JPH0366106A - Thin-walled cylindrical rare earth-fe-b series bond magnet and manufacture thereof - Google Patents

Thin-walled cylindrical rare earth-fe-b series bond magnet and manufacture thereof

Info

Publication number
JPH0366106A
JPH0366106A JP1202513A JP20251389A JPH0366106A JP H0366106 A JPH0366106 A JP H0366106A JP 1202513 A JP1202513 A JP 1202513A JP 20251389 A JP20251389 A JP 20251389A JP H0366106 A JPH0366106 A JP H0366106A
Authority
JP
Japan
Prior art keywords
powder
resin
magnet
thin cylindrical
resin binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1202513A
Other languages
Japanese (ja)
Inventor
Hiroyuki Baba
馬場 洋之
Takuo Takeshita
武下 拓夫
Kunio Hanada
久仁夫 花田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1202513A priority Critical patent/JPH0366106A/en
Publication of JPH0366106A publication Critical patent/JPH0366106A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain a bond magnet for a motor which is superior in strength to withstand shocks and does not change size and shape very much by using a mixed resin powder of specific thermosetting and thermoplastic resin powders as a resin binder which is mixed with an R-Fe-B magnet powder. CONSTITUTION:When a mixed resin of thermosetting and thermoplastic resins is used as the rein binder of a thin-walled cylindrical R-Fe-B bond magnet, the thin-walled cylindrical R-Fe-B bond magnet 1 which is stable in size and shape and is superior in strength to withstand shocks is obtained. However, if content of the thermosetting resin to the thermoplastic resin is less than 2wt.%, a sufficient stable effect to size and shape is not obtained and on the other hand, if its content exceeds 20wt.%, it results in decrease in strength to withstand the shock and then, it is not preferable to obtain stability in size and shape. Consequently, it is preferable for thermoplastic resin of the resin binder for manufacturing R-Fe-B bond magnet having wall thickness of 3mm or less to contain 2-20wt.% thermosetting resin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、Yを含む希土類元素(以下、Rで示す)、
FeおよびBを主成分とするR −Fe−B系粉末と樹
脂バインダーとからなる肉厚:3II11以下の薄肉円
筒状R−Fe−B系ボンド磁石およびその製造法に関す
るものであり、上記薄肉円筒状R−Fe−B系ボンド磁
石は、小型モーターのローターなとの製造に用いられる
ものである。
[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to rare earth elements containing Y (hereinafter referred to as R),
The present invention relates to a thin cylindrical R-Fe-B bonded magnet with a wall thickness of 3II11 or less, which is made of an R-Fe-B powder containing Fe and B as main components and a resin binder, and a method for manufacturing the same, and relates to a method for producing the same. R-Fe-B type bonded magnets are used for manufacturing rotors of small motors.

〔従来の技術〕[Conventional technology]

一般に、薄肉円筒状R−Fe−B系ボンド磁石は、 (a)R−Fe−B系磁石粉末に所定量の熱硬化性樹脂
(例えば、エポキシ樹脂)を配合し混合して得られた混
合体を金型に充填し、圧縮成形することにより薄肉円筒
状に成形し、ついで硬化処理する方法(以下、圧縮成形
法という)、または、(b)R−Fe−B系磁石粉末を
発火防止のための表面処理を行なった後、所定量の熱可
塑性樹脂(例えば、ナイロン粉末、PBT粉末、PPS
粉末)に配合し溶融混練して得られたペレットを、上記
熱可塑性樹脂の軟化温度以上の温度にて薄肉円筒状に射
出成形する方法(以下、射出成形法という)、 により成形される。
In general, thin cylindrical R-Fe-B bonded magnets are produced by (a) a mixture obtained by blending and mixing a predetermined amount of thermosetting resin (e.g., epoxy resin) with R-Fe-B magnet powder; A method in which the body is filled into a mold, compression molded to form a thin cylindrical shape, and then hardened (hereinafter referred to as compression molding method), or (b) R-Fe-B magnet powder is prevented from igniting. After surface treatment for
(hereinafter referred to as injection molding method), the pellets obtained by melt-kneading the thermoplastic resin are injection molded into a thin cylindrical shape at a temperature equal to or higher than the softening temperature of the thermoplastic resin.

このようにして成形された薄肉円筒状RFe−B系ボン
ド磁石は、肉厚:3關以下の極めて薄い円筒形をしてお
り、第1図の断面図に示されるように、モーターの回転
軸のシャフト3とともに金型2に装入し、上記薄肉円筒
状R−Fe−B系ボンド磁石1と上記シャフト3との間
にポリアセタール樹脂4を射出成形して一体化し、第2
図に示されるような小型モーター用ローター6を製造し
ていた。
The thin-walled cylindrical RFe-B bonded magnet thus formed has an extremely thin cylindrical shape with a wall thickness of 3 mm or less, and as shown in the cross-sectional view of Fig. 1, the rotary shaft of the motor A polyacetal resin 4 is injection molded between the thin cylindrical bonded R-Fe-B magnet 1 and the shaft 3 to integrate them together, and a second
The company was manufacturing a rotor 6 for a small motor as shown in the figure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記圧縮成形法で作製された薄肉円筒状R−
Fe−B系ボンド磁石は、熱硬化性樹脂をバインダーと
しているために強度および伸びが小さく、そのため、運
搬中に破損しゃすく、また上記圧縮成形法で作製された
薄肉円筒状RFe−B系ボンド磁石1は収縮、たわみな
どがさけられない。かかる薄肉円筒状R−Fe−B系ボ
ンド磁石1を第1図に示されるように、金型2に装入し
、上記薄肉円筒状R−Fe−B系ボンド磁石1の外径と
金型2の内径との間に間隙5が生じた状態のままでポリ
アセタール樹脂4を射出成形すると、射出成形圧および
射出成形衝撃などにより、上記薄肉円筒状R−Fe−B
系ボンド磁石の側壁に亀裂が発生するという問題点があ
った。
However, the thin cylindrical R-
Since Fe-B bonded magnets use thermosetting resin as a binder, they have low strength and elongation, and are therefore prone to breakage during transportation. The magnet 1 cannot avoid shrinkage or deflection. The thin cylindrical bonded R-Fe-B magnet 1 is placed in a mold 2 as shown in FIG. 1, and the outer diameter of the thin cylindrical bonded R-Fe-B magnet 1 and the mold are When the polyacetal resin 4 is injection molded with a gap 5 formed between the inner diameter of the R-Fe-B and the inner diameter of the R-Fe-B, the thin cylindrical R-Fe-B
There was a problem in that cracks occurred on the side walls of the bonded magnet.

一方、上記射出成形法で作製された薄肉円筒状R−Fe
−B系ボンド磁石は、射出成形できるように熱可塑性樹
脂を多量に添加するために十分な磁気特性が得られず、
さらに、上記射出成形法で作製された薄肉円筒状R−F
e−B系ボンド磁石を用いて製造されたローターは、モ
ーターの温度上昇により変形するなどの問題点があった
On the other hand, the thin cylindrical R-Fe produced by the above injection molding method
- B series bonded magnets do not have sufficient magnetic properties because they contain a large amount of thermoplastic resin so that they can be injection molded.
Furthermore, a thin cylindrical R-F manufactured by the above injection molding method
Rotors manufactured using e-B type bonded magnets have had problems such as deformation due to a rise in the temperature of the motor.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、かかる問題点を解決すべく研究
を行った結果、 R−Fe−B系磁石粉末に混合する樹脂バインダーとし
て、熱硬化性樹脂粉末と熱可塑性樹脂粉末の混合樹脂粉
末を用いることにより上記問題点を解決することができ
るという知見を得たのである。
Therefore, as a result of research to solve this problem, the present inventors developed a mixed resin powder of thermosetting resin powder and thermoplastic resin powder as a resin binder to be mixed with R-Fe-B magnet powder. We have found that the above problems can be solved by using .

この発明は、かかる知見にもとづいてなされたものであ
って、 (1)R−Fe−B系磁石粉末と樹脂バインダーからな
る薄肉円筒状R−Fe−B系ボンド磁石において、上記
樹脂バインダーは、 熱硬化性樹脂=2〜20重量%、 熱可塑性樹脂:残部、 からなる薄肉円筒状R−Fe−B系ボンド磁石、および
、 (2)R−Fe−B系磁石粉末に樹脂バインダー粉末を
配合し混合して得られた混合粉末を薄肉円筒形に圧縮成
形し、ついで樹脂硬化処理を施して薄肉円筒状R−Fe
−B系ボンド磁石を製造する方法において、 樹脂バインダー粉末として、 熱硬化性樹脂粉末:2〜20重足%、 熱可塑性樹脂粉末:残部、 からなる混合樹脂粉末を用いる薄肉円筒状RFe−B系
ボンド磁石の製造法、 に特徴を有するものである。
The present invention has been made based on this knowledge, and includes: (1) A thin cylindrical bonded R-Fe-B magnet made of R-Fe-B magnet powder and a resin binder, wherein the resin binder is A thin cylindrical bonded R-Fe-B magnet consisting of thermosetting resin = 2 to 20% by weight, balance thermoplastic resin, and (2) blending resin binder powder with R-Fe-B magnet powder. The mixed powder obtained by mixing is compression molded into a thin cylindrical shape, and then subjected to resin curing treatment to form a thin cylindrical R-Fe.
- A method for manufacturing a B-based bonded magnet, using a thin cylindrical RFe-B based mixed resin powder consisting of 2 to 20% thermosetting resin powder and the remainder thermoplastic resin powder as the resin binder powder. This is a method for manufacturing a bonded magnet, which is characterized by the following.

一般に、熱硬化性樹脂には圧縮成形体の寸法および形状
の安定化作用があり、一方、熱可塑性樹脂には衝撃強度
および成形性の向上作用があるために、上記薄肉円筒状
R−Fe−B系ボンド磁石の樹脂バインダーとして、熱
硬化性樹脂と熱可塑性樹脂の混合樹脂を用いると、寸法
および形状が安定しかつ耐衝撃強度のすぐれた薄肉円筒
状RFe−B系ボンド磁石を得ることができる。しかし
ながら、熱硬化性樹脂の熱可塑性樹脂に対する含有量が
2重量%未満では寸法および形状に対する十分な安定効
果が得られず、一方、20重量%を越えて含有すると衝
撃強度が低下するので好ましくない。
In general, thermosetting resins have the effect of stabilizing the dimensions and shape of compression molded products, while thermoplastic resins have the effect of improving impact strength and moldability. When a mixed resin of a thermosetting resin and a thermoplastic resin is used as the resin binder for the B-based bonded magnet, it is possible to obtain a thin-walled cylindrical RFe-B-based bonded magnet that is stable in size and shape and has excellent impact resistance. can. However, if the content of the thermosetting resin relative to the thermoplastic resin is less than 2% by weight, a sufficient stabilizing effect on dimensions and shape cannot be obtained, while if the content exceeds 20% by weight, the impact strength will decrease, which is not preferable. .

したがって、肉厚:3祁以下の薄肉円筒状RFe−B系
ボンド磁石製造用樹脂バインダーの熱可塑性樹脂に含ま
れる熱硬化性樹脂の含有量は2〜20重量%に定めた。
Therefore, the content of the thermosetting resin contained in the thermoplastic resin of the resin binder for manufacturing a thin cylindrical RFe-B bonded magnet having a wall thickness of 3 mm or less was determined to be 2 to 20% by weight.

この発明の薄肉円筒状R−Fe−B系ボンド磁石を製造
するための樹脂バインダー粉末として熱硬化性樹脂粉末
と熱可塑性樹脂粉末の混合樹脂粉末を用いるが、上記熱
硬化性樹脂粉末の硬化温度は熱可塑性樹脂粉末の融点よ
りも低いことが好ましい。R−Fe−B系磁石粉末と樹
脂バインダー粉末との混合粉末を圧縮成形して得られた
圧縮成形体を樹脂硬化処理するに当って、まず樹脂バイ
ンダー中の熱硬化性樹脂粉末を硬化させて寸法および形
状を安定化させ、ついで上記熱可塑性樹脂粉末の溶融に
よりR−Fe−B系磁石粉末との結合を強化させるため
である。上記熱可塑性樹脂粉末を溶融させてR−Fe−
B系磁石粉末との結合を一層強化させるためには、上記
R−Fe−B系磁石粉末にシランカップリング処理を施
すとよい。
A mixed resin powder of a thermosetting resin powder and a thermoplastic resin powder is used as the resin binder powder for producing the thin cylindrical bonded R-Fe-B magnet of the present invention, and the curing temperature of the thermosetting resin powder is is preferably lower than the melting point of the thermoplastic resin powder. When performing resin curing treatment on a compression molded body obtained by compression molding a mixed powder of R-Fe-B magnet powder and resin binder powder, first harden the thermosetting resin powder in the resin binder. This is to stabilize the size and shape and then strengthen the bond with the R-Fe-B magnet powder by melting the thermoplastic resin powder. The above thermoplastic resin powder is melted to form R-Fe-
In order to further strengthen the bond with the B-based magnet powder, the R-Fe-B-based magnet powder may be subjected to a silane coupling treatment.

この発明で使用する樹脂バインダーの熱可塑性樹脂は、
具体的には、ナイロン、PPS、PBTなどがあり、こ
れら熱可塑性樹脂の溶融温度よりも低い硬化温度を右す
る熱硬化性樹脂としては、具体的には、エポキシ樹脂、
フェノール樹脂、アクリル樹脂などがある。
The thermoplastic resin of the resin binder used in this invention is
Specifically, there are nylon, PPS, PBT, etc., and as thermosetting resins whose curing temperature is lower than the melting temperature of these thermoplastic resins, specifically, epoxy resins,
There are phenolic resins, acrylic resins, etc.

上記混合樹脂からなる樹脂バインダー粉末とR−Fe−
B系磁石粉末を用いて圧縮成形し、薄肉円筒状R−Fe
−B系ボンド磁石を製造するには、 樹脂バインダー粉末:1.0〜3,0重量%、R−Fe
−B系磁石粉末:残部、 となるように配合し混合して得られた混合粉末を用いる
ことが好ましい。R−Fe−B系磁石粉末に対する樹脂
バインダー粉末の配合量が1.0重量%未満では圧縮成
形して得られた圧縮成形体の十分な強度が得られず、一
方、3.0重量%を越えて配合するとR−Fe−B系磁
石粉末の配合量が相対的に低くなるために十分な磁気特
性が得られない。したがって、樹脂バインダー粉末の配
合量は1.0〜3.0重量%と定めた。
Resin binder powder consisting of the above mixed resin and R-Fe-
Compression molded using B-based magnet powder to create thin cylindrical R-Fe
- To produce a B-based bonded magnet, resin binder powder: 1.0 to 3.0% by weight, R-Fe
-B-based magnet powder: The balance is preferably a mixed powder obtained by blending and mixing as follows. If the blending amount of the resin binder powder with respect to the R-Fe-B magnet powder is less than 1.0% by weight, the compression molded product obtained by compression molding will not have sufficient strength; If the amount is exceeded, the amount of R-Fe-B magnet powder will be relatively low, and sufficient magnetic properties will not be obtained. Therefore, the blending amount of the resin binder powder was determined to be 1.0 to 3.0% by weight.

〔実 施 例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明す
る。
Next, the present invention will be specifically explained based on examples.

実施例1〜7および比較例1〜4 シランカップリング処理した粒径:200部以下のNd
−Fe−B系超急冷磁石粉末、 粒径:60uXI以下のナイロン粉末、粒径:80部以
下のエポキシ樹脂粉末、を用意した。
Examples 1 to 7 and Comparative Examples 1 to 4 Silane coupling treated particle size: 200 parts or less Nd
-Fe-B-based ultra-quenched magnet powder, nylon powder with a particle size of 60 uXI or less, and epoxy resin powder with a particle size of 80 parts or less were prepared.

上記ナイロン粉末とエポキシ樹脂粉末を第1表の「樹脂
バインダー粉末の組成(重量%)」の欄に示される組成
となるように配合して樹脂バインダー粉末を製造し、こ
のようにして製造された樹脂バインダー粉末とNtl 
Fe−B系超急冷磁石粉末を第1表の「原料粉末の配合
組成(重量%)」の欄に示される組成となるように配合
し、■ブレンダーで1時間撹拌混合した。
A resin binder powder was produced by blending the above nylon powder and epoxy resin powder so as to have the composition shown in the column "Composition of resin binder powder (wt%)" in Table 1. Resin binder powder and Ntl
Ultra-quenched Fe-B magnet powder was blended to have the composition shown in the column of "Blending composition of raw material powder (wt%)" in Table 1, and stirred and mixed in a blender for 1 hour.

この混合粉末を圧カニ6ton/c−でプレス成形0 外径728mm% 内径: 1Bm鴨、 高  さ  :8mm% の寸法を有する円筒状圧縮成形体を製造し、ついで上記
円筒状圧縮成形体を温度:180℃、1時間保持の条件
で樹脂硬化処理を施し、薄肉円筒状Nd−Fo−B系ボ
ンド磁石を製造した。
This mixed powder was press-molded with a pressure crab of 6 ton/c- to produce a cylindrical compression-molded body having the following dimensions: outer diameter: 728mm%, inner diameter: 1Bm, height: 8mm%, and then the cylindrical compression-molded body was heated to a temperature of : A thin cylindrical Nd-Fo-B bonded magnet was produced by performing a resin curing treatment under the conditions of holding at 180°C for 1 hour.

このようにして得られた薄肉円筒状NdFe−B系ボン
ド磁石の磁気特性を測定して第1表に示したのち、耐衝
撃強度を調べるために重さ:7gの重りを上記薄肉円筒
状Nd−Fe−B系ボンド磁石の上に落下させて破壊に
至った高さを測定し、ついで寸法および形状の安定性を
調べるために線膨張係数を測定し、これらの測定結果を
機械的特性として第1表に示した。
After measuring the magnetic properties of the thin-walled cylindrical NdFe-B bonded magnet thus obtained and shown in Table 1, a weight of 7 g was placed on the thin-walled cylindrical NdFe-B bonded magnet. -Measure the height at which it breaks by dropping it onto a Fe-B bonded magnet, then measure the linear expansion coefficient to check the stability of dimensions and shape, and use these measurement results as mechanical properties. It is shown in Table 1.

従来例 1 チタネートカップリング処理を施した粒径:20011
n以下のNd−Fe−B系超急冷磁石粉末と10重量%
の12−ナイロン粉末を溶融混練してペレットを作製し
、得られたペレットを用い、射出成形機によって外径:
 23mm5内径=18關、高さ=8mmの寸法を有す
る薄肉円筒状Nd−Fe−B系ボンド磁石を製造し、実
施例1〜7および比較例1〜4と同様の測定を行ない、
それらの結果を第1表に示した。
Conventional example 1 Particle size subjected to titanate coupling treatment: 20011
n or less Nd-Fe-B ultra-quenched magnet powder and 10% by weight
12-Nylon powder is melt-kneaded to produce pellets, and the resulting pellets are molded into an injection molding machine with an outer diameter of:
A thin cylindrical Nd-Fe-B bonded magnet having dimensions of 23 mm, inner diameter = 18 mm, and height = 8 mm was manufactured, and the same measurements as in Examples 1 to 7 and Comparative Examples 1 to 4 were performed,
The results are shown in Table 1.

従来例 2 液状エポキシ樹脂:2車量%と実施例1〜7および比較
例1〜4で用いたNd−Fe−B系超急冷磁石粉末とを
混合して得られた原料を用い、上記実施例1〜7および
比較例1〜4と同様の方法で同一寸法の薄肉円筒状Nd
−Fe−B系ボンド磁石を製造し、同様の測定を行ない
、それらの結果を第1表に示した。
Conventional Example 2 Using a raw material obtained by mixing 2% liquid epoxy resin and the Nd-Fe-B super-quenched magnet powder used in Examples 1 to 7 and Comparative Examples 1 to 4, the above implementation was carried out. Thin cylindrical Nd of the same size was prepared in the same manner as Examples 1 to 7 and Comparative Examples 1 to 4.
-Fe-B bonded magnets were manufactured and similar measurements were conducted, and the results are shown in Table 1.

第1表の結果から、この発明の実施例1〜7で得られた
薄肉円筒状Nd−Fe−B系ボンド磁石は、機械的特性
および磁気的特性が共にすぐれているに対し、比較例1
〜4および従来例1〜2で得られた薄肉円筒状Nd−F
e−B系ボンド磁石は、機械的特性または磁気的特性の
うち少くとも1 2 いずれかは劣化していることがわかる。
From the results in Table 1, it can be seen that the thin cylindrical Nd-Fe-B bonded magnets obtained in Examples 1 to 7 of the present invention have excellent mechanical properties and magnetic properties, whereas the comparative example 1
~4 and the thin cylindrical Nd-F obtained in Conventional Examples 1 and 2
It can be seen that the e-B bonded magnet has deteriorated in at least 1 2 of its mechanical properties and magnetic properties.

〔発明の効果〕〔Effect of the invention〕

この発明により得られた薄肉円筒状R−Fe−B系ボン
ド磁石は、耐衝撃強度が高く、寸法および形状変化が少
いために、シャフトと射出成形により一体化してモータ
ー用のローターを製造しても側壁に亀裂が発生すること
がなく、さらに運搬中に破損または変形することがない
The thin-walled cylindrical bonded R-Fe-B magnet obtained by this invention has high impact resistance and little change in size and shape, so it can be integrated with the shaft by injection molding to manufacture rotors for motors. The side walls will not crack, and will not be damaged or deformed during transportation.

したがって、低コストで歩留りよくモーターのローター
を製造することができ、産業上すぐれた効果をもたらす
ものである。
Therefore, a motor rotor can be manufactured at low cost and with high yield, resulting in excellent industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、金型にシャフトと薄肉円筒状R−Fe−B系
ボンド磁石をセットした状態を示す断面図、 第2図は、モーター用ローターの断面図。 1:薄肉円筒状R−Fe−B系ボンド磁石、2:金 型
、       3:シャフト、4:ポリアセクール樹
脂、 4 第 図 5:間 隙、 6:ローター 出 願人: 三菱金属株式会社 代 理人:富 外1名 5 第 図
FIG. 1 is a sectional view showing a shaft and a thin cylindrical bonded R-Fe-B magnet set in a mold, and FIG. 2 is a sectional view of a motor rotor. 1: Thin cylindrical R-Fe-B bonded magnet, 2: Mold, 3: Shaft, 4: Polyacecool resin, 4 Figure 5: Gap, 6: Rotor Applicant: Mitsubishi Metals Co., Ltd. Agent: Tomigai 1 person 5 Diagram

Claims (4)

【特許請求の範囲】[Claims] (1)Yを含む希土類元素(以下、Rで示す)、Feお
よびBを主成分とする磁石粉末(以下、R−Fe−B系
磁石粉末という)と樹脂バインダーからなる薄肉円筒状
R−Fe−B系ボンド磁石において、 上記樹脂バインダーは、 熱硬化性樹脂:2〜20重量%、 熱可塑性樹脂:残部、 からなる混合樹脂であることを特徴とする薄肉円筒状希
土類−Fe−B系ボンド磁石。
(1) Thin cylindrical R-Fe made of a rare earth element containing Y (hereinafter referred to as R), magnetic powder whose main components are Fe and B (hereinafter referred to as R-Fe-B magnet powder), and a resin binder. - In the B-based bonded magnet, the resin binder is a thin cylindrical rare earth-Fe-B bond characterized in that the resin binder is a mixed resin consisting of 2 to 20% by weight of a thermosetting resin and the balance of a thermoplastic resin. magnet.
(2)上記薄肉円筒状R−Fe−B系ボンド磁石におけ
るR−Fe−B系磁石粉末と樹脂バインダーとの割合は
、 樹脂バインダー:1.0〜3.0重量%、 R−Fe−B系磁石粉末:残部、 からなることを特徴とする請求項1記載の薄肉円筒状希
土類−Fe−B系ボンド磁石。
(2) The ratio of R-Fe-B magnet powder and resin binder in the thin cylindrical bonded R-Fe-B magnet is as follows: Resin binder: 1.0 to 3.0% by weight, R-Fe-B The thin cylindrical rare earth-Fe-B-based bonded magnet according to claim 1, characterized in that the remainder consists of: system magnet powder: the balance.
(3)R−Fe−B系磁石粉末に樹脂バインダー粉末を
配合し混合して得られた混合粉末を、薄肉円筒形に圧縮
成形し、ついで樹脂硬化処理を施して薄肉円筒状R−F
e−B系ボンド磁石を製造する方法において、 上記樹脂バインダー粉末として 熱硬化性樹脂粉末:2〜20重量%、 熱可塑性樹脂粉末:残部、 からなる混合樹脂粉末を用いることを特徴とする薄肉円
筒状希土類−Fe−B系ボンド磁石の製造法。
(3) The mixed powder obtained by blending and mixing resin binder powder with R-Fe-B magnet powder is compression molded into a thin cylindrical shape, and then subjected to resin hardening treatment to form a thin cylindrical R-F
A method for manufacturing an e-B bonded magnet, characterized in that the resin binder powder is a mixed resin powder consisting of 2 to 20% by weight of a thermosetting resin powder and the balance of a thermoplastic resin powder. A method for producing a rare earth-Fe-B bonded magnet.
(4)上記R−Fe−B系磁石粉末と樹脂バインダー粉
末からなる混合粉末の配合組成は、 樹脂バインダー粉末:1.0〜3.0重量%、R−Fe
−B系磁石粉末:残部、 からなることを特徴とする請求項3記載の薄肉円筒状希
土類−Fe−B系ボンド磁石の製造法。
(4) The composition of the mixed powder consisting of the above R-Fe-B magnet powder and resin binder powder is as follows: Resin binder powder: 1.0 to 3.0% by weight, R-Fe
4. The method for producing a thin cylindrical rare earth-Fe-B bonded magnet according to claim 3, characterized in that the remainder comprises -B-based magnet powder.
JP1202513A 1989-08-04 1989-08-04 Thin-walled cylindrical rare earth-fe-b series bond magnet and manufacture thereof Pending JPH0366106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1202513A JPH0366106A (en) 1989-08-04 1989-08-04 Thin-walled cylindrical rare earth-fe-b series bond magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1202513A JPH0366106A (en) 1989-08-04 1989-08-04 Thin-walled cylindrical rare earth-fe-b series bond magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0366106A true JPH0366106A (en) 1991-03-20

Family

ID=16458733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1202513A Pending JPH0366106A (en) 1989-08-04 1989-08-04 Thin-walled cylindrical rare earth-fe-b series bond magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0366106A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411702A (en) * 1990-04-28 1992-01-16 Yamauchi Corp Manufacture of resin magnet
JPH07502830A (en) * 1992-11-20 1995-03-23 ウエスチングハウス・エレクトリック・コーポレイション Real-time corrosion monitoring device and method in high temperature systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411702A (en) * 1990-04-28 1992-01-16 Yamauchi Corp Manufacture of resin magnet
JPH07502830A (en) * 1992-11-20 1995-03-23 ウエスチングハウス・エレクトリック・コーポレイション Real-time corrosion monitoring device and method in high temperature systems

Similar Documents

Publication Publication Date Title
EP0540504B1 (en) Method for making a resin bonded magnet article
JP7502137B2 (en) Manufacturing method of bonded magnets and compounds for bonded magnets
WO2021014837A1 (en) Additive for bonded magnet and method for manufacturing compound for bonded magnet
CN86102755A (en) Composition of soft-magnetic material and manufacturing process thereof
JPH0366106A (en) Thin-walled cylindrical rare earth-fe-b series bond magnet and manufacture thereof
JP6780693B2 (en) Manufacturing method of bond magnets and compounds for bond magnets
JPH04338613A (en) Magnetic shielding resin
JPS60194509A (en) Manufacture of resin-bonded type magnet
US20050092131A1 (en) Magnetostriction device
JP3120623B2 (en) Method for manufacturing resin-bound rare earth magnet
JPH0450725B2 (en)
JPH03129802A (en) Resin bonded rare-earth magnet
JPH06151128A (en) Blended substance for bond magnet
JP2003133121A (en) Bond soft magnetic material having excellent mechanical strength at room temperature and high temperature, and its manufacturing method
JP3121875B2 (en) Plastic magnet composition
JPH01310522A (en) Manufacture of resin-bonded type permanent magnet
JP3941134B2 (en) Raw material powder for manufacturing bond type permanent magnet and manufacturing method
JPH05129119A (en) Manufacture of granulated powder of rare earth magnet and resin bond magnet
JPS62171101A (en) Composite magnet material
JP4301221B2 (en) Rare earth bonded magnet manufacturing method and rare earth bonded magnet
JPH0455521B2 (en)
JPS62264602A (en) Ferromagnetic resin composite
JPH01102901A (en) Surface treatment of magnetic powder for nd-fe-b-based anisotropic bonded magnet
JPS59142252A (en) Resin composition
JPH03253002A (en) Manufacture of resin-coupled magnet