JPH0367906A - Catalytic combustion apparatus - Google Patents

Catalytic combustion apparatus

Info

Publication number
JPH0367906A
JPH0367906A JP1201588A JP20158889A JPH0367906A JP H0367906 A JPH0367906 A JP H0367906A JP 1201588 A JP1201588 A JP 1201588A JP 20158889 A JP20158889 A JP 20158889A JP H0367906 A JPH0367906 A JP H0367906A
Authority
JP
Japan
Prior art keywords
catalyst
combustion
combustion chamber
bodies
catalyst bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1201588A
Other languages
Japanese (ja)
Inventor
Masato Hosaka
正人 保坂
Atsushi Nishino
敦 西野
Jiro Suzuki
次郎 鈴木
Yoshitaka Kawasaki
良隆 川崎
Hironao Numamoto
浩直 沼本
Yukiyoshi Ono
之良 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1201588A priority Critical patent/JPH0367906A/en
Publication of JPH0367906A publication Critical patent/JPH0367906A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combustion Of Fluid Fuel (AREA)

Abstract

PURPOSE:To maintain the activity of catalyst body and to make a catalytic combustion apparatus compact by disposing catalyst bodies in multistage relationship in a combustion chamber, and by forming the walls of said chamber into a cooling construction so that combustion rate of each caltalyst body is adjusted. CONSTITUTION:Fuel is heater by a heater 15 and vaporized in a vaporization chamber 14 to be mixed with air and flows into a primary combustion chamber 16 to be ignited by means of an ignition means 17 to form flames. The high-temperature combustion gas heats catalyst bodies 18, 19, 20 to high temperatures while it passes therethrough, wherein each of the bodies 18, 19, 20 is encircled by a glass cylinder to form a combustion chamber so that a cooling construction is provided between adjacent catalyst bodies to allow thermal radiation from the bodies 18, 19, 20 to be released to the outside of the combustion chamber, so that the temperature of the combustion gas in lowered, preventing thereby the temperature of catalyst body of next stage from going up, and preventing the activity of the catalyst from falling down. And the cross- sectional area of the body 20 is made larger than that of the body 19 and that of the body 19 larger than that of the body 18 to make the velocity of the mixed gas lower so as to lengthen contact time between the mixed gas and catalyst. Further, by providing multistage catalyst bodies, premixed gas can be burned completely.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は加熱 暖房、乾燥等に用いられる気体燃料また
は液体燃料の触媒燃焼装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a catalytic combustion device for gaseous or liquid fuel used for heating, drying, etc.

従来の技術 従来の触媒燃焼装置は第7図に示すような構成になって
いる。燃料および空気は燃料タンク1に設けられたポン
プ2およびファン3により気化室4に供給され 燃料は
ヒータ5で加熱された気化室4内で気化して空気と混合
されたのちに一次燃焼部6に至り、点火装置7により点
火されてここに火炎を形成する。高温の燃焼排ガスは触
媒層8を経て排気口9から排出される力\ その間に触
媒層8を加熱昇温させる。触媒層8が触媒燃焼を行うの
に十分な温度に達したことか検出されると(検出部は図
示せず)、 ポンプ2を停止し −次燃焼部6の火炎を
消滅させる。この後再度ポンプ2を作動させて燃料を供
給すると、−次燃焼部6においては火炎を形成せず予混
合ガスのまま、燃料は触媒層8に到達する。ここ℃ 触
媒層8は十分温度が上昇しているために 触媒燃焼を開
始し完全燃焼が行われる。触媒燃焼は触媒層8の上流側
表面で専ら進行するから、その部分は輻射放熱体となり
、ガラス窓10を透過して全面に輻射放熱される。
Prior Art A conventional catalytic combustion apparatus has a configuration as shown in FIG. Fuel and air are supplied to a vaporization chamber 4 by a pump 2 and a fan 3 provided in a fuel tank 1. The fuel is vaporized in the vaporization chamber 4 heated by a heater 5, mixed with air, and then transferred to a primary combustion section 6. The ignition device 7 then ignites the flame to form a flame. The high temperature combustion exhaust gas passes through the catalyst layer 8 and is discharged from the exhaust port 9. During this time, the catalyst layer 8 is heated to raise its temperature. When it is detected that the catalyst layer 8 has reached a temperature sufficient for catalytic combustion (the detection part is not shown), the pump 2 is stopped and the flame in the secondary combustion part 6 is extinguished. After that, when the pump 2 is operated again to supply fuel, the fuel reaches the catalyst layer 8 without forming a flame in the secondary combustion section 6 and leaving the premixed gas as it is. Since the temperature of the catalyst layer 8 has risen sufficiently at this point, catalytic combustion starts and complete combustion occurs. Since catalytic combustion proceeds exclusively on the upstream surface of the catalyst layer 8, that portion becomes a radiant heat radiator, and the heat is radiated to the entire surface through the glass window 10.

発明が解決しようとする課題 従来の触媒燃焼装置(よ 燃焼により発生した熱量の大
部分を触媒層表面からの輻射により放熱する。したがっ
て、触媒燃焼装置の燃焼量を増加して加熱量や暖房負荷
などを増加するために(よ 燃焼が行われる触媒層の面
積を大きくする必要があつ九 ところ力文 燃焼機器をコンパクトにするために触媒層
の面積を小さくして、高燃焼量で燃焼を行わせると、触
媒燃焼は触媒層表面のみならず 触媒層の内部でも行わ
れるようになる。このため触媒層表面からの輻射だけで
は 触媒層の温度を低温に維持することがむずかしくな
り、触媒層の温度が非常に高温になり、触媒が活性を維
持することがむずかしくなるという課題が生じる。
Problems to be Solved by the Invention Most of the heat generated by combustion is radiated by radiation from the surface of the catalyst layer in conventional catalytic combustion devices. In order to increase the amount of combustion, it is necessary to increase the area of the catalyst layer where combustion takes place.In order to make the combustion equipment more compact, the area of the catalyst layer is reduced and combustion is performed with a high amount of combustion. When this happens, catalytic combustion occurs not only on the surface of the catalyst layer, but also inside the catalyst layer.For this reason, it is difficult to maintain the temperature of the catalyst layer at a low temperature only by radiation from the surface of the catalyst layer, and the temperature of the catalyst layer becomes low. A problem arises in that temperatures become so high that it becomes difficult for the catalyst to remain active.

本発明は上記従来技術の課題を解決することができ、且
つ、簡単な構成で、コンパクトな触媒燃焼装置を提供す
るものである。
The present invention can solve the problems of the prior art described above, and provides a compact catalytic combustion device with a simple configuration.

課題を解決するための手段 本発明は多数の連通孔を有する複数個の触媒体と、複数
個の触媒体を覆う筐体とから燃焼室が構成され 燃焼室
内の流れ方向に対して触媒体を多段に配置し 各触媒体
間の燃焼室外壁面を放熱構造とし 触媒体間の全部ある
いは一部の関係において、後段の触媒体の幾何学的表面
積を削設の触媒体の幾何学的表面積より大きくする構成
に係るものである。具体的には触媒体の大きさを変える
奴 連通孔の孔径、触媒体の厚みを変えるごとにより幾
何学的表面積を変えることができる。
Means for Solving the Problems In the present invention, a combustion chamber is constituted by a plurality of catalyst bodies having a large number of communication holes and a casing that covers the plurality of catalyst bodies, and the catalyst bodies are arranged in the direction of flow in the combustion chamber. Arranged in multiple stages, the outer wall surface of the combustion chamber between each catalyst body is made into a heat dissipation structure, and in all or part of the relationship between the catalyst bodies, the geometric surface area of the catalyst body in the subsequent stage is made larger than the geometric surface area of the catalyst body in the removed stage. This is related to the configuration. Specifically, by changing the size of the catalyst body, the geometric surface area can be changed by changing the diameter of the communicating pores and the thickness of the catalyst body.

また 本発明は多数の連通孔を有する複数個の触媒体と
、複数個の触媒体を覆う筐体とから燃焼室が構成され 
燃焼室内の流れ方向に対して触媒体を多段に配置し 触
媒体の下流に多数の連通孔を有する多孔体を少なくとも
1段配置し 各触媒体および多孔体間の燃焼室外壁面を
放熱構造とした構成に係るものである。
Further, in the present invention, the combustion chamber is constituted by a plurality of catalyst bodies having a large number of communication holes and a casing that covers the plurality of catalyst bodies.
The catalyst bodies are arranged in multiple stages in the flow direction in the combustion chamber, and at least one stage of porous bodies having a large number of communicating holes is arranged downstream of the catalyst bodies, and the outer wall surface of the combustion chamber between each catalyst body and the porous bodies has a heat dissipation structure. It is related to the configuration.

また 本発明は多数の連通孔を有する複数個の触媒体と
、複数個の触媒体を覆う筐体とから燃焼室が構成され 
燃焼室内の流れ方向に対して触媒体を多段に配置し 各
触媒体間の燃焼室外壁面を放熱構造とし、燃料と燃焼用
空気とを混合した後に触媒体の最前部上流より燃焼室へ
供給し 燃料または燃焼用空気のうちの少なくとも1つ
を各触媒体間より燃焼室・\供給する構成に係るもので
ある。
Further, in the present invention, the combustion chamber is constituted by a plurality of catalyst bodies having a large number of communication holes and a casing that covers the plurality of catalyst bodies.
Catalyst bodies are arranged in multiple stages in the flow direction inside the combustion chamber, and the outer wall surface of the combustion chamber between each catalyst body has a heat dissipation structure, and after the fuel and combustion air are mixed, they are supplied to the combustion chamber from the front upstream of the catalyst body. This relates to a configuration in which at least one of fuel or combustion air is supplied to the combustion chamber from between each catalyst body.

作   用 この技術的手段による作用は次のよ・うになる。For production The effect of this technical means is as follows.

一般に 触媒燃焼装置において(上 触媒体を通過する
燃料と空気の予混合ガスの空間速度が大きくなると、触
媒体で処理しきれない予混合ガスが触媒体を通過してし
まう、いわゆるスリップ現象が生じる。本発明はこの現
象を積極的に利用したもので、燃焼室内に触媒体を多段
に配置し 従来の触媒燃焼器に比べて、各段における触
媒体を通過する予混合ガスの空間速度は大きくしである
In general, in catalytic combustion devices (Part 1), when the space velocity of the premixed gas of fuel and air that passes through the catalyst increases, a so-called slip phenomenon occurs in which the premixed gas that cannot be processed by the catalyst passes through the catalyst. The present invention makes active use of this phenomenon by arranging catalyst bodies in multiple stages within the combustion chamber.Compared to conventional catalytic combustors, the space velocity of the premixed gas passing through the catalyst bodies in each stage is increased. It is.

このたぬ 予混合ガスは触媒体をスリップレ 次段の触
媒体へ到達するようになる。ここで、各段の触媒体の幾
何学的表面積が等しいかあるいは前段より小さいと、 
スリップしてきた予混合ガスを次段の触媒体で完全燃焼
することはむずかしい。
This premixed gas slips through the catalyst and reaches the next stage of the catalyst. Here, if the geometric surface area of the catalyst body in each stage is equal or smaller than that of the previous stage,
It is difficult to completely burn the premixed gas that has slipped in the next stage catalyst.

しかし 本発明では触媒体の幾何学的表面積を前段の触
媒体の幾何学的表面積より大きくする構成にしであるの
で、前段の触媒体からスリップした予混合ガスを次段の
触媒体で完全燃焼することができる。さらに 各触媒体
間に放熱構造をとり、触媒体を通過した燃焼ガスの温度
を低下させることにより、次段の触媒体の温度上昇を防
ぎミ 触媒の活性低下を防止する効果がある。
However, in the present invention, the geometric surface area of the catalyst body is made larger than the geometric surface area of the catalyst body in the previous stage, so that the premixed gas that has slipped from the catalyst body in the previous stage is completely combusted in the catalyst body in the next stage. be able to. Furthermore, by providing a heat dissipation structure between each catalyst body and lowering the temperature of the combustion gas that has passed through the catalyst body, there is an effect of preventing a rise in temperature of the next stage catalyst body and preventing a decrease in the activity of the catalyst.

また 高温の燃焼排ガスが必要り場合に(よ 触媒体の
下流に多孔体を設置し この多孔体での表面燃焼を利用
することにより、高温の燃焼排ガスを得ることができる
In addition, when high-temperature combustion exhaust gas is required, high-temperature combustion exhaust gas can be obtained by installing a porous body downstream of the catalyst and utilizing surface combustion in this porous body.

また 多段での触媒燃焼が進むと、触媒体に供給される
燃料ガス量1  予め供給された予混合ガスと燃焼ガス
の混合した高温のガスになる。そこで、触媒体間より空
気および燃料を供給することにより、燃料ガスの温度を
低下したり、触媒体の供給する燃料ガスの空気比を調節
する。このことにより、各段の触媒体の燃焼量を調節し
 触媒体の温度を最適値に維持することができる。
Further, as the multi-stage catalytic combustion progresses, the amount of fuel gas supplied to the catalyst body becomes a high-temperature gas that is a mixture of the premixed gas supplied in advance and the combustion gas. Therefore, by supplying air and fuel from between the catalyst bodies, the temperature of the fuel gas is lowered and the air ratio of the fuel gas supplied by the catalyst bodies is adjusted. This makes it possible to adjust the combustion amount of the catalyst bodies in each stage and maintain the temperature of the catalyst bodies at an optimum value.

実施例 以下、本発明の実施例を添付図面に基づいて説明する。Example Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図において、11は液体燃料タン久12は燃料供給
用ポンプ、13は送風用ファンで両者は気化室14に連
通されている。気化室14には加熱用ヒータ15が設け
られている。気化室下流には一次燃焼部16が備えら花
 その近傍には点火装置17が設けられている。−次燃
焼部16の下流には3段のハニカム状セラミックからな
る触媒体1&19.20が備えられており、排気口21
へと連通している。
In FIG. 1, 11 is a liquid fuel tank, 12 is a fuel supply pump, and 13 is a ventilation fan, both of which are communicated with a vaporization chamber 14. A heater 15 is provided in the vaporization chamber 14 . A primary combustion section 16 is provided downstream of the vaporization chamber, and an ignition device 17 is provided near the primary combustion section 16. - A catalyst body 1 & 19.20 made of three stages of honeycomb-shaped ceramic is provided downstream of the secondary combustion section 16, and an exhaust port 21
It is connected to.

22はガラス筒で放熱構造の燃焼室を構成している。Reference numeral 22 is a glass cylinder that constitutes a combustion chamber with a heat radiation structure.

燃料および空気はポンプ12およびファン13によって
気化室14に供給され 燃料はヒータ15で加熱された
気化室14で気化して空気と混合された後に一次燃焼部
16に至り、点火装置17により点火されてここに火炎
を形成する。高温の燃焼排ガスは触媒体1&  19.
 20を経て排気口21から排出される力丈その間に触
媒体1&  IQ、  20を加熱昇温させる。触媒体
1&  IQ、 20が触媒燃焼を行うのに十分な温度
に達したことが検出されると(検出部は図示せず)、ポ
ンプ12を停止し −次燃焼部16の火炎を消滅させる
。この後再度ポンプ12を作動させて燃料を供給すると
、−次燃焼部16においては火炎を形成せず予混合ガス
のまま、触媒体18に到達する。
Fuel and air are supplied to the vaporization chamber 14 by the pump 12 and fan 13. The fuel is vaporized in the vaporization chamber 14 heated by the heater 15 and mixed with air, then reaches the primary combustion section 16, where it is ignited by the ignition device 17. A flame is formed here. High-temperature combustion exhaust gas is transferred to catalyst bodies 1 & 19.
During this time, the catalyst bodies 1 & IQ, 20 are heated and their temperature is increased while the power is discharged from the exhaust port 21 through the exhaust port 20. When it is detected that the catalyst bodies 1 & IQ, 20 have reached a temperature sufficient for catalytic combustion (the detection part is not shown), the pump 12 is stopped and the flame in the secondary combustion part 16 is extinguished. After that, when the pump 12 is operated again to supply fuel, no flame is formed in the secondary combustion section 16 and the premixed gas reaches the catalyst body 18 as it is.

ここで、予混合ガスの空間速度を太きして触媒体18に
供給すると、予混合ガスは触媒体18だけでは一部しか
処理できずに 残りの予混合ガスは触媒体18をスリッ
プし 次段の触媒体19へ到達するようになる。したが
って、この時触媒体18で処理される燃料は予混合ガス
中に含まれる燃料の一部であるために 触媒体18で触
媒燃焼により発生する熱量に比べて、触媒体18を通過
するガス量が大きいために 触媒体18の温度はあまり
高温にならなLl しかL 2段目以降の触媒体1g、20に供給される混
合ガスは前段の触媒反応で発生した燃焼ガスと、前段の
触媒をスリップした未処理の燃料ガスとが混合したもの
である。このた吹 後段はど混合気が空気予熱されたこ
とになり、触媒体を通過するガス量を大きくしてL 後
段の触媒体はど燃焼温度が高温になりやす賎 そこで本
発明では第1図のように各触媒体1&  19. 20
をガラス筒2で覆うことにより燃焼室を構成し 各触媒
体間に放熱構造をとり、各触媒体1&  1代20から
の熱輻射を積極的に燃焼室の外へ放出することによって
燃焼ガスの温度を低下し 次段の触媒体の温度上昇を防
ぎ、触媒の活性低下を防止している。
Here, if the space velocity of the premixed gas is increased and it is supplied to the catalyst body 18, only a portion of the premixed gas can be processed by the catalyst body 18, and the remaining premixed gas slips through the catalyst body 18. It reaches the catalyst body 19 of the stage. Therefore, since the fuel processed by the catalyst body 18 at this time is a part of the fuel contained in the premixed gas, the amount of gas passing through the catalyst body 18 is greater than the amount of heat generated by catalytic combustion in the catalyst body 18. Since the temperature of the catalyst body 18 is large, the temperature of the catalyst body 18 does not become very high. It is mixed with untreated fuel gas that has slipped. In this case, the air-fuel mixture in the rear stage is preheated, and the amount of gas passing through the catalyst body is increased. Each catalyst body 1 & 19. 20
A combustion chamber is formed by covering the catalytic converter with a glass tube 2, and a heat dissipation structure is provided between each catalytic body, and heat radiation from each catalytic body 1 & 1 20 is actively released to the outside of the combustion chamber, thereby reducing combustion gas. This lowers the temperature, prevents the temperature of the next stage catalyst from rising, and prevents a decrease in catalyst activity.

また 第2図に示すように 触媒体を覆う燃焼室23の
壁面に冷却フィン24を設置 冷却ファン25からの冷
風により燃焼室23を強制的に冷却するこQ− 0− とにより、燃焼ガスの温度を低下し 次段の触媒体の温
度上昇を防いでもよLt 第1図に示す触媒燃焼装置において、後段の触媒体20
の断面積を中段の触媒体19の断面積より大きくし 中
段の触媒体19の断面積を前段の触媒体18の断面積よ
り大きくすることにより、混合気の流速が遅くなり、混
合ガスと触媒の接触時間を長くし 混合気をスリップし
に<<シている。また触媒体の断面積を前段の触媒体の
断面積より大きくすること(よ 触媒体の幾何学的表面
積を前段の触媒体の幾何学的表面積より大きくすること
になる。このために 触媒体の活性点が前段の触媒の活
性点より多くなり、前段の触媒体からスリップした予混
合ガスを次段の触媒体で処理しやすくなり、触媒体を多
段にすることにより、予混合ガスを完全燃焼することが
できる。ここでは 全部の触媒体について、その幾何学
的表面積が前段の幾何学的表面積より大きい場合につい
て述べため丈触媒体間の一部の関係について、その幾何
学的表面積が前段の幾何学的表面積より大きい場合でL
12 十分に効果がある。
In addition, as shown in FIG. 2, cooling fins 24 are installed on the wall of the combustion chamber 23 that covers the catalyst body. By forcibly cooling the combustion chamber 23 with cold air from the cooling fan 25, the combustion gas is In the catalytic combustion apparatus shown in FIG.
By making the cross-sectional area of the middle-stage catalyst body 19 larger than the cross-sectional area of the middle-stage catalyst body 19 than the front-stage catalyst body 18, the flow rate of the mixture is slowed down, and the mixed gas and the catalyst are The contact time is increased to cause the air-fuel mixture to slip. Also, by making the cross-sectional area of the catalyst body larger than the cross-sectional area of the catalyst body in the previous stage (the geometric surface area of the catalyst body is made larger than that of the catalyst body in the front stage. The number of active points is greater than that of the previous stage catalyst, making it easier to process the premixed gas that has slipped from the previous stage catalyst in the next stage catalyst, and by having multiple catalysts, the premixed gas can be completely combusted. Here, we will discuss the case where the geometric surface area of all the catalyst bodies is larger than the geometric surface area of the previous stage.For some relationships between the long catalyst bodies, the geometric surface area of the catalyst body is larger than the geometric surface area of the previous stage. L if larger than the geometric surface area
12 It is sufficiently effective.

次に第2図に基づいて他の実施例について説明する。第
2図において、11は液体燃料タン久 12は燃料供給
用ポンス 13は送風用ファンで両者は気化室14に連
通されている。気化室I4には加熱用ヒータ15が設け
られている。気化室14下流には一次燃焼部16が備え
られ その近傍には点火装置17が設けられている。−
次燃焼部16の下流には3段のハニカム状セラミックか
らなる触媒体26. 27.28が備えられており、排
気口21へと連通している。
Next, another embodiment will be described based on FIG. In FIG. 2, 11 is a liquid fuel tank, 12 is a fuel supply pump, and 13 is a ventilation fan, both of which are communicated with a vaporization chamber 14. A heater 15 is provided in the vaporization chamber I4. A primary combustion section 16 is provided downstream of the vaporization chamber 14, and an ignition device 17 is provided near it. −
Downstream of the next combustion section 16 is a catalyst body 26 made of three stages of honeycomb-shaped ceramic. 27 and 28 are provided and communicate with the exhaust port 21.

燃焼室23の壁面に冷却フィン24を設(す、冷却ファ
ン25からの冷風により燃焼室23を強制的に冷却する
構成になっている。
Cooling fins 24 are provided on the wall of the combustion chamber 23, and the combustion chamber 23 is forcibly cooled by cold air from a cooling fan 25.

ここで、触媒体2a、27.28はハニカムのセル密度
を前段のセル密度より後段の密度の方が大きくしである
。このために触媒体の連通孔径は前段の孔径よりも後段
の孔径の方が小さくなり、後段はど混合気が触媒体をス
リップしにくくなる。また触媒体のセル密度を大きくす
ると、触媒体の幾何学的表面積を大きくすることになる
から、触媒体2− の活性点が前段の触媒の活性点より多(なる。このため
に 前段の触媒体からスリップした予混合ガスを次段の
触媒体で処理しやすくなり、触媒体を多段にすることに
より、予混合ガスを完全燃焼することができる。ここで
Lt、  全部の触媒体について、ハニカムのセル密度
が前段のセル密度より大きい場合について述べた力丈 
触媒体間の一部の関係について、そのセル密度が前段の
セル密度より大きい場合でも、十分に効果がある。
Here, in the catalyst bodies 2a, 27, 28, the cell density of the honeycomb is greater in the latter stage than in the former stage. For this reason, the diameter of the communicating pores in the catalyst body is smaller in the rear stage than in the front stage, making it difficult for the rear air-fuel mixture to slip through the catalyst body. In addition, when the cell density of the catalyst body is increased, the geometric surface area of the catalyst body is increased, so that the number of active points in the catalyst body 2- is greater than that of the catalyst in the previous stage. The premixed gas that has slipped from the medium can be easily processed by the next-stage catalyst, and by having multiple catalysts, the premixed gas can be completely combusted.Here, Lt, for all the catalysts, the honeycomb The strength described when the cell density of is greater than the cell density of the previous stage.
For some relationships between catalyst bodies, even if the cell density of the catalyst is greater than the cell density of the previous stage, it is sufficiently effective.

次に第3図に基づいて他の実施例について説明する。第
3図において、Hは液体燃料タン久 12は燃料供給用
ポンプ、13は送風用ファンで両者は気化室14に連通
されている。気化室14には加熱用ヒータ15が設けら
れている。気化室下流には一次燃焼部16が備えられ 
その近傍には点火装置17が設けられている。−次燃焼
部16の下流には3段のハニカム状セラミックからなる
触媒体29.30.31が備えられており、排気口21
へと連通している。
Next, another embodiment will be described based on FIG. In FIG. 3, H is a liquid fuel tank, 12 is a fuel supply pump, and 13 is a ventilation fan, both of which are communicated with a vaporization chamber 14. A heater 15 is provided in the vaporization chamber 14 . A primary combustion section 16 is provided downstream of the vaporization chamber.
An ignition device 17 is provided near it. - A three-stage catalyst body 29, 30, 31 made of honeycomb-shaped ceramic is provided downstream of the secondary combustion section 16, and the exhaust port 21
It is connected to.

各触媒体2Q、  3Q、  31をガラス筒で覆うこ
とにより燃焼室22を構成し 各触媒体29. 3Q、
  31からの熱輻射を積極的に燃焼室22の外へ放出
することによって、燃焼ガスの温度を低下し 次段の触
媒体の温度上昇を防ぎミ 触媒の活性低下を防止してい
る。
The combustion chamber 22 is configured by covering each catalyst body 2Q, 3Q, 31 with a glass tube, and each catalyst body 29. 3Q,
By actively discharging heat radiation from the combustion chamber 22 to the outside of the combustion chamber 22, the temperature of the combustion gas is lowered and the temperature of the catalyst body in the next stage is prevented from rising, thereby preventing a decrease in the activity of the catalyst.

ここで、触媒体2Q、  3CK31は触媒体の厚みを
前段の厚みより後段の厚みの方が厚くしである。このた
めに触媒体を通過する混合気力上 触媒体と接触する時
間(よ 前段の触媒体よりも後段の触媒体の方が長くな
り、後段はど混合気が触媒体をスリップしにくくなる。
Here, the thickness of the catalyst bodies 2Q and 3CK31 is thicker at the rear stage than at the front stage. For this reason, the time period during which the air-fuel mixture passes through the catalyst body is in contact with the catalyst body is longer than the catalyst body in the former stage, making it difficult for the air-fuel mixture in the latter stage to slip over the catalyst body.

ま1=  触媒体の厚みを厚くすると、触媒体の幾何学
的表面積を大きくすることになるから、触媒体の活性点
が前段の触媒の活性点より多くなる。このために 前段
の触媒体からスリップした予混合ガスを次段の触媒体で
処理しやず(なり、触媒体を多段にすることにより、予
混合ガスを完全燃焼することができる。ここでは全部の
触媒体について、触媒体の厚みが前段の触媒体の厚みよ
り厚い場合について述べた力曳 触媒体間の一部の関係
について、その触媒体の厚みが前段の触媒体の厚みより
厚い場合でも、十分に効果がある。
E1 = Increasing the thickness of the catalyst increases the geometric surface area of the catalyst, so the number of active sites in the catalyst increases compared to the active sites in the preceding catalyst. For this reason, the premixed gas that has slipped from the previous stage catalyst body is not processed by the next stage catalyst body (by having multiple catalyst bodies, the premixed gas can be completely combusted. Regarding some relationships between catalyst bodies, even if the thickness of the catalyst body is thicker than the thickness of the catalyst body in the previous stage, , is sufficiently effective.

13− 4 次に第4図に基づいて他の実施例について説明する。第
4図において、11は液体燃料タン久 12は燃料供給
用ポンプ、13は送風用ファンで両者は気化室14に連
通されている。気化室14には加熱用ヒータ15が設け
られている。気化室14下流には一次燃焼部16が備え
られ その近傍には点火装置17が設けられている。−
次燃焼部16の下流には3段のハニカム状セラミックか
らなる触媒体32. 3a。
13-4 Next, another embodiment will be described based on FIG. In FIG. 4, 11 is a liquid fuel tank, 12 is a fuel supply pump, and 13 is a ventilation fan, both of which are communicated with a vaporization chamber 14. A heater 15 is provided in the vaporization chamber 14 . A primary combustion section 16 is provided downstream of the vaporization chamber 14, and an ignition device 17 is provided near it. −
Downstream of the next combustion section 16 is a catalyst body 32 made of three stages of honeycomb-shaped ceramic. 3a.

34と触媒を担持していない多孔体35が備えられてお
り、排気口21へと連通している。各触媒体32゜33
.34と多孔体35をガラス筒22で覆うことにより燃
焼室22を槽底し 各触媒体32. 3&  34から
の熱輻射を積極的に燃焼室22の外へ放出することによ
って、燃焼ガスの温度を低下し 次段の触媒体の温度上
昇を防ぎミ 触媒の活性低下を防止している。
34 and a porous body 35 that does not support a catalyst, and communicates with the exhaust port 21. Each catalyst body 32°33
.. 34 and the porous body 35 with the glass cylinder 22, the combustion chamber 22 is formed as a bottom of each catalyst body 32. By actively discharging the heat radiation from 3 & 34 to the outside of the combustion chamber 22, the temperature of the combustion gas is lowered, and the temperature of the catalyst body in the next stage is prevented from rising, thereby preventing a decrease in the activity of the catalyst.

一般に触媒の耐熱温度は1000℃以下であり、触媒燃
焼器の燃焼排ガス温度も1000℃以下である。
Generally, the allowable temperature limit of a catalyst is 1000°C or less, and the combustion exhaust gas temperature of a catalytic combustor is also 1000°C or less.

しかし 触媒燃焼器をタービンなどの熱源として使用す
る場合には1200℃以上の高温の燃焼排ガスが必要に
なる。そこで本発明のように多段の触媒体32. 33
.34の下流に触媒未担持のセラミック多孔体35を設
けることにより、多段の触媒をスリップしてきた混合気
を多孔体35で表面燃焼させることにより高温の燃焼排
ガスを得ることができる。な抵 燃焼ガス中に含まれる
NOxを低減するうえでは多孔体35表面での燃焼温度
を1200℃〜1400℃程度に抑えることが望ましい
However, when a catalytic combustor is used as a heat source for a turbine or the like, high-temperature combustion exhaust gas of 1200°C or higher is required. Therefore, as in the present invention, a multi-stage catalyst body 32. 33
.. By providing a ceramic porous body 35 that does not carry a catalyst downstream of the porous body 34, a high-temperature combustion exhaust gas can be obtained by surface-combusting the air-fuel mixture that has slipped through the multi-stage catalyst in the porous body 35. In order to reduce NOx contained in the combustion gas, it is desirable to suppress the combustion temperature on the surface of the porous body 35 to about 1200°C to 1400°C.

次に第5図に基づいて他の実施例について説明する。第
5図において、11は液体燃料タン久 12は燃料供給
用ポンプ、13は送風用ファンで両者は気化室14に連
通されている。気化室14には加熱用ヒータ15が設け
られている。気化室14下流には一次燃焼部16が備え
られ その近傍には点火装置17が設けられている。−
1次燃焼部16の下流には3段のハニカム状セラミック
からなる触媒体36. 37.38が備えられており、
排気口21へと連通している。
Next, another embodiment will be described based on FIG. In FIG. 5, 11 is a liquid fuel tank, 12 is a fuel supply pump, and 13 is a ventilation fan, both of which are communicated with a vaporization chamber 14. A heater 15 is provided in the vaporization chamber 14 . A primary combustion section 16 is provided downstream of the vaporization chamber 14, and an ignition device 17 is provided near it. −
Downstream of the primary combustion section 16, there is a catalyst body 36 made of three stages of honeycomb-shaped ceramic. 37.38 is provided,
It communicates with the exhaust port 21.

各触媒体3代37.38をガラス筒で覆うことにより燃
焼室22を槽底し 各触媒体3氏37.38からの熱輻
射を積極的に燃焼室22の外へ放出することによって、
燃焼ガスの温度を低下し 次段の触媒体の5− 6− 温度上昇を防ぎミ 触媒の活性低下を防止している。
By covering each of the three catalyst bodies 37.38 with a glass tube, the combustion chamber 22 is bottomed, and the heat radiation from each of the three catalyst bodies 37.38 is actively released to the outside of the combustion chamber 22.
It lowers the temperature of the combustion gas and prevents the temperature of the catalyst in the next stage from rising, thereby preventing a decrease in the activity of the catalyst.

また 燃焼用空気は一部バイパス経路39を経て、各触
媒体間より燃焼室22へ供給している。
Further, the combustion air is supplied to the combustion chamber 22 from between each catalyst body through a partial bypass path 39.

ここで気化室14で混合される燃料と空気の混合比を当
量比を1以下にして燃焼室22に供給する。
Here, the mixture ratio of fuel and air mixed in the vaporization chamber 14 is adjusted to an equivalence ratio of 1 or less and is supplied to the combustion chamber 22.

触媒体36において、供給された混合気の当量比か1以
下であるから、触媒体36で燃焼する燃料ガス量は気化
室14に供給された空気量に応じた燃料ガス量だけであ
る。残りの燃料ガス量が前段の触媒体36では処理され
ずに中段の触媒体37に供給される。ここで空気口40
から燃焼用空気が再び燃焼室22内に供給される。この
とき、前段の触媒体36からの熱輻射が燃焼室22壁面
のガラス筒から外へ放射されることや燃焼ガスが低温の
燃焼用空気と混合することなどから、燃焼ガスの温度上
昇は最低限に抑えられる。
In the catalyst body 36, since the equivalence ratio of the supplied air-fuel mixture is less than 1, the amount of fuel gas combusted in the catalyst body 36 is only the amount of fuel gas corresponding to the amount of air supplied to the vaporization chamber 14. The remaining amount of fuel gas is not processed by the catalyst body 36 at the front stage and is supplied to the catalyst body 37 at the middle stage. Here air vent 40
Combustion air is again supplied into the combustion chamber 22 from the combustion chamber 22. At this time, the temperature rise of the combustion gas is minimized because heat radiation from the catalyst body 36 in the previous stage is radiated outward from the glass cylinder on the wall of the combustion chamber 22 and the combustion gas mixes with low-temperature combustion air. can be kept to a minimum.

中段の触媒体37でも燃焼を当量比1以下で行うように
燃焼用空気を供給するために 空気口4oから供給され
た空気量に応じた燃料ガス量だけが燃焼し 残りの燃料
ガスが後段の触媒体38に供給される。このとき、中段
の触媒体37からの熱輻射が燃焼室22壁面のガラス筒
から外へ放射されることや燃焼ガスが低温の燃焼用空気
と混合することなどから、燃焼ガスの温度上昇は最低限
に抑えられる。
In order to supply combustion air so that the middle stage catalyst 37 also performs combustion at an equivalence ratio of 1 or less, only the amount of fuel gas corresponding to the amount of air supplied from the air port 4o is combusted, and the remaining fuel gas is sent to the second stage. It is supplied to the catalyst body 38. At this time, the temperature rise of the combustion gas is minimized because the heat radiation from the middle stage catalyst body 37 is radiated outward from the glass tube on the wall of the combustion chamber 22, and the combustion gas mixes with low-temperature combustion air. can be kept to a minimum.

後段の触媒体38では残りの燃料ガスをすべて燃焼する
ために 空気口41から当量比が1以上になるように燃
焼用空気を燃焼室22に供給する。後段の触媒体38で
は当量比が1以上であるために 残った燃焼ガスはすべ
て処理することができ、燃焼排ガス中に未燃成分は存在
しない。
In order to burn all the remaining fuel gas in the catalyst body 38 in the latter stage, combustion air is supplied from the air port 41 to the combustion chamber 22 so that the equivalence ratio becomes 1 or more. In the latter stage catalyst body 38, since the equivalence ratio is 1 or more, all of the remaining combustion gas can be processed, and no unburned components are present in the combustion exhaust gas.

このように燃焼室22に当量比1以下の混合気を供給し
 最終段の触媒体以外の触媒体においては当量比が1以
下になるように 各触媒体間より燃焼室22に燃焼用空
気を供給することにより、各触媒体36. 37.38
での燃焼量を調節じ 触媒体の温度を最適値に維持する
ことができる。
In this way, a mixture with an equivalence ratio of 1 or less is supplied to the combustion chamber 22, and combustion air is supplied to the combustion chamber 22 from between each catalyst body so that the equivalence ratio is 1 or less in catalyst bodies other than the final stage catalyst body. By supplying each catalyst body 36. 37.38
It is possible to maintain the temperature of the catalyst body at an optimum value by adjusting the amount of combustion.

次に第6図に基づいて他の実施例について説明する。第
6図において、11は液体燃料タン久 12は燃料供給
用ポンプ、13は送風用ファンで両者は7 1g− 気化室14に連通されている。気化室14には加熱用ヒ
ータ15が設けられている。気化室14下流には一次燃
焼部16が備えられ その近傍には点火装置17が設け
られている。−次燃焼部16の下流には3段のハニカム
状セラミックからなる触媒体42. 4&44が備えら
れており、排気口21へと連通している。
Next, another embodiment will be described based on FIG. In FIG. 6, 11 is a liquid fuel tank, 12 is a fuel supply pump, and 13 is a ventilation fan, both of which are communicated with a vaporization chamber 14. A heater 15 is provided in the vaporization chamber 14 . A primary combustion section 16 is provided downstream of the vaporization chamber 14, and an ignition device 17 is provided near it. - A catalyst body 42 consisting of three stages of honeycomb-shaped ceramic is located downstream of the secondary combustion section 16. 4 & 44 are provided and communicate with the exhaust port 21.

各触媒体4衣43.44をガラス筒で覆うことにより燃
焼室22を構成し 各触媒体42. 43. 44から
の熱輻射を積極的に燃焼室22の外へ放出することによ
って、燃焼ガスの温度を低下し 次段の触媒体の温度上
昇を防ぎミ 触媒の活性低下を防止している。
The combustion chamber 22 is configured by covering each catalyst body 43 and 44 with a glass cylinder. 43. By actively discharging heat radiation from the combustion chamber 22 to the outside of the combustion chamber 22, the temperature of the combustion gas is lowered and the temperature of the catalyst body in the next stage is prevented from rising, thereby preventing a decrease in the activity of the catalyst.

また 燃焼用空気は一部バイパス経路39を経て、燃料
ガスは一部バイパス経路45を経て、各触媒体間より燃
焼室22へ供給している。
Further, the combustion air is supplied to the combustion chamber 22 from between each catalyst body through a portion of the combustion air through the bypass path 39 and through a portion of the fuel gas through the bypass path 45.

ここで気化室14から供給された予混合気は触媒体42
で燃焼する。このとき、燃焼ガスは前段の触媒体42か
らの熱輻射が燃焼室22壁面のガラス筒から外へ放射さ
れることにより冷却される。さらに空気口46より燃焼
用空気を供給し燃焼ガスの温度をさらに冷却する。そし
て中段の触媒体43の直前9− で燃料ガスロ47より燃料ガスを供給し 最適な空燃比
で触媒体43で燃焼を行わせる。このとき、燃焼ガスは
中段の触媒体43からの熱輻射が燃焼室22壁面のガラ
ス筒から外へ放射されることにより冷却される。さらに
空気口48より燃焼用空気を供給し燃焼ガスの温度をさ
らに冷却する。そして後段の触媒体44の直前で燃料ガ
スロ49より燃料ガスを供給し 最適な空燃比で後段の
触媒体44で燃焼を行わせる。
Here, the premixture supplied from the vaporization chamber 14 is transferred to the catalyst body 42.
burns with At this time, the combustion gas is cooled by heat radiation from the catalyst body 42 in the previous stage being radiated outward from the glass cylinder on the wall surface of the combustion chamber 22. Furthermore, combustion air is supplied from the air port 46 to further cool the temperature of the combustion gas. Then, fuel gas is supplied from the fuel gas outlet 47 immediately before the catalyst body 43 in the middle stage, and combustion is performed in the catalyst body 43 at an optimum air-fuel ratio. At this time, the combustion gas is cooled by heat radiation from the catalyst body 43 in the middle stage being radiated outward from the glass cylinder on the wall surface of the combustion chamber 22. Furthermore, combustion air is supplied from the air port 48 to further cool the temperature of the combustion gas. Then, fuel gas is supplied from a fuel gas outlet 49 immediately before the rear catalyst body 44, and combustion is performed in the rear catalyst body 44 at an optimum air-fuel ratio.

このように 各触媒体間より空気を供給することにより
燃焼ガス温度を低下し さらに燃料ガスを供給すること
により、後段の触媒体の空気比調節することができる。
In this way, by supplying air from between each catalyst body to lower the combustion gas temperature, and further supplying fuel gas, it is possible to adjust the air ratio of the subsequent catalyst bodies.

このために 各段の触媒体の燃焼量を調節し 触媒体の
温度を最適値に維持することができる。
For this purpose, it is possible to adjust the combustion amount of the catalyst in each stage and maintain the temperature of the catalyst at an optimum value.

上記実施例は石油燃焼についての場合である力交ガス燃
料等についても同様な結果が得られており、燃料種を限
定するのものではない。また 触媒体の材質や形状等に
よっても大きな差異はなく、セラミック繊維の編組体や
金属ハニカム体を用いて一加一 も同様な結果が得られている。
In the above embodiment, similar results have been obtained for oil combustion gas fuel, etc., and the fuel type is not limited. Furthermore, there is no major difference depending on the material or shape of the catalyst, and similar results have been obtained using a ceramic fiber braided body or a metal honeycomb body.

発明の効果 以上のように本発明において(よ 燃焼室内に触媒体を
多段に配置し 燃焼室壁面を放熱構造とし各触媒体の燃
焼量を調節することにより、触媒体の温度を最適値にし
て触媒の活性を維持し 且つコンパクトな触媒燃焼装置
にすることができる。
Effects of the Invention As described above, in the present invention, the temperature of the catalyst body can be set to an optimum value by arranging the catalyst bodies in multiple stages in the combustion chamber, making the combustion chamber wall surface a heat dissipation structure, and adjusting the amount of combustion of each catalyst body. The activity of the catalyst can be maintained and the catalytic combustion device can be made compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1は第2@第3@第4猛第5@第 6図は夫々本発明の各実施例における触媒燃焼装置の断
面は 第7図は従来例の触媒燃焼装置の断面図である。 18.1東20,2瓜27.2&29.30.31.3
乙 3友34、 36. 37.38.4乙 4友 4
4・・・触媒体 2乙 23・・・燃焼部
1st, 2nd @ 3rd, 4th, 5th, 6th, and 6th are cross-sectional views of catalytic combustion devices according to the respective embodiments of the present invention. FIG. 7 is a sectional view of a conventional catalytic combustion device. 18.1 East 20, 2 Melon 27.2 & 29.30.31.3
Otsu 3 friends 34, 36. 37.38.4 Otsu 4 Tomo 4
4... Catalyst body 2 Otsu 23... Combustion part

Claims (5)

【特許請求の範囲】[Claims] (1)多数の連通孔を有する複数個の触媒体と、前記複
数個の触媒体を覆う筺体とから燃焼室が構成され、前記
燃焼室内の流れ方向に対して前記触媒体を多段に配置し
、前記各触媒体間の燃焼室外壁面を放熱構造とし、触媒
体間の全部あるいは一部の関係において、後段の触媒体
の幾何学的表面積を前段の触媒体の幾何学的表面積より
大きくしたことを特徴とする触媒燃焼装置。
(1) A combustion chamber is constituted by a plurality of catalyst bodies having a large number of communicating holes and a housing that covers the plurality of catalyst bodies, and the catalyst bodies are arranged in multiple stages in the flow direction within the combustion chamber. , the outer wall surface of the combustion chamber between each of the catalyst bodies has a heat dissipation structure, and in all or part of the relationship between the catalyst bodies, the geometric surface area of the catalyst body in the latter stage is made larger than the geometric surface area of the catalyst body in the front stage. A catalytic combustion device featuring:
(2)多数の連通孔を有する複数個の触媒体と、前記複
数個の触媒体を覆う筺体とから燃焼室が構成され、前記
燃焼室内の流れ方向に対して前記触媒体を多段に配置し
、前記各触媒体間の燃焼室外壁面を放熱構造とし、触媒
体間の全部あるいは一部の関係において、後段の触媒体
の連通孔の孔径を前段の触媒体の連通孔の孔径より小さ
くしたことを特徴とする触媒燃焼装置。
(2) A combustion chamber is configured from a plurality of catalyst bodies having a large number of communicating holes and a housing that covers the plurality of catalyst bodies, and the catalyst bodies are arranged in multiple stages in the flow direction within the combustion chamber. , the outer wall surface of the combustion chamber between each of the catalyst bodies has a heat dissipation structure, and in all or part of the relationship between the catalyst bodies, the diameter of the communication hole in the catalyst body in the latter stage is made smaller than the diameter of the communication hole in the catalyst body in the front stage. A catalytic combustion device featuring:
(3)多数の連通孔を有する複数個の触媒体と、前記複
数個の触媒体を覆う筺体とから燃焼室が構成され、前記
燃焼室内の流れ方向に対して前記触媒体を多段に配置し
、前記各触媒体間の燃焼室外壁面を放熱構造をとし、触
媒体間の全部あるいは一部の関係において、後段の触媒
体の厚みを前段の触媒体の厚みより厚くしたことを特徴
とする触媒燃焼装置。
(3) A combustion chamber is configured from a plurality of catalyst bodies having a large number of communicating holes and a housing that covers the plurality of catalyst bodies, and the catalyst bodies are arranged in multiple stages in the flow direction within the combustion chamber. , a catalyst characterized in that the outer wall surface of the combustion chamber between each of the catalyst bodies has a heat dissipation structure, and in all or part of the relationship between the catalyst bodies, the thickness of the catalyst body in the later stage is made thicker than the thickness of the catalyst body in the front stage. Combustion device.
(4)多数の連通孔を有する複数個の触媒体と、前記複
数個の触媒体を覆う筐体とから燃焼室が構成され、前記
燃焼室内の流れ方向に対して前記触媒体を多段に配置し
、前記触媒体の下流に多数の連通孔を有する多孔体を少
なくとも1段配置し、前記各触媒体および多孔体間の燃
焼室外壁面を放熱構造としたことを特徴とする触媒燃焼
装置。
(4) A combustion chamber is constituted by a plurality of catalyst bodies having a large number of communicating holes and a casing that covers the plurality of catalyst bodies, and the catalyst bodies are arranged in multiple stages in the flow direction within the combustion chamber. A catalytic combustion device characterized in that at least one stage of a porous body having a large number of communicating holes is arranged downstream of the catalyst body, and an outer wall surface of the combustion chamber between each of the catalyst bodies and the porous body has a heat dissipation structure.
(5)多数の連通孔を有する複数個の触媒体と、前記複
数個の触媒体を覆う筺体とから燃焼室が構成され、前記
燃焼室内の流れ方向に対して前記触媒体を多段に配置し
、前記各触媒体間の燃焼室外壁面を放熱構造とし、燃料
と燃焼用空気とを混合した後に前記触媒体の最前部上流
より前記燃焼室へ供給し、燃料または燃焼用空気のうち
の少なくとも1つを前記各触媒体間より燃焼室へ供給す
るように構成したことを特徴とする触媒燃焼装置。
(5) A combustion chamber is constituted by a plurality of catalyst bodies having a large number of communicating holes and a housing that covers the plurality of catalyst bodies, and the catalyst bodies are arranged in multiple stages with respect to the flow direction within the combustion chamber. , the outer wall surface of the combustion chamber between each of the catalyst bodies has a heat radiation structure, and after mixing fuel and combustion air, the mixture is supplied to the combustion chamber from the frontmost upstream part of the catalyst body, and at least one of the fuel and the combustion air is A catalytic combustion device characterized in that the catalyst is configured to be supplied to the combustion chamber from between each of the catalyst bodies.
JP1201588A 1989-08-03 1989-08-03 Catalytic combustion apparatus Pending JPH0367906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1201588A JPH0367906A (en) 1989-08-03 1989-08-03 Catalytic combustion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1201588A JPH0367906A (en) 1989-08-03 1989-08-03 Catalytic combustion apparatus

Publications (1)

Publication Number Publication Date
JPH0367906A true JPH0367906A (en) 1991-03-22

Family

ID=16443546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1201588A Pending JPH0367906A (en) 1989-08-03 1989-08-03 Catalytic combustion apparatus

Country Status (1)

Country Link
JP (1) JPH0367906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055312A (en) * 1998-06-05 2000-02-22 Matsushita Electric Ind Co Ltd Catalyst combustion device and combustion control method of the same
KR100404253B1 (en) * 1999-03-16 2003-11-03 마쯔시다덴기산교 가부시키가이샤 Catalytic Combuation Apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956019A (en) * 1982-09-20 1984-03-31 Matsushita Electric Ind Co Ltd Catalyst combustion device
JPS6060411A (en) * 1983-09-12 1985-04-08 Matsushita Electric Ind Co Ltd Catalytic combustion apparatus
JPS61272509A (en) * 1985-05-25 1986-12-02 Babcock Hitachi Kk Catalytic burning apparatus
JPS643404A (en) * 1987-06-25 1989-01-09 Matsushita Electric Ind Co Ltd Burner
JPS6441702A (en) * 1987-08-05 1989-02-14 Matsushita Electric Ind Co Ltd Catalytic burner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956019A (en) * 1982-09-20 1984-03-31 Matsushita Electric Ind Co Ltd Catalyst combustion device
JPS6060411A (en) * 1983-09-12 1985-04-08 Matsushita Electric Ind Co Ltd Catalytic combustion apparatus
JPS61272509A (en) * 1985-05-25 1986-12-02 Babcock Hitachi Kk Catalytic burning apparatus
JPS643404A (en) * 1987-06-25 1989-01-09 Matsushita Electric Ind Co Ltd Burner
JPS6441702A (en) * 1987-08-05 1989-02-14 Matsushita Electric Ind Co Ltd Catalytic burner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055312A (en) * 1998-06-05 2000-02-22 Matsushita Electric Ind Co Ltd Catalyst combustion device and combustion control method of the same
KR100404253B1 (en) * 1999-03-16 2003-11-03 마쯔시다덴기산교 가부시키가이샤 Catalytic Combuation Apparatus

Similar Documents

Publication Publication Date Title
US4519770A (en) Firetube boiler heater system
EP0259758B1 (en) Method for controlling a catalytic combustor of a gas turbine
US3726633A (en) Low pollutant-high thermal efficiency burner
JP6318235B2 (en) Radiant burner
JPH06180109A (en) Exhaust heat recovering combustion apparatus
KR19990013605A (en) Combustion device
JPH06180110A (en) Exhaust heat recovering combustion apparatus
JPS60134117A (en) Process of preventing back fire in gas burner
JPH0367906A (en) Catalytic combustion apparatus
JPH05157211A (en) Catalyst combustion device
JPS60114616A (en) Ceramic honeycomb burner
JPS5885008A (en) Radiant tube
JPS61246512A (en) Burner
US20230220991A1 (en) Burner component and burner
JPS6260605B2 (en)
JPH01296003A (en) Tube burner
JPH0616263Y2 (en) Catalytic combustion device
JP3370839B2 (en) Radiant tube burner and atmosphere firing furnace using the same
JP2568534B2 (en) Burner
JPS59202310A (en) Catalytic burner
JPH0512568Y2 (en)
JP3447252B2 (en) Catalytic combustion device
JP2702027B2 (en) Surface burner
CN116592347A (en) Fuel cell anode tail gas burner and control method thereof
RU2493491C1 (en) Method to burn fuel in combustion chamber of gas turbine plant and device for its realisation