JPH0365225A - Hydrophilic, porous membrane and its manufacturing method - Google Patents

Hydrophilic, porous membrane and its manufacturing method

Info

Publication number
JPH0365225A
JPH0365225A JP1199853A JP19985389A JPH0365225A JP H0365225 A JPH0365225 A JP H0365225A JP 1199853 A JP1199853 A JP 1199853A JP 19985389 A JP19985389 A JP 19985389A JP H0365225 A JPH0365225 A JP H0365225A
Authority
JP
Japan
Prior art keywords
porous membrane
meth
acrylate
water
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1199853A
Other languages
Japanese (ja)
Inventor
Kunihiro Aoki
青木 邦廣
Kazutami Mitani
和民 三谷
Shiruyoshi Matsumoto
松本 鶴義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP1199853A priority Critical patent/JPH0365225A/en
Publication of JPH0365225A publication Critical patent/JPH0365225A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a membrane having a hydrophilic polymer firmly retained thereon by retaining the polymer consisting mainly of hydroxyethyl(meth) acrylate, etc., on the porous surface of a porous polyolefin membrane. CONSTITUTION:A solution is prepared by dissolving the polymer consisting mainly of hydroxyethyl(meth)acrylate and hydroxypropyl(meth)acrylate in an org. solvent such as methanol and acetone or aq. solvent. Hydrophilic, bridgeable monomers capable of copolymerization or polymerization initiator may be added thereto. A porous polyolefin membrane is immersed in this solution to retain these monomers on at least a part of its porous surface. It is then polymerized by thermal polymerization or photopolymerization method. Finally, unreactive monomers or liberated polymers are removed with an org. solvent, etc. This method provides the membrane having a mechanical strength and the hydrophilic polymers firmly retained thereon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水処理や血液浄化等の分野で使用される多孔質
膜及びその製造方法に関し、更に詳しくは細孔表面が親
水性の重合体で被覆されてなるポリオレフィン系多孔質
膜及びその製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a porous membrane used in fields such as water treatment and blood purification, and a method for producing the same. The present invention relates to a polyolefin porous membrane coated with polyolefin and a method for producing the same.

〔従来の技術〕[Conventional technology]

ポリオレフィン多孔質膜は機械的性質や耐薬品性が優れ
ているためにその適用分野が急速に拡大している。しか
し、ポリオレフィン多孔質膜は疎水性であるのでそのt
までは水を透過させることが難しく、水を始めとする親
水性液体を透過させるためには親水化処理が必要である
Polyolefin porous membranes have excellent mechanical properties and chemical resistance, so their application fields are rapidly expanding. However, since the polyolefin porous membrane is hydrophobic, its t
Until then, it is difficult to allow water to pass through, and hydrophilic treatment is required to allow water and other hydrophilic liquids to pass through.

ポリオレフィンの表面改質による親水化法については種
凌の方法が検討されているが、表面形状が複雑な多孔質
膜の親水化に対して表面が滑らかなフィμム状物等の親
水化法を単純に適用することは出来ない。
Regarding the method of making polyolefin hydrophilic by surface modification, the method of Tanei has been studied, but the method of making hydrophilic material such as a film-like material with a smooth surface is more suitable for making porous membranes with a complex surface shape hydrophilic. cannot be simply applied.

ポリオレフィン多孔質膜の親水化法としては、水との相
溶性が良好なアμコーμやゲトン等の有機溶剤によって
ポリオレフィン多孔質膜の微細孔部分を含めた表面全体
を湿潤処理した後、該有機溶剤を水で置換する有機溶剤
湿潤・水置換法、ポリエチレングリコールや界面活性剤
等の親水性物質を多孔質膜の表面に吸着させて多孔質膜
に親水性を付与する物理的吸着法(特開昭54−155
872号、特開昭59−24752号)、あるいは親水
性単量体を多孔質フィμムの表面に保持させた状態で放
射線を照射する方法(特開昭56−38335号)や疎
水性樹脂多孔性構造物に水溶性高分子や界面活性剤を含
浸させた状態でプラズマ処理する方法(特開昭56−1
57437号)等の化学的表面変性法が知られている。
The method for making a porous polyolefin membrane hydrophilic is to wet the entire surface of the porous polyolefin membrane, including its micropores, with an organic solvent such as Akko μ or Getone, which has good compatibility with water, and then The organic solvent wetting/water displacement method involves replacing the organic solvent with water, and the physical adsorption method involves adsorbing hydrophilic substances such as polyethylene glycol and surfactants onto the surface of the porous membrane to impart hydrophilic properties to the porous membrane. Japanese Unexamined Patent Publication No. 54-155
872, JP-A No. 59-24752), or a method of irradiating a hydrophilic monomer with radiation on the surface of a porous film (JP-A-56-38335), or a method using hydrophobic resins. A method of plasma treatment of a porous structure impregnated with a water-soluble polymer or surfactant (Japanese Patent Laid-Open No. 56-1
Chemical surface modification methods such as No. 57437) are known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、有機溶剤湿潤・水置換法では保存中や使用中に
一旦細孔内の水が抜けるとその部分は疎水性に戻シ水を
透過できなくなるので、多孔質膜の周囲に常時水を充た
してかくことが必要であシ、取り抜いが煩雑である。物
理的吸着法は操作は簡単であるが、長時間に亘って使用
しているうちに該親水性物質が脱離するので必ずしも十
分な親水化法であるとは言えない。また従来の化学的表
面変性法では放射線を照射する方法及びプラズマ処理す
る方法のいずれの場合も、膜厚方向の均一な親水化が難
しく、膜が厚い場合や膜が中空糸状である場合に膜厚方
向の全体に亘ってほぼ均一に親水化処理しようとすると
多孔質膜基質の機械的強度の低下が避けられない点等が
問題であった。
However, in the organic solvent wetting/water displacement method, once the water in the pores escapes during storage or use, the area returns to hydrophobicity and becomes unable to pass through, so the area around the porous membrane must be constantly filled with water. It is necessary to remove it, and removing it is complicated. Although the physical adsorption method is easy to operate, it cannot necessarily be said to be a sufficient hydrophilic method because the hydrophilic substance is desorbed during long-term use. In addition, with conventional chemical surface modification methods, both irradiation with radiation and plasma treatment, it is difficult to make the film uniformly hydrophilic in the thickness direction. When attempting to perform a hydrophilic treatment almost uniformly over the entire thickness direction, a problem arises in that the mechanical strength of the porous membrane substrate inevitably decreases.

本発明の目的は、上記従来技術の問題点を解消し、ポリ
オレフィン多孔質膜の細孔表面上に親水性の重合体が強
固に保持されてなる多孔質膜及びその製造方法を提供す
ることにある。
An object of the present invention is to solve the problems of the above-mentioned conventional techniques and to provide a porous membrane in which a hydrophilic polymer is firmly held on the pore surface of a polyolefin porous membrane, and a method for producing the same. be.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の要旨は、ヒドロキシエチfi/(メタ)アクリ
レート又はヒドロキVプロピ/%/(メタ)アク9V−
トを主成分とする重合体(以下単に「重合体」とい5)
をポリオレフィン多孔質膜の少なくとも一部の細孔表面
上に保持させてなる親水化多孔質膜にあう、更に、ヒド
ロキシエチ/I/(メタ)アクリレート又はヒドロキシ
デσビlv(メタ)アクリレートと水溶性の架橋性モノ
マーをポリオレフィン多孔質膜の少なくとも一部の細孔
表面上に保持させた状態で重合させることを特徴とする
親水化多孔質膜の製造方法にある。
The gist of the present invention is that hydroxyethyl fi/(meth)acrylate or hydroxy V propy/%/(meth)ac 9V-
(hereinafter simply referred to as "polymer" 5)
The polyolefin porous membrane has a hydrophilized porous membrane which is made to hold on the surface of at least some pores, and further includes a water-soluble hydroxyethyl/I/(meth)acrylate or hydroxydevinylv(meth)acrylate. The present invention provides a method for producing a hydrophilized porous membrane, which comprises polymerizing a polyolefin porous membrane while retaining a crosslinking monomer on at least some of the pore surfaces of the porous polyolefin membrane.

本発明のポリオレフィン多孔質膜に用いられるポリオレ
フィン素材としてはエチレン、プロピレン、4−メチ、
1%’−1−ペンテン、3−メチμm1−ブテン等の群
から選ばれる重合体または共重合体あるいはこれらのフ
ッ素化物等を挙げることができる。該多孔質膜としては
中空糸膜、平膜、管状膜等の任意の形態のものを用いる
ことができ、また用途に応じて種涜の細孔径のものを使
用することができるが、好ましい例として、膜厚がかよ
そ20〜200μm程度、空孔率がかよそ20〜904
程度で細孔径が1101〜5μm程度のものを挙げるこ
とができる。
Polyolefin materials used in the polyolefin porous membrane of the present invention include ethylene, propylene, 4-methylene,
Examples include polymers or copolymers selected from the group such as 1%'-1-pentene and 3-methyum-1-butene, and fluorinated products thereof. The porous membrane can be in any form, such as a hollow fiber membrane, flat membrane, or tubular membrane, and can have a variety of pore diameters depending on the application, but preferred examples include: The film thickness is approximately 20 to 200 μm, and the porosity is approximately 20 to 904 μm.
Examples include those having a pore diameter of approximately 1101 to 5 μm.

本発明の多孔質膜にかいて重合体が保持されるポリオレ
フィン多孔質膜の少なくとも一部の細孔表面とは、細孔
表面の一部あるいは全部をいう。
The pore surface of at least a portion of the polyolefin porous membrane in which the polymer is retained in the porous membrane of the present invention refers to a portion or all of the pore surface.

即ち、通常使用される膜間差圧によって多孔質膜の細孔
部分を水が通過して、使用に支障が危い程度の透過流量
を得るのに十分な程度の細孔表面に重合体が保持されて
いればよく、必ずしも細孔表面の全部が該重合体で被覆
されている必要はない。また多孔質膜の外表面には該重
合体が保持されていてもいなくても良い。
In other words, water passes through the pores of the porous membrane due to the normally used transmembrane pressure, and the polymer is formed on the pore surface to a sufficient extent to obtain a permeation flow rate that is dangerous to use. It is not necessary that the entire surface of the pores is necessarily coated with the polymer as long as it is retained. Further, the polymer may or may not be retained on the outer surface of the porous membrane.

保持させてなるとは保存中や使用中に容易に脱離し々い
程度に該重合体が該細孔表面に強固に結合ないし密着さ
れていることをいい、該重合体が該細孔表面に化学結合
していてもよく、筐た、該重合体が微細孔部分に密着し
てアンカー効果によって付着していてもよく、化学結合
やアンカー効果による付着が混在していてもよい。
Retained means that the polymer is strongly bonded or adhered to the pore surface to the extent that it is easily detached during storage or use, and the polymer is chemically bonded to the pore surface. The polymer may be bonded, the polymer may be attached to the micropores by an anchor effect, or the polymer may be attached by a chemical bond or an anchor effect.

本発明にかいては、ポリオレフィン多孔質膜の細孔表面
上にヒドロキシプロピv(メタ)アクリレート又はヒド
ロキシプロピ/I/(メタ)アクリレートを主成分とす
る重合体を保持させるが、これは他の重合体と比較して
該重合体が、(1)ポリオレフィンに対して強固に密着
できること、(2)ポリオレフィン多孔質膜の細孔表面
のほぼ全体に亘ってほぼ均一に保持できること、(3)
適度々親水性を有していること、及び(4)実質的に水
不溶性であることによる。
In the present invention, a polymer containing hydroxypropyv(meth)acrylate or hydroxypropy/I/(meth)acrylate as a main component is retained on the pore surface of a polyolefin porous membrane, but this is a polymer mainly composed of hydroxypropy/I/(meth)acrylate. Compared to polymers, the polymer (1) can be firmly adhered to polyolefin, (2) can be held almost uniformly over almost the entire pore surface of the polyolefin porous membrane, and (3)
This is because it has moderate hydrophilicity and (4) is substantially water-insoluble.

ヒドロキシエチル(メタ)アクリレートを主成分とする
重合体とは、ヒドロキシェチfi/(メタ)アクリレー
ト単独重合体及びヒドロキシェチ/l/(メタ)アクリ
レートを50重量鳴以上含有する共重合体をいい、共重
合体は架橋構造を有していてもよい。
A polymer containing hydroxyethyl (meth)acrylate as a main component refers to a hydroxyethyl fi/(meth)acrylate homopolymer and a copolymer containing hydroxyethyl/l/(meth)acrylate by weight or more of 50% by weight or more. The combination may have a crosslinked structure.

又、ヒドロキシプロピ/I/(メタ)アクリレートを主
成分とする重合体とは、ヒドロキシプロピ/I/(メタ
)アクリレート単独重合体及びヒドロキシプロピ/l/
(メタ)アクリレートを50重量優以上含有する共重合
体をいい、共重合体は架橋構造を有していてもよい。
In addition, the polymer whose main component is hydroxypropy/I/(meth)acrylate refers to hydroxypropy/I/(meth)acrylate homopolymer and hydroxypropy/I/(meth)acrylate homopolymer and hydroxypropy/I/(meth)acrylate homopolymer.
It refers to a copolymer containing at least 50% (meth)acrylate by weight, and the copolymer may have a crosslinked structure.

共重合体を生成する共重合性モノマーとしては、ヒドロ
キシエチル(メタ)アクリレート又はヒドロキシプロピ
/I/(メタ)アクリレートと共重合可能なビニμ結合
やアリμ結合等の重合性不飽和結合を少なくとも1個有
するモノマーを挙げることができ、このモノマーは架橋
性モノマーであっても非架橋性モノマーであってもよい
、又これらのモノマーは2種以上併用されていてもよい
The copolymerizable monomer for forming the copolymer contains at least a polymerizable unsaturated bond such as a vinyl μ bond or an ant μ bond that can be copolymerized with hydroxyethyl (meth)acrylate or hydroxypropy/I/(meth)acrylate. One monomer may be mentioned, and this monomer may be a crosslinking monomer or a non-crosslinking monomer, and two or more of these monomers may be used in combination.

架橋性モノマーとしては前記重合性不飽和結合を少なく
とも2個有するモノマーあるいは前記重合性不飽和結合
を1個有し、かつ縮合反応等によって化学結合を生成可
能な官能基を少なくとも1個有するモノマーを挙げるこ
とができ、その例トして、H,M’−メチレンビスアク
リμアミド、N−ヒドロキVメチμアクリμアミド、N
−ヒドロキシメチ〃メタクリμアミド、トリアリ/L/
Vアメレート、トリアリμイソVアヌV−ト、ジビニμ
ベンゼン、2.2−ビス(4−メタクロキVポリエトキ
シフエニμ)プロパン、エチレンジ(メタ)アクリレー
ト、ホリエチレングリコーμジ(メタ)アクリレート、
トリメチロ−μプロパントリ(メタ)アクリレート、ペ
ンタエリスリトー〃テトフ(メタ)アクリレート、トリ
メチロ−μエタントリ(メタ)アクリレート、ブタンジ
オ−μジ(メタ)アクリレート、ヘキサンジオ−μジ(
メタ)アクリレート、ジアリμフタレート、1.45−
)リアクロイμヘキサンヒドロキV−e−)リアジン等
を挙げることができる。
As the crosslinkable monomer, a monomer having at least two of the above-mentioned polymerizable unsaturated bonds or a monomer having one of the above-mentioned polymerizable unsaturated bonds and at least one functional group capable of producing a chemical bond by a condensation reaction or the like is used. Examples include H,M'-methylenebisacryamide, N-hydroxyVmethyacryamide, N
-Hydroxymethymethacrylamide, triary/L/
V amerate, trially μ iso V anu V-to, dibini μ
Benzene, 2.2-bis(4-methacrylokiVpolyethoxypheniμ)propane, ethylene di(meth)acrylate, polyethyleneglycoμ di(meth)acrylate,
Trimethylo-μpropane tri(meth)acrylate, pentaerythritone tetoph(meth)acrylate, trimethylo-μethane tri(meth)acrylate, butanedio-μ di(meth)acrylate, hexanedio-μ di(
meth)acrylate, diaryμ phthalate, 1.45-
) Liacloyl μ hexane hydroxyV-e-) Reazine, and the like.

又、非架橋性モノマーとしては、ジメチ〃アクリμアミ
ド、ビニ〃ピロリドン、アクリμ酸、メタクリμ酸、ヒ
ドロキシエチルメタクリV −ト、スチVンスμホン酸
、スチレンスμホン酸ナトリウム、ス〃ホエチ〜メタク
リ〃酸ナトリウム、ビ=μピリジン、ビニルメチμエー
テ〃等を挙げることができる。
In addition, non-crosslinking monomers include dimethyacrylamide, vinylpyrrolidone, acrylic acid, methacrylic acid, hydroxyethyl methacrylate, styrene sulfonic acid, sodium styrene sulfonate, and styrene sulfonate. ~Sodium methacrylate, bi=μpyridine, vinyl methacrylate, etc. can be mentioned.

重合体が共重合体である場合、共重合体を生成スるヒド
ロキVエチ/&/(メタ)アクリレート、ヒドロキシプ
ロピ、A/(メタ)アクリレートと共重合性モノマーの
組成比としてはヒドロキVエチ/I/(メタ)アクリレ
ート、ヒドロキシプロピ/L/(メタ)アクリレート1
00重量部に対し共重合性モノマーが、a5〜100重
量部程度であることが好ましい。
When the polymer is a copolymer, the composition ratio of hydroxy V ethyl/&/(meth)acrylate, hydroxypropyl, A/(meth)acrylate and copolymerizable monomer forming the copolymer is hydroxy V ethyl /I/(meth)acrylate, hydroxypropy/L/(meth)acrylate 1
It is preferable that the amount of the copolymerizable monomer is about 5 to 100 parts by weight per 00 parts by weight.

重合体が架橋共重合体であるとポリオレフィン多孔質膜
の細孔表面上に保持された重合体の水中での膨潤を抑制
することができ、又、重合体の安定性を向上させること
ができるので、重合体は架橋共重合体であることが好ま
しい。
When the polymer is a crosslinked copolymer, swelling of the polymer retained on the pore surface of the polyolefin porous membrane in water can be suppressed, and the stability of the polymer can be improved. Therefore, the polymer is preferably a crosslinked copolymer.

又、重合体の親水性の程度が大きい程多孔質膜の透水性
能が良好であう、使用開始時にかいて短時間で膜面全体
から水が均一に透過するので、架橋共重合体を生成する
共重合性の架橋性モノマーとしては、親水性の程度が充
分な水溶性の架橋性モノマーであることが軽重しい。
In addition, the higher the degree of hydrophilicity of the polymer, the better the water permeability of the porous membrane.Water permeates uniformly from the entire membrane surface in a short period of time at the beginning of use, so the copolymer that forms the crosslinked copolymer is The polymerizable crosslinking monomer is preferably a water-soluble crosslinking monomer with a sufficient degree of hydrophilicity.

このような水溶性の架橋性モノマーとしてはN−ヒドロ
キVメチ〃アクリルアミド、N−ヒドロキシメチルメタ
クリμアミド、N、N’−メチレンビスアクリμアミド
等の30cの水に対する溶解度が1. O1761以上
である架橋性モノマーを挙げることができる。
Examples of such water-soluble crosslinking monomers include N-hydroxyV-methacrylamide, N-hydroxymethylmethacrylamide, N,N'-methylenebisacrylamide, etc., which have a solubility in water of 30c and 1. Crosslinking monomers having a molecular weight of O1761 or higher can be mentioned.

本発明のポリオレフィン多孔質膜の少なくとも一部の細
孔表面に保持されてなる重合体の食は、ポリオレフィン
多孔質膜の空孔率や細孔径にも依存するが、ポリオレフ
ィン多孔質膜の重量に対してかよそ(L5〜100重食
幅程度であることが好ましい。重合体の保持量がこの範
囲よシ少ないと多孔質膜に充分な親水性を付与する巴と
ができず、又、この範囲を越えても多孔質膜の親水性は
特別に向上せず、むしろ細孔容積が減少して透水性能が
低下する場合がある。
Erosion of the polymer retained on the surface of at least some pores of the porous polyolefin membrane of the present invention depends on the porosity and pore diameter of the porous polyolefin membrane, but it also depends on the weight of the porous polyolefin membrane. On the other hand, it is preferable that the amount of polymer retained is less than this range (L5 to 100). Even if it exceeds this range, the hydrophilicity of the porous membrane will not be particularly improved, but rather the pore volume may decrease and the water permeability may deteriorate.

重合体の保持量はCL5〜50重量4程度であることが
よシ好ましく、・1〜30重量憾程度であることが特に
好ましい。
The retained amount of the polymer is preferably about 4 by weight of CL5 to 50, and particularly preferably about 1 to about 30 by weight.

以下、本発明の親水化多孔質膜の製造方法について説明
する。尚、とドロキシエチ、A/(メタ)アクリレート
又はヒドロキシデpビ/L/(メタ)アクリレートを以
下単に「親水性モノマー」という。
Hereinafter, a method for producing a hydrophilized porous membrane of the present invention will be explained. In addition, droxyethyl, A/(meth)acrylate or hydroxydebi/L/(meth)acrylate will be simply referred to as a "hydrophilic monomer" hereinafter.

本発明にかいて重合体をポリオレフィン多孔質膜の細孔
表面上に保持させる方法としては、種Aの方法を採用す
ることができる。例えば、有機溶剤または水等の適当な
溶媒に親水性モノマー及び必要に応じて前述の共重合性
モノマーや重合開始剤を溶解させた溶液を調製し、ポリ
オレフィン多孔質膜をその溶液中に浸漬する方法、ある
いはポリオレフィン多孔質膜でmモジューμを製作した
後この溶液を多孔質膜内に圧入する方法等を採用し、該
多孔質膜の少なくとも一部の細孔表面上にこれらのモノ
マーを保持させ・た状態で重合させることによシボリオ
レフィン多孔質膜の少なくとも一部の細孔表面上に重合
体を保持させることができる。溶媒としてはメタノ−μ
、エタノール、プロパノ−μ、イソプロパノ−N等の7
μコーμ類、アセトン、メチμエチ〃ケトン、メチ〃イ
ソブチpケトン等のケトン類、テトラヒドロフフン、ジ
オキサン等のエーテル類、ジメチ〃ホμムアミド、ジメ
チμアセトアミド等のアミド類、ジメチルスμホキシト
等をはじめとする親水性モノマーや共重合性モノマー(
以下これらを「モノマー類」という)を溶解可能な有機
溶媒、あるいは水を用いることができる。
As a method for retaining the polymer on the pore surface of the polyolefin porous membrane in the present invention, method A can be adopted. For example, a solution is prepared by dissolving a hydrophilic monomer and, if necessary, the above-mentioned copolymerizable monomer and polymerization initiator in a suitable solvent such as an organic solvent or water, and the polyolefin porous membrane is immersed in the solution. method, or a method in which m module μ is produced using a polyolefin porous membrane and then this solution is press-fitted into the porous membrane, and these monomers are retained on the surface of at least some of the pores of the porous membrane. By polymerizing in a suspended state, the polymer can be retained on the surfaces of at least some of the pores of the siboriolefin porous membrane. Methanol-μ is used as a solvent.
, ethanol, propano-μ, isopropano-N, etc.
Ketones such as acetone, methi-μ-ethyketone, methi-isobuty-p-ketone, ethers such as tetrahydrofuran and dioxane, amides such as dimethyhomamide and dimethyμ-acetamide, dimethyl sulfoxide, etc. Hydrophilic monomers and copolymerizable monomers including
An organic solvent capable of dissolving monomers (hereinafter referred to as "monomers") or water can be used.

ポリオレフィン多孔質膜の表面は疎水性であるので特に
溶媒として水を用いる場合はモノマー類を含む水溶液が
細孔内に浸透する際、モノマー類が細孔表面にかいてそ
の親水性基を外側に向けて配合吸着されやすいので重合
によってこの状態を固定すれば極めて効率的に親水性を
付与することができる。溶媒として水を用いる場合は多
孔質膜を直接溶液に接触させることもできるが、予じめ
ア〃コーμ類やケトン類等で多孔質膜の細孔表面を湿潤
処理した後前記溶液を接触させることもできる。
The surface of a polyolefin porous membrane is hydrophobic, so when an aqueous solution containing monomers permeates into the pores, especially when water is used as a solvent, the monomers are scratched onto the pore surface and transfer their hydrophilic groups to the outside. Hydrophilicity can be imparted extremely efficiently by fixing this state through polymerization, since it is easily blended and adsorbed. When water is used as a solvent, the porous membrane can be brought into direct contact with the solution; however, the pore surface of the porous membrane can be wetted with alcohol, ketones, etc. in advance, and then the solution can be brought into contact with the solution. You can also do it.

また溶媒として有機溶剤を用いる場合は溶液が短時間で
ポリオレフィン多孔質膜の細孔内に浸透すること、及び
該細孔内からの溶媒除去が容易である等の利点がある。
Further, when an organic solvent is used as the solvent, there are advantages such that the solution permeates into the pores of the polyolefin porous membrane in a short time and that the solvent can be easily removed from the pores.

尚、前記の配向吸着を利用しないでモノマー類が細孔表
面にかいて無秩序に配向した状態で重合が行なわれた場
合にかいても、形成された重合体はポリオレフィンと比
較すると親水性の程度が大きいので、該重合体が保持さ
れている細孔表面は、該重合体が保持されていない細孔
表面と比較す凝相対的に親水性を有して>B、た 親水性が付与されモボリオレフィン多孔質膜を得ること
ができる。
Furthermore, even when polymerization is performed with the monomers randomly oriented on the pore surface without using the above-mentioned oriented adsorption, the formed polymer has a lower degree of hydrophilicity than polyolefin. is large, so the pore surface where the polymer is retained has a hydrophilicity relative to the coagulation compared to the pore surface where the polymer is not retained. A moboriolefin porous membrane can be obtained.

重合開始剤の要否は重合方法に依存し、熱重合法や光重
合法の場合は重合開始剤が用いられるが、放射線重合法
の場合は重合開始剤を必要としない。
The necessity of a polymerization initiator depends on the polymerization method; a polymerization initiator is used in thermal polymerization and photopolymerization, but no polymerization initiator is required in radiation polymerization.

熱重合法の場合はヲジカμ重合開始剤として知られてい
る種涜の過酸化物、アゾ系化合物、レドックス系開始剤
を用いることができる。その例として、2.2′−アゾ
ビスイソブチロニトリル、2.2′−アゾビスシクロプ
ロピ〃プロピオニトリ〃、2.2′−アゾビス−2,4
−ジメチμパレロニトリμ、2.2′−アゾビス−2,
ム3−トリメチpブチロニトリp等のアゾ系化合物、ア
セチルパーオキサイド、プロピオニμパーオキサイド、
ブチリルパーオキサイド、イソブチリμパーオキサイド
、サクシ二μパーオキサイド、ベンシイ〃パーオキサイ
ド、ベンシイμインブチリμパーオキサイド、β−アリ
ロキシプロピオニμパーオキサイド、ヘキサノイルパー
オキサイド、3−プロ七ベンシイpパーオキサイド等の
過酸化物、過硫酸カリウム、過硫酸アンモニウム等の過
硫酸塩等を挙げることが出来る。
In the case of thermal polymerization, peroxides, azo compounds, and redox initiators known as Ojika μ polymerization initiators can be used. Examples include 2,2'-azobisisobutyronitrile, 2,2'-azobiscyclopropipropionitrile, 2,2'-azobis-2,4
-dimethyμpareronitriμ, 2,2′-azobis-2,
azo compounds such as mu-3-trimethyp-butyronitri-p, acetyl peroxide, propioni-μ peroxide,
Butyryl peroxide, isobutyl μ peroxide, succiniμ peroxide, benzyi peroxide, bency μ inbutyryl μ peroxide, β-allyloxypropioni μ peroxide, hexanoyl peroxide, 3-pro-heptyl p peroxide and persulfates such as potassium persulfate and ammonium persulfate.

特に溶媒に水を用いた場合には水溶性の重合開始剤例え
ばアゾビスイソプチヲミジン、44′−アゾビス−4−
シアノベンタノイッナアシドが好ましいが、モノマー類
自体が有する界面活性の故に水不溶性の重合開始剤であ
っても水中に分散できるので前記の水不溶性重合開始剤
を用いることもできる。
Particularly when water is used as a solvent, water-soluble polymerization initiators such as azobisisobutyomidine, 44'-azobis-4-
Although cyanobentanoic acid is preferred, the above-mentioned water-insoluble polymerization initiators can also be used since even water-insoluble polymerization initiators can be dispersed in water due to the surface activity of the monomers themselves.

光重合法の場合の重合開始剤どしては、ベンゾフェノン
、ベンゾインメチ〃エーテμ、ベンツ ジμジメチ〃ケター〃、ヂ〃オレノン、4−ブロモベン
ゾフェノン、4−クロロベンゾフェノン、メチ/I/2
−ベンシイμベンゾエート、ペンシイμパーオキサイド
、アントラキノン、ビアセチル、硝酸ラフ二μ等を挙げ
ることができる。
In the case of the photopolymerization method, the polymerization initiators include benzophenone, benzoin meth〃etherμ, benzodiμ dimeth〃keter〃, diolenon, 4-bromobenzophenone, 4-chlorobenzophenone, methi/I/2
- Bency μ benzoate, Pency μ peroxide, anthraquinone, biacetyl, rough diμ nitrate, and the like.

またこれらを適当に組合わせて使用することも可能であ
る。
It is also possible to use a suitable combination of these.

溶液中にかけるモノマー類と溶媒との組成は溶媒の種類
や目標とする重合体の保持量等を考慮して適宜選択すれ
ばよく、モノマー類100重量部に対して溶媒は50〜
10000重量部程度であればよく200〜5ooo重
量部程度であることがよシ好ましい。
The composition of the monomers and solvent to be added to the solution may be selected appropriately taking into account the type of solvent and the target amount of polymer retained.
The amount may be about 10,000 parts by weight, and it is more preferably about 200 to 500 parts by weight.

又、共重合性モノマーを用いる場合、モノマー類中の親
水性モノマーと共重合性モノマーとの組成化は、共重合
性モノマーの親水性の程度や目標とする共重合比や架橋
密度等を考慮して適宜選択すればよく、親水性モノマー
10(1重量部に対して共重合性モノマーは(L5〜1
00重量部程度であればよく、1〜50重量部程度であ
ることがよシ好ましい。
In addition, when using a copolymerizable monomer, the composition of the hydrophilic monomer and copolymerizable monomer in the monomers takes into consideration the degree of hydrophilicity of the copolymerizable monomer, the target copolymerization ratio, crosslinking density, etc. The copolymerizable monomer may be selected as appropriate based on 10 parts by weight of the hydrophilic monomer (L5 to 1 part by weight).
The amount may be about 0.00 parts by weight, and it is more preferably about 1 to 50 parts by weight.

又、重合開始剤は、モノマー類100重量部に対して(
LOO1〜100重量部程度であればよく、(LO1〜
30重量部程度であることがより好ましい。
In addition, the polymerization initiator is (
It may be about 1 to 100 parts by weight of LOO (LO1 to 100 parts by weight).
More preferably, it is about 30 parts by weight.

モノマー類に対して溶媒の量が前記範囲を越えると多孔
質膜の細孔表面に保持されるモノマー類の量が少々すぎ
て充分な量の重合体を保持させることができず、また前
記範囲よシ少ないと、重合体の保持量のコントロー〃が
難しく、また細孔表面中細孔内部に保持される重合体の
量が多くなうすぎて細孔の閉塞を招くことがあるので好
ましくない。
If the amount of solvent relative to the monomers exceeds the above range, the amount of monomers retained on the pore surface of the porous membrane will be too small to retain a sufficient amount of polymer; If the amount is too small, it is difficult to control the amount of polymer retained, and the amount of polymer retained on the pore surface and inside the pores becomes too large, which may lead to pore clogging, which is undesirable. .

これらの溶液を用いてポリオレフィン多孔質膜に対して
浸漬処理筐たは圧入処理する際の浸漬時間または圧入時
間はかよそ(L5秒〜30分間程度であシ、ポリオレフ
ィン多孔質膜の対する濡れ特性が良好な溶液を用いた場
合程よシ短時間で実施することができる。
The immersion time or press-fitting time when applying these solutions to the polyolefin porous membrane using a dipping process or press-fitting process is limited (about 5 seconds to 30 minutes); however, it depends on the wetting characteristics of the polyolefin porous membrane. If a solution with good quality is used, it can be carried out in a relatively short time.

このようにしてモノマー類または更に重合開始剤を少な
くとも一部の細孔表面上に保持されたポリオレフィン多
孔質膜は周囲の余分な液を除去され、更に必要に応じて
細孔内部の溶媒を除去された後、次の重合工程に移され
る。
In this way, the polyolefin porous membrane in which the monomers or the polymerization initiator are retained on at least some of the pore surfaces is removed from the surrounding excess liquid, and if necessary, the solvent inside the pores is removed. After that, it is transferred to the next polymerization step.

本発明にかいては熱重合法、光重合法、放射線重合法、
プラズマ重合法等の重合方法を採用することができる。
The present invention includes thermal polymerization methods, photopolymerization methods, radiation polymerization methods,
A polymerization method such as a plasma polymerization method can be employed.

熱重合法の場合、重合温度は前記重合触媒の分解温度以
上であシ、またポリオレフィン多孔質膜の膜構造を変化
させることなくかつ膜基質を損傷しない程度以下の温度
とすることが望ましく、通常は30〜100℃程度の温
度を採用することができる。また加熱時間は重合触媒の
種類と加熱温度に依存するが通常は15秒〜5時間程度
よシ好ましくは1分間〜5時間程度である。
In the case of a thermal polymerization method, the polymerization temperature should preferably be higher than the decomposition temperature of the polymerization catalyst and lower than the temperature that does not change the membrane structure of the polyolefin porous membrane and damage the membrane substrate; A temperature of about 30 to 100°C can be adopted. The heating time depends on the type of polymerization catalyst and the heating temperature, but is usually about 15 seconds to 5 hours, preferably about 1 minute to 5 hours.

光重合法の場合、光照射の光源としては紫外線や可視光
線を用しることができるがエネμギーの大きい紫外線が
特に好ましい。また紫外線源としては低圧水銀灯、高圧
水銀灯、キセノン灯、アーク灯等を用しることができる
In the case of the photopolymerization method, ultraviolet rays or visible light can be used as the light source for light irradiation, but ultraviolet rays with high energy μ are particularly preferred. Further, as the ultraviolet light source, a low pressure mercury lamp, a high pressure mercury lamp, a xenon lamp, an arc lamp, etc. can be used.

光照射条件は光照射強度に依存し、低照射強度では十分
な親水化を達成することが困難であり%また高照射強度
ではポリオレフィン多孔質膜の損傷が大きいので適当な
光照射条件の選定が必要である。たとえば水銀灯を光源
として用いる場合は入力を10〜300Y/cm程度と
し10〜50aw程度の距離からCL5〜500秒間程
度照射することによって(LO[)1〜j D jou
lθ1511程度よう好ましくは[LO5〜1 jou
1e1013程度のエネμギーを照射すれば良い。
Light irradiation conditions depend on the light irradiation intensity; low irradiation intensity makes it difficult to achieve sufficient hydrophilicity, and high irradiation intensity causes significant damage to the polyolefin porous membrane, so it is important to select appropriate light irradiation conditions. is necessary. For example, when using a mercury lamp as a light source, the input is about 10 to 300 Y/cm, and by irradiating for about CL5 to 500 seconds from a distance of about 10 to 50 aw, (LO[)1 to j D jou
Preferably about lθ1511 [LO5~1 jo
It is sufficient to irradiate with an energy μ of about 1e1013.

放射線重合の場合はたとえば電子線照射装置を用い、1
20℃以下より軽重しくは1001:以下の温度にて電
子線を10〜50 M rad程度照射することによっ
て実施することができる。
In the case of radiation polymerization, for example, an electron beam irradiation device is used, and 1
This can be carried out by irradiating an electron beam at a dose of about 10 to 50 M rad at a temperature of 20° C. or lower, preferably 1001:3 or lower.

尚、これらの重合の際、雰囲気内に酸素が存在すると重
合反応が著しく阻害されるので窒素雰囲気等の不活性ガ
ス雰囲気、あるいは真空等の実質的に酸素が存在しない
状態にて重合させることが望壇しい。
In addition, during these polymerizations, the presence of oxygen in the atmosphere will significantly inhibit the polymerization reaction, so it is best to carry out the polymerization in an inert gas atmosphere such as a nitrogen atmosphere, or in a state in which oxygen is substantially absent, such as in a vacuum. It's like a wishing platform.

架橋性モノマーを用いて架橋共重合体を形成させる場合
、架橋反応は重合反応と同時に行々わせてもよく、いっ
たん共重合体を生成させた後に架橋させてもよい。又、
縮合による架橋反応は重合反応熱を利用して行なっても
よく、加熱によって行なってもよい。
When forming a crosslinked copolymer using a crosslinkable monomer, the crosslinking reaction may be carried out simultaneously with the polymerization reaction, or the crosslinking may be carried out once the copolymer is produced. or,
The crosslinking reaction by condensation may be carried out using the heat of polymerization reaction, or may be carried out by heating.

特に縮合による架橋反応を利用する場合は、手じめ調製
した親水性モノマーと架橋性モノマーの未架橋の共重合
体を溶液に溶解してポリオレフィン多孔質yao細孔表
面上に保持させ、その状態で架橋反応させる方法を用い
てもよい。
In particular, when using a crosslinking reaction by condensation, a carefully prepared uncrosslinked copolymer of a hydrophilic monomer and a crosslinkable monomer is dissolved in a solution and retained on the surface of the polyolefin porous pores. A method of carrying out a crosslinking reaction may also be used.

この場合未架橋の共重合体の分子量は)よそ1〜50万
程度であることが好ましく分子量が大きすぎると該共重
合体が細孔内部に侵入させることが困難であシ好ましく
ない。分子量は5〜30万程度であることがよシ好まし
い。
In this case, the molecular weight of the uncrosslinked copolymer is preferably about 1 to 500,000, and if the molecular weight is too large, it is difficult for the copolymer to penetrate into the pores, which is not preferable. It is more preferable that the molecular weight is about 50,000 to 300,000.

本発明にかいては上述のように種涜の重合法を採用する
ことができるが、多孔質膜の機械的特性を低下させない
という点を考慮すると熱重合法が最も好ましい方法であ
る。
In the present invention, various polymerization methods can be employed as described above, but the thermal polymerization method is the most preferable method in view of not reducing the mechanical properties of the porous membrane.

ポリオレフィン多孔質膜の細孔表面上に保持されたモノ
マー類や前記の未架橋の共重合体はこれらの重合手法に
よって多孔質膜に対してグラフト重合し、あるいは多孔
質膜表面上にかいて重合、架橋するので、多孔質膜の細
孔表面の少なくともその一部はこれらの重合体によって
被覆される。
The monomers held on the pore surface of the polyolefin porous membrane and the above-mentioned uncrosslinked copolymer are graft-polymerized to the porous membrane by these polymerization methods, or polymerized by being written on the porous membrane surface. , so that at least a portion of the pore surfaces of the porous membrane are covered by these polymers.

重合体が形成された後は、適当な溶媒を用い浸漬法や圧
入法によって多孔質膜細孔表面の周囲に存在する未反応
モノマーや遊離したポリマー等の不要成分を除去するこ
とが望ましい。溶媒としては水、有機溶剤、あるいはそ
れらの混合溶媒を単独渣たは併用して用いることができ
るが、多孔質膜の細孔表面上に形成されるポリマーが未
架橋ポリマーの場合は水あるいは水と有機溶剤との混合
溶媒を用いることが望ましい。
After the polymer is formed, it is desirable to remove unnecessary components such as unreacted monomers and liberated polymers existing around the surface of the pores of the porous membrane by a dipping method or an injection method using an appropriate solvent. As a solvent, water, an organic solvent, or a mixed solvent thereof can be used alone or in combination. However, if the polymer formed on the pore surface of the porous membrane is an uncrosslinked polymer, water or water may be used. It is desirable to use a mixed solvent of organic solvent and organic solvent.

本発明の親水化多孔質膜はこのようにして製造すること
ができるが、特に好ましい方法として親水性モノマー及
び水溶性の架橋性モノマーを含むモノマー類又は更く重
合開始剤をポリオレフィン多孔質膜の少なくとも一部の
細孔表面上に保持させた状態で重合させる方法を挙げる
ことができる。
The hydrophilized porous membrane of the present invention can be produced in this manner, but a particularly preferred method is to add monomers including a hydrophilic monomer and a water-soluble crosslinking monomer or a polymerization initiator to the polyolefin porous membrane. One example is a method in which the polymer is polymerized while being retained on at least some of the pore surfaces.

共重合性モノマーとして水溶性の架橋性モノマーを用い
ると重合が効率的に行なわれるので未反応モノマーや遊
離ポリマー等の不要成分の量が少なく、又、この方法で
得られる親水化多孔質膜は保持された重合体の水中での
膨潤が抑制され、溶出成分の量を一段と減少させること
ができ、かつ優れた透水性能を発揮する。
When a water-soluble crosslinking monomer is used as a copolymerizable monomer, polymerization is carried out efficiently, so the amount of unnecessary components such as unreacted monomers and free polymers is small, and the hydrophilized porous membrane obtained by this method is Swelling of the retained polymer in water is suppressed, the amount of eluted components can be further reduced, and excellent water permeability is exhibited.

〔実施例〕〔Example〕

以下実施例によシ本発明を具体的に説明する。 The present invention will be specifically explained below using examples.

尚、実施例にかいて透水圧、アμコーlv親水化法での
水透過率及び重合体保持後の水透過率はそれぞれ有効膜
面積が16351”の試験膜モジューμを用い次の方法
によって測定した。また重合体の保持量、結節強度及び
積算溶出率は次の方法によって測定し、重合体層による
細孔表面の被覆状態の評価は次の方法によって実施した
In addition, in the examples, the water permeability, the water permeability by the AμCOLV hydrophilization method, and the water permeability after polymer retention were determined by the following method using a test membrane module μ with an effective membrane area of 16351”. The retained amount of polymer, nodule strength, and cumulative elution rate were measured by the following methods, and the state of coverage of the pore surfaces by the polymer layer was evaluated by the following method.

(1)透水圧:試験膜モジューμの一方(中空糸膜の場
合は中空糸の内側)から1分毎に0.1に915I2の
割合で水圧を上げながら25℃の水を供給し、透過水量
が30−と50−になる時の水圧を測定する。続いて横
軸に水圧をまた縦軸に透過水量をプロットし、プロット
した2点を結ぶ直線が横軸と交わる点の圧力値を求めそ
の値を透水圧とする。
(1) Water permeability pressure: Water at 25°C is supplied from one side of the test membrane module μ (inside of the hollow fiber in the case of a hollow fiber membrane) while increasing the water pressure at a rate of 0.1 to 915I2 every minute. Measure the water pressure when the amount of water reaches 30- and 50-. Next, the water pressure is plotted on the horizontal axis and the amount of permeated water is plotted on the vertical axis, and the pressure value at the point where the straight line connecting the two plotted points intersects with the horizontal axis is determined, and that value is taken as the permeable pressure.

(2)アルコ−/I’親水化法での水透過率二親水化処
理していない試験膜モジューμの一方(中空糸膜の場合
は中空糸膜の内側)からエタノ−μを25 d / m
inの流量で15分間圧入して多孔質膜の細孔内部まで
充分にエタノ−μで湿潤させた後、水を100 d/ 
winの流量で15分間流し、細孔内部に存在するエタ
ノ−μを水で置換する。続いて試験膜モジューμの一方
(中空糸の場合は中空糸の内側)から25℃の水を流し
て膜間差圧が50 m11g  にかける透過水量を測
定し、その値から水透過率(L /wr” * hr 
* IIIN!g )を求める。
(2) Water permeability by alcohol/I' hydrophilization method 2. Ethanol-μ from one side of the test membrane module μ (inside of the hollow fiber membrane in the case of a hollow fiber membrane) which has not been subjected to hydrophilization treatment at 25 d/ m
After injecting water for 15 minutes at a flow rate of 100 d/in to sufficiently wet the inside of the pores of the porous membrane with ethanol-μ, water was added at 100 d/in.
The water is allowed to flow for 15 minutes at a flow rate of 100 to 100 ml to replace the ethanol-μ present inside the pores with water. Next, water at 25°C was flowed through one side of the test membrane module μ (inside the hollow fiber in the case of hollow fibers), the amount of permeated water applied to a membrane differential pressure of 50 m11g was measured, and the water permeability (L) was determined from that value. /wr” *hr
*IIIIN! g).

(3)重合体の保持量:親水化処理による多孔質膜の重
量増加を測定し基材であるポリオレフィン多孔質膜の単
位重量に対して保持されている重合体の重量鳴を算出す
る。
(3) Amount of polymer retained: The weight increase of the porous membrane due to the hydrophilic treatment is measured, and the weight of the polymer retained relative to the unit weight of the polyolefin porous membrane as the base material is calculated.

(4)細孔表面の被覆状態の評価:Jより K 676
B(1971)に記載の表面張力54 dyn / c
mのぬれ試験用標準液(青色)中に多孔質膜を1分間浸
漬した後風乾し、該多孔質膜の横切断面を光学顕微鏡に
よって観察し着色された重合体の分布状態を調べる。
(4) Evaluation of pore surface coverage: From J K 676
B (1971) surface tension 54 dyn/c
The porous membrane is immersed in a standard wettability test solution (blue) for 1 minute, air-dried, and a cross section of the porous membrane is observed with an optical microscope to examine the distribution of the colored polymer.

(5)結節強度: JIS L 1013  によって
多孔質膜の結節強度を測定する。
(5) Nodule strength: The nodule strength of the porous membrane is measured according to JIS L 1013.

(6)積算溶出率:多孔質膜をその重量の10倍量の6
5℃の温水中に浸漬し、一定時間毎に、その温水中の全
有機炭素量を測定する。この全有機炭素量が前記(3)
の仮定された組成化の重合体のみに由来するものと仮定
して、積算溶出量を算出し、溶出処理前の重合体保持量
に対する積算溶出率(重量略)を求める。
(6) Cumulative elution rate: 6 times the amount of porous membrane 10 times its weight
The specimen is immersed in warm water at 5°C, and the total organic carbon content in the warm water is measured at regular intervals. This total organic carbon content is as described in (3) above.
Assuming that the polymer is derived only from the polymer of the assumed composition, the cumulative elution amount is calculated, and the cumulative elution rate (weight omitted) with respect to the amount of polymer retained before elution treatment is determined.

(7)重合体保持後の水透過率二重合体を保持させた多
孔質膜で製作した試験膜モジュールの一方(中空糸膜の
場合は中空糸膜の内側)から圧力2 kli/cm”の
水を5時間圧入した後、該試験膜モジュールの一方から
25℃の水を流して膜間差圧が50mHg  にかける
透過水量を測定し、その値から水透過率Ct/−・hr
・■Hg )を求める。
(7) Water permeability after polymer retention A pressure of 2 kli/cm" was applied from one side of the test membrane module (inside of the hollow fiber membrane in the case of a hollow fiber membrane) made of a porous membrane retaining the double polymer. After injecting water for 5 hours, water at 25°C was poured from one side of the test membrane module to measure the amount of permeated water when the transmembrane pressure was 50 mHg, and from that value, the water permeability Ct/-・hr was measured.
・■Hg) is calculated.

実施例1 空孔率654、膜厚70μm、内径270μms  結
節強度59417fi1、透水圧11に9/国3、アμ
コー/I/親水化法による水透過率が1.1t/W11
・hra鏑Kgであるポリエチレン多孔質中空糸膜をヒ
ドロキシエチルアクリレート100部、)リメチローμ
プロパントリアクリレート10部、ペンシイμパーオキ
サイド1部及びアセトン1000部からなる処理溶液に
10秒間浸漬した後、窒素中にとυ出し2分間風乾した
。続いてこの多孔質膜を窒素雰囲気中にかいて80℃で
20分間加熱処理し、ついで水/エタノーμ=so、’
so(部)混合溶媒に10分間浸漬し更に温水中で2分
間超音波洗浄することによシネ要成分を洗浄除去した。
Example 1 Porosity: 654, membrane thickness: 70 μm, inner diameter: 270 μms, knot strength: 59417 fi 1, permeability pressure: 11 to 9/Country: 3, Aμ
Water permeability by Co/I/hydrophilization method is 1.1t/W11
・HRA Kabura Kg polyethylene porous hollow fiber membrane with 100 parts of hydroxyethyl acrylate, ) Rimethyloμ
After immersing for 10 seconds in a treatment solution consisting of 10 parts of propane triacrylate, 1 part of Pency μ peroxide, and 1000 parts of acetone, it was taken out in nitrogen and air-dried for 2 minutes. Subsequently, this porous membrane was heated in a nitrogen atmosphere at 80°C for 20 minutes, and then water/ethanol μ=so,'
The cine essential components were washed away by immersing in a SO (part) mixed solvent for 10 minutes and then ultrasonically cleaning in warm water for 2 minutes.

次に熱風乾燥によシ溶媒を除去し重合体が保持された多
孔質膜を得た。
Next, the solvent was removed by hot air drying to obtain a porous membrane in which the polymer was retained.

この多孔質膜の透水圧は1.2に9/cm”、水透過率
は1. O17m”・hr・−Hgであシ、透水性が著
しく向上した。
The water permeability of this porous membrane was 1.2 to 9/cm'' and the water permeability was 1.017 m''·hr·-Hg, and the water permeability was significantly improved.

重合体の保持量は25重量優であシ、細孔表面のほぼ全
面に亘ってほぼ均一に重合体が保持されていた。また結
節強度は5qot/111でアシ、元の多孔質膜と比較
して機械的強度は低下していなかった。1.24.20
G及び800時間後の積算溶出率はそれぞれ0.014
、(10121、+10121及び(LO124で5b
24時間以降は実質的に溶出成分がないこkがわかった
The amount of polymer retained was more than 25% by weight, and the polymer was retained almost uniformly over almost the entire surface of the pores. Further, the nodule strength was 5 qot/111, and the mechanical strength was not decreased compared to the original porous membrane. 1.24.20
The cumulative dissolution rate after G and 800 hours was 0.014, respectively.
, (10121, +10121 and (5b in LO124
It was found that there were virtually no eluted components after 24 hours.

実施例2〜8 実施例1と同様の中空糸膜を用い、第1表に示す処理溶
液の組成、熱重合条件等を採用し、その他の条件は実施
例1と同様にして親水化多孔質膜を得た。
Examples 2 to 8 Using the same hollow fiber membrane as in Example 1, the composition of the treatment solution, thermal polymerization conditions, etc. shown in Table 1 were adopted, and the other conditions were the same as in Example 1 to form a hydrophilic porous membrane. A membrane was obtained.

これらの多孔質膜は第1表の性能を有してレジ親水性や
機械的強度は良好であり1溶出酸分も少なかった。
These porous membranes had the performance shown in Table 1, had good resist hydrophilicity and mechanical strength, and had less eluted acid content.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、ポリオレフィン多孔質膜基質の
機械的強度を低下させることなく、親水性の重合体をポ
リオレフィン多孔質膜内部の細孔表面上べも強固に保持
させることが可能である。
According to the method of the present invention, it is possible to firmly hold a hydrophilic polymer on the pore surface inside the polyolefin porous membrane without reducing the mechanical strength of the polyolefin porous membrane substrate. .

本発明の多孔質膜は重合体が保持されていないポリオレ
フィン多孔質膜と比較すると透水圧が著しく低く、透水
性能が極めて優れてかう、この重合体層はポリオレフィ
ン多孔質膜の細孔表直に強固に保持されているので、温
水中にかける溶出試験にかいても溶出成分の量が極めて
少ない。従って、本発明の多孔質膜は高温処理をはじめ
とする水処理分野や血液浄化分野等にかいて使用するこ
とができる。
The porous membrane of the present invention has a significantly lower water permeation pressure than a polyolefin porous membrane in which no polymer is retained, and has extremely excellent water permeability. Because it is strongly retained, the amount of eluted components is extremely small even when tested in hot water. Therefore, the porous membrane of the present invention can be used in water treatment fields including high temperature treatment, blood purification fields, and the like.

Claims (5)

【特許請求の範囲】[Claims] (1)ヒドロキシエチル(メタ)アクリレート又はヒド
ロキシルプロピル(メタ)アクリレートを主成分とする
重合体をポリオレフィン多孔質膜の少なくとも一部の細
孔表面に保持させてなる親水化多孔質膜。
(1) A hydrophilized porous membrane formed by holding a polymer containing hydroxyethyl (meth)acrylate or hydroxylpropyl (meth)acrylate as a main component on the surface of at least some of the pores of a polyolefin porous membrane.
(2)ヒドロキシエチル(メタ)アクリレート又はヒド
ロキシルプロピル(メタ)アクリレートを主成分とする
重合体が架橋共重合体であることを特徴とする請求項1
記載の親水化多孔質膜。
(2) Claim 1, wherein the polymer containing hydroxyethyl (meth)acrylate or hydroxylpropyl (meth)acrylate as a main component is a crosslinked copolymer.
The hydrophilic porous membrane described.
(3)架橋共重合体がヒドロキシエチル(メタ)アクリ
レート又はヒドロキシルプロピル(メタ)アクリレート
と水溶性の架橋性モノマーを含むモノマー類からなる架
橋共重合体であることを特徴とする請求項2記載の親水
化多孔質膜。
(3) The crosslinked copolymer according to claim 2, wherein the crosslinked copolymer is a crosslinked copolymer made of hydroxyethyl (meth)acrylate or hydroxylpropyl (meth)acrylate and monomers containing a water-soluble crosslinkable monomer. Hydrophilized porous membrane.
(4)ヒドロキシエチル(メタ)アクリレート又はヒド
ロキシルプロピル(メタ)アクリレートと水溶性の架橋
性モノマーを含むモノマー類をポリオレフィン多孔質膜
の少なくとも一部の細孔表面上に保持させた状態で重合
させることを特徴とする親水化多孔質膜の製造方法。
(4) Polymerizing monomers containing hydroxyethyl (meth)acrylate or hydroxylpropyl (meth)acrylate and a water-soluble crosslinking monomer while retaining them on the surface of at least some of the pores of the porous polyolefin membrane. A method for producing a hydrophilic porous membrane characterized by:
(5)加熱によって重合させることを特徴とする請求項
4記載の方法。
(5) The method according to claim 4, wherein the polymerization is carried out by heating.
JP1199853A 1989-08-01 1989-08-01 Hydrophilic, porous membrane and its manufacturing method Pending JPH0365225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1199853A JPH0365225A (en) 1989-08-01 1989-08-01 Hydrophilic, porous membrane and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1199853A JPH0365225A (en) 1989-08-01 1989-08-01 Hydrophilic, porous membrane and its manufacturing method

Publications (1)

Publication Number Publication Date
JPH0365225A true JPH0365225A (en) 1991-03-20

Family

ID=16414743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1199853A Pending JPH0365225A (en) 1989-08-01 1989-08-01 Hydrophilic, porous membrane and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0365225A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999020683A1 (en) * 1997-10-17 1999-04-29 Advanced Polymer Technologies, Llc. Process for purifying polymers using ultrasonic extraction
JP2007260592A (en) * 2006-03-29 2007-10-11 Toray Ind Inc Method of manufacturing separation membrane, and method of manufacturing separation membrane module using the separation membrane
JP2011030903A (en) * 2009-08-04 2011-02-17 Nikkiso Co Ltd Adsorbent for hemocyte removal, and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999020683A1 (en) * 1997-10-17 1999-04-29 Advanced Polymer Technologies, Llc. Process for purifying polymers using ultrasonic extraction
JP2007260592A (en) * 2006-03-29 2007-10-11 Toray Ind Inc Method of manufacturing separation membrane, and method of manufacturing separation membrane module using the separation membrane
JP2011030903A (en) * 2009-08-04 2011-02-17 Nikkiso Co Ltd Adsorbent for hemocyte removal, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0229019B1 (en) Hydrophilized porous membrane and production process thereof
JP2506611B2 (en) Method for forming coated porous membrane
US5209849A (en) Hydrophilic microporous polyolefin membrane
JP3167985B2 (en) Method for producing membrane having hydrophilic surface
US5049275A (en) Modified microporous structures
US5547756A (en) Porous polypropylene hollow fiber membrane of large pore diameter, production process thereof, and hydrophilized porous hollow fiber membranes
US4976897A (en) Composite porous membranes and methods of making the same
JPH09512857A (en) Porous composite membranes and methods
JPH03186325A (en) Porous membrane formed of interstitial network of polymer and having hydrophilic surface
WO1991010498A1 (en) Strongly acidic microporous membranes for cationic exchange
JPS63190602A (en) Hydrophilic porous membrane and its manufacture
US4876289A (en) Hydrophilized porous membrane and production process thereof
JP3168036B2 (en) Large-pore porous polyethylene hollow fiber membrane, method for producing the same, and hydrophilic porous polyethylene hollow fiber membrane
JPH0365225A (en) Hydrophilic, porous membrane and its manufacturing method
EP0566754B1 (en) Heat-resisting porous membrane, hydrophilized heat-resisting porous membrane and production processes thereof
JPH0768141A (en) Hollow fiber membrane and humidifying method using the same membrane
JPH0765270B2 (en) Method for functionalizing hollow fiber membranes
JPS62163703A (en) Hydrophilic porous membrane and its production
JP3130996B2 (en) Large pore porous polypropylene hollow fiber membrane, method for producing the same, and hydrophilized porous polypropylene hollow fiber membrane
JPH0259030A (en) Heat-resistant hydrophilicity imparted porous membrane and preparation thereof
JP2000351806A (en) Polymerizable composition, production of porous body from same, and precision filter membrane prepared thereby
JPS63260938A (en) Porous membrane having heat resistance imparted thereto and its production
JPH05233A (en) Asymmetric polymer membrane and production thereof
JPH06312135A (en) Porous adsorption body
WO1989004198A1 (en) Porous membrane and process for its production