Si BASED COPPER ALLOY STRIP EXCELLENT IN BENDABILITY AND SMOOTH FLEXURE SKIN

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220822

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230118

R151 Written notification of patent or utility model registration

Ref document number: 7214931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151