JPH0365213B2 - - Google Patents

Info

Publication number
JPH0365213B2
JPH0365213B2 JP63065770A JP6577088A JPH0365213B2 JP H0365213 B2 JPH0365213 B2 JP H0365213B2 JP 63065770 A JP63065770 A JP 63065770A JP 6577088 A JP6577088 A JP 6577088A JP H0365213 B2 JPH0365213 B2 JP H0365213B2
Authority
JP
Japan
Prior art keywords
hollow cylindrical
ozone
treated
gas
filter material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63065770A
Other languages
Japanese (ja)
Other versions
JPH01242126A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP63065770A priority Critical patent/JPH01242126A/en
Publication of JPH01242126A publication Critical patent/JPH01242126A/en
Publication of JPH0365213B2 publication Critical patent/JPH0365213B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水処理や空気浄化等の目的で利用さ
れるオゾン処理から排出される廃オゾン、および
各種放電管かな副生されるオゾンを除去する装置
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is designed to treat waste ozone discharged from ozone treatment used for purposes such as water treatment and air purification, and ozone by-produced from various discharge tubes. It relates to a removal device.

〔従来の技術〕[Conventional technology]

オゾンの利用は、水処理、殺菌、空気浄化など
の分野を中心に今後ますます増加するとみられる
が排ガス中にはオゾンが残留している。また、各
種放電管からはオゾンが副生されそのまま排出さ
れる。これらの排出されるオゾンは、大気汚染に
係る環境基準をはるかに越えた値になることが多
く、その処理が必要である。
The use of ozone is expected to increase in the future, mainly in fields such as water treatment, sterilization, and air purification, but ozone remains in exhaust gas. Further, ozone is produced as a by-product from various discharge tubes and is discharged as is. The emitted ozone often exceeds environmental standards for air pollution, and must be treated.

従来、廃オゾンの処理技術には、活性炭法,薬
液吸収法,熱分解法,触媒法などがあつた。
Conventionally, waste ozone treatment techniques include activated carbon method, chemical absorption method, thermal decomposition method, and catalytic method.

活性炭法は、オゾンを活性炭充填層に導き、 203+C*→302+C* 但しC*は活性炭 なる反応によつてオゾンを分解するものであり、
この方法は低濃度のオゾンを効率良く分解できる
ために幅広く利用されている。
In the activated carbon method , ozone is introduced into an activated carbon packed bed.
This method is widely used because it can efficiently decompose ozone at low concentrations.

薬液吸収法は、亜硫酸ナトリウム,チオ硫酸ナ
トリウム,第1鉄塩などの還元剤水溶液、または
水酸化ナトリウムなどのアルカリ水溶液にオゾン
を吸収させる方法である。
The chemical absorption method is a method in which ozone is absorbed into an aqueous reducing agent solution such as sodium sulfite, sodium thiosulfate, or ferrous salt, or an alkaline aqueous solution such as sodium hydroxide.

熱分解法は、重油、軽油などの燃焼室へオゾン
を導いて熱分解する方法である。
The pyrolysis method is a method for thermally decomposing heavy oil, light oil, etc. by introducing ozone into the combustion chamber.

さらに触媒法は、えば二酸化マンガンを主成分
としたものでは、砂の表面にマンガン酸化物を付
着させたもの、シリカ・アルミナ質ゲル,粘土,
活性炭などとマンガン酸化物とを混合して焼成し
たものなどの粒状触媒の充填層にオゾンを導き、
主として 203+MoO2→302+MoO2 の反応によりオゾンを分解するものである。
Furthermore, catalytic methods include methods that use manganese dioxide as the main component, such as manganese oxide attached to the surface of sand, silica/alumina gel, clay, etc.
Ozone is introduced into a packed bed of granular catalysts such as those made by mixing activated carbon and manganese oxide and firing them.
It mainly decomposes ozone through the reaction of 20 3 + M o O 2 →30 2 + M o O 2 .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記従来のオゾン処理技術には
次のような欠点があつた。
However, the conventional ozone treatment technology has the following drawbacks.

活性炭法の欠点としては、オゾンとの反応に伴
う活性炭粒子の粉化、副反応として一酸化炭素が
二酸化炭素に酸化されることによる活性炭の減
少,高濃度オゾンと接触させた場合の着火や爆発
の危険性などが挙げられている。
Disadvantages of the activated carbon method include powdering of activated carbon particles due to reaction with ozone, reduction of activated carbon due to oxidation of carbon monoxide to carbon dioxide as a side reaction, and ignition or explosion when brought into contact with high concentration ozone. The dangers of this are mentioned.

薬液吸収法の場々は、オゾン吸収により薬液の
組成が変化するための吸収能力が低下すること、
そのために薬液の補充や廃液の処理が必要であ
り、煩雑であることが挙げられている。
In some cases of chemical absorption method, the composition of the chemical changes due to ozone absorption, which reduces the absorption capacity.
For this purpose, it is necessary to replenish the chemical solution and treat the waste solution, which is considered to be complicated.

熱分解法は、活性炭処理では爆発の危険がある
ような高濃度のオゾンを処理する場合に良く実施
されるが、コストが高い。
Pyrolysis is often used to treat high concentrations of ozone where activated carbon treatment poses a risk of explosion, but it is expensive.

また触媒法は、触媒のオゾン分解性能が低く、
処理速度を大きくできない。
In addition, in the catalyst method, the ozone decomposition performance of the catalyst is low,
Processing speed cannot be increased.

本発明は触媒法を利用するものであるが、従来
のものに比べて格段に大きな表面積をもつた特定
の触媒を用い、大きな通気速度でかつ安全性高く
経済的なオゾン処理を可能とし、さらに装置を小
型軽量化し、コンパクトでメンテナスを容易にす
ることを可能としたオゾン処理装置を提供するこ
とを目的とするものである。
The present invention utilizes a catalytic method, and uses a specific catalyst with a much larger surface area than conventional methods, which enables safe and economical ozone treatment at a high aeration rate. The object of the present invention is to provide an ozone treatment device that is small and lightweight, compact, and easy to maintain.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、オゾンを含有する被処理ガスを流入
せしめる流入口を備えた湿度調整室と、無機系繊
維又は有機系高分子樹脂繊維の表面に金属酸化物
触媒を担持せしめて中空筒状に成形したろ過材を
収容したオゾン分解室とからなり、該オゾン分解
室内の前記中空筒状ろ過材の内側又は外側を前記
湿度調整室と連通せしめると共にオゾン分解室に
前記中空筒状ろ過材の外側又は内側に連通する処
理ガス流出口を設け、前記湿度調整室から流出す
る被処理ガスが前記中空筒状ろ過材を通過して前
記処理ガス流出口から流出するようにしたことを
特徴とするオゾン処理装置であり、 さらに本発明は、無機系繊維又は有機系高分子
樹脂繊維の表面に金属酸化物触媒を担持せしめて
中空筒状に成形したろ過材を容器内に収容し、該
中空筒状ろ過材の内側又は外側周囲に湿度調整器
を配備し、前記容器にオゾンを含有する被処理ガ
スの流入口を設けて前記湿度調整器に連通せしめ
ると共に容器に前記中空筒状ろ過材の外側又は内
側に連通する処理ガス流出口を設け、前記湿度調
整器から流出する被処理ガスが前記中空筒状ろ過
材を通過して前記処理ガス流出口から流出するよ
うにしたことを特徴とするオゾン処理装置であ
る。
The present invention includes a humidity adjustment chamber equipped with an inlet for introducing a gas to be treated containing ozone, and a metal oxide catalyst supported on the surface of inorganic fiber or organic polymer resin fiber, which is formed into a hollow cylindrical shape. an ozone decomposition chamber containing a filtration material, and the inside or outside of the hollow cylindrical filtration material in the ozone decomposition chamber is communicated with the humidity adjustment chamber, and Ozone treatment characterized in that a processing gas outlet communicating with the inside is provided, and the processing gas flowing out from the humidity adjustment chamber passes through the hollow cylindrical filter material and flows out from the processing gas outlet. Further, the present invention provides a device in which a filtration material formed into a hollow cylindrical shape by supporting a metal oxide catalyst on the surface of inorganic fibers or organic polymer resin fibers is housed in a container, and the hollow cylindrical filtration material is A humidity regulator is provided around the inside or outside of the hollow cylindrical filter material, and an inlet for the ozone-containing gas to be treated is provided in the container to communicate with the humidity regulator. An ozone treatment apparatus characterized in that a processing gas outlet communicating with the humidity controller is provided, and the processing gas flowing out from the humidity regulator passes through the hollow cylindrical filter material and flows out from the processing gas outlet. It is.

〔作用〕[Effect]

本発明では、ガラス,金属などの無機系の又は
有機系高分子樹脂の繊維,スポンジ状,網状,フ
エルト状等の繊維を担体とし、この担体表面にマ
ンガン,ニツケル,コバルト,銅,銀,亜鉛等の
金属酸化物触媒の単数又は複数を担持せしめたろ
過材、好ましくかマンガン酸化物単体又はマンガ
ン酸化物を他の金属酸化物と共に担持せしめた中
空筒状ろ過材を使用することから、その比表面積
を0.005m2/cm3以上と従来の粒状触媒にはなかつ
た格段に大きな表面積とし、この中空筒状ろ過材
へオゾンを含有する被処理ガスを通気することに
よつて、従来にない薄い層厚で大きな通気速度に
よる処理が可能となる。
In the present invention, fibers of inorganic or organic polymer resin such as glass or metal, sponge-like, net-like, felt-like fibers are used as a carrier, and manganese, nickel, cobalt, copper, silver, zinc, etc. are coated on the surface of the carrier. Since a filter medium supporting one or more metal oxide catalysts such as, preferably, a hollow cylindrical filter medium supporting manganese oxide alone or manganese oxide together with other metal oxides is used, the ratio is By making the surface area of 0.005m 2 /cm 3 or more, which is much larger than that of conventional granular catalysts, and by aerating the ozone-containing gas to be treated through this hollow cylindrical filter material, The layer thickness allows processing with a large ventilation rate.

また、被処理ガスに同伴される水分が増すに従
つてオゾンの分解が不十分となる傾向が生じる。
この問題は触媒たるろ過材の表面が水分で濡れる
ことによつて被処理ガスとの接触が阻害されるこ
とに起因している。これを防ぐためには、被処理
ガスを加温、冷却、除湿剤による除湿等によつて
その比較湿度を80%以下に調整して水分の結露を
防止して通気処理することが必要である。
Furthermore, as the amount of water entrained in the gas to be treated increases, ozone decomposition tends to become insufficient.
This problem is caused by the fact that the surface of the filter material, which is a catalyst, becomes wet with moisture, which inhibits contact with the gas to be treated. In order to prevent this, it is necessary to adjust the relative humidity of the gas to be treated to 80% or less by heating, cooling, dehumidifying with a dehumidifying agent, etc. to prevent moisture condensation and perform ventilation treatment.

また、前記中空筒状ろ過材の内側から外側へ、
あるいは外側から内側へ、比較湿度80%以下に調
整した被処理ガスを通気することによつて、従来
にない薄い層厚及び大きな通気速度、例えば中空
筒状ろ過材の厚さ50〜200mmでSV2000〜10000N
m3−被処理ガス/m3−ろ過材・hの通気速度によ
る効果的な処理が可能になる。
Further, from the inside to the outside of the hollow cylindrical filter medium,
Alternatively, by ventilating the gas to be treated with a comparative humidity of 80% or less from the outside to the inside, we can achieve unprecedented thin layer thickness and high aeration speed, for example, with a hollow cylindrical filter medium thickness of 50 to 200 mm. ~10000N
Effective treatment can be achieved by changing the aeration rate of m 3 -gas to be treated/m 3 -filtering material/h.

〔実施例〕〔Example〕

本発明の装置の例について図面を参照しながら
説明すると、第1図において、1は湿度調整室で
内部には湿度調整器例えばヒーター2が配備さ
れ、3はオゾン分解室で内部には、ガラス,金属
などの無機系の又は有機系高分子樹脂の繊維状,
スポンジ状,網状,フエルト状等の繊維を担体と
し、この担体表面にマンガン,ニツケル,コバル
ト,銅,銀,亜鉛等の金属酸化物触媒の単数又は
複数円担持せしめて中空筒状に成形したろ過材4
が収容されている。
An example of the apparatus of the present invention will be explained with reference to the drawings. In Fig. 1, 1 is a humidity adjustment chamber in which a humidity regulator such as a heater 2 is provided, and 3 is an ozone decomposition chamber in which a glass , fibrous materials of inorganic or organic polymeric resins such as metals,
Filtration using sponge-like, net-like, felt-like fibers as a carrier, and supporting one or more metal oxide catalysts such as manganese, nickel, cobalt, copper, silver, zinc, etc. on the surface of the carrier and forming it into a hollow cylinder shape. Material 4
is accommodated.

湿度調整室1には、オゾンを含有する被処理ガ
スの流入管5とオゾン分解室3に連通する連通管
6が連結され、流入管5から流入した被処理ガス
がヒーター2によつて加温され、被処理ガスの比
較触媒を80%以下に調整できるようになつてい
る。湿度調整室1の連通管6は、オゾン分解室3
内の中空筒状ろ過材4の内側に連通され、またオ
ゾン分解室3には中空筒状ろ過材4の外側に連通
する処理ガス流出管7が連結されている。
An inflow pipe 5 for a gas to be treated containing ozone and a communication pipe 6 communicating with the ozone decomposition chamber 3 are connected to the humidity adjustment chamber 1, and the gas to be treated that flows in from the inflow pipe 5 is heated by a heater 2. This makes it possible to adjust the comparative catalyst of the gas to be treated to 80% or less. The communication pipe 6 of the humidity adjustment chamber 1 is connected to the ozone decomposition chamber 3.
A process gas outflow pipe 7 is connected to the ozone decomposition chamber 3 and communicated with the outside of the hollow cylindrical filter material 4 .

図中、8は湿度調整室1の連通管6の室内開口
部を覆う短絡防止用の邪魔板を示し、9はオゾン
分解室3内部で被処理ガスを中空筒状ろ過材4へ
誘導するための邪魔板を示す。
In the figure, 8 indicates a baffle plate for preventing short circuits that covers the indoor opening of the communication pipe 6 of the humidity adjustment chamber 1, and 9 indicates a baffle plate for guiding the gas to be treated to the hollow cylindrical filter material 4 inside the ozone decomposition chamber 3. This shows the baffle plate.

第2図の例では、容器11内の中空筒状ろ過材
4の内側に湿度調整器たるヒーター2を配備し、
容器11には被処理ガスの流入管5がヒーター2
に連通するように連結される一方、処理ガス流出
管7が中空筒状ろ過材4の外側に連通するように
連結されている。
In the example shown in FIG. 2, a heater 2 serving as a humidity regulator is provided inside the hollow cylindrical filter material 4 in the container 11,
The inflow pipe 5 for the gas to be treated is connected to the heater 2 in the container 11.
The processing gas outlet pipe 7 is connected to communicate with the outside of the hollow cylindrical filter medium 4 .

これら図示例の装置において、オゾンを含有す
る被処理ガスは、流入管5から湿度調整室1内又
は容器11内に流入し、ヒーター2によつて加温
され比較湿度80%以下に調整されてガス中の水分
の結露が防止され、中空筒状ろ過材4の内側から
外側へ通気されてガス中のオゾンは分解処理さ
れ、処理ガス流出管7から流出する。
In these illustrated apparatuses, the gas to be treated containing ozone flows into the humidity adjustment chamber 1 or the container 11 from the inflow pipe 5, is heated by the heater 2, and is adjusted to a comparative humidity of 80% or less. Condensation of moisture in the gas is prevented, and ozone in the gas is decomposed by being vented from the inside to the outside of the hollow cylindrical filter medium 4, and then flows out from the treated gas outflow pipe 7.

この場合、ろ過材の被表面積は0.005m2/cm3
上と大きく、しかし中空筒状に形成されているた
めに、層厚50〜200mmという薄層で圧力損失を大
きくすることなく、SV2000〜10000Nm3−被処理
ガス/m3−ろ過材・hという大きな通気速度での
処理が可能であり、従来の粒状触媒では得られな
い高速処理を可能にする。
In this case, the surface area of the filter medium is large at 0.005 m 2 / cm 3 or more, but because it is formed in a hollow cylindrical shape, it is possible to use a thin layer with a thickness of 50 to 200 mm without increasing the pressure loss. It is possible to perform treatment at a high aeration rate of 10000Nm 3 -target gas/m 3 -filter material/h, enabling high-speed processing that cannot be achieved with conventional granular catalysts.

なお、前記第1図の例では、オゾン分解室3内
の被処理ガスの流れを、中空筒状ろ過材4の外側
から内側に通過させて処理ガス流出管7から流出
しているが、湿度調整室1から流出する被処理ガ
スを中空筒状ろ過材4の外側に導き、内側へ通過
させて処理ガス流出管7から流出するような構成
にすることができる。
In the example shown in FIG. 1, the flow of the gas to be treated in the ozone decomposition chamber 3 is passed from the outside to the inside of the hollow cylindrical filter material 4 and flows out from the treated gas outlet pipe 7. It is possible to adopt a configuration in which the gas to be treated flowing out from the adjustment chamber 1 is guided to the outside of the hollow cylindrical filter material 4, allowed to pass inside, and then flows out from the treated gas outflow pipe 7.

また、前記第2図の例でも、被処理ガスの流れ
を、ヒーター2を経て中空筒状ろ過材4の内側か
ら外側に通過させて処理ガス流出管7から流出し
ているが、ヒーター2を中空筒状ろ過材4の外側
周囲に配設し、被処理ガスをヒーター2を経て中
空筒状ろ過材4の外側から内側に通過させて処理
ガス流出管7から流出するような構成にすること
もできる。
Furthermore, in the example shown in FIG. 2, the flow of the gas to be treated passes through the heater 2 from the inside to the outside of the hollow cylindrical filter medium 4 and flows out from the process gas outlet pipe 7. It is arranged around the outside of the hollow cylindrical filter material 4, and has a configuration in which the gas to be treated passes through the heater 2 from the outside of the hollow cylindrical filter material 4 to the inside, and flows out from the treated gas outflow pipe 7. You can also do it.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、使用するろ
過材は無機系繊維又は有機系高分子樹脂繊維の表
面にマンガンその他の金属酸化物触媒を担持させ
て中空筒状に成形した極めて表面積の大きいもの
で、圧力損失低く、従来の粒状触媒では得られな
かつた高速処理が可能であり、さらに被処理ガス
を比較湿度80%以下に調整することによつて効果
的処理を確実にし、安全性高く経済的であり、ま
た中空筒状ろ過材によつて装置の小型化,軽量化
を可能とし、コンパクトでメンテナンスも容易と
なる等の多くの有益なる効果を期待することがで
きる。
As described above, according to the present invention, the filtration material used has an extremely large surface area, which is formed into a hollow cylindrical shape by supporting manganese or other metal oxide catalysts on the surface of inorganic fibers or organic polymer resin fibers. It has low pressure loss and enables high-speed processing that cannot be achieved with conventional granular catalysts. Furthermore, by adjusting the relative humidity of the gas to be treated to less than 80%, it ensures effective treatment and is highly safe. It is economical, and the hollow cylindrical filter material allows the device to be made smaller and lighter, making it compact and easy to maintain, and many other beneficial effects can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明の実施例を
示す縦断面図である。 1…湿度調節室、2…ヒーター、3…オゾン分
解室、4…中空筒状ろ過材、5…被処理ガスの流
入管、6…連通管、7…処理ガス流出管、8,9
…邪魔板、11…容器。
1 and 2 are longitudinal cross-sectional views showing embodiments of the present invention, respectively. DESCRIPTION OF SYMBOLS 1...Humidity control chamber, 2...Heater, 3...Ozone decomposition chamber, 4...Hollow cylindrical filter material, 5...Inflow pipe for treated gas, 6...Communication pipe, 7...Processed gas outflow pipe, 8, 9
...Baffle plate, 11...Container.

Claims (1)

【特許請求の範囲】 1 オゾンを含有する被処理ガスを流入せしめる
流入口を備えた湿度調整室と、無機系繊維又は有
機系高分子樹脂繊維の表面に金属酸化物触媒を担
持せしめて中空筒状に成形したろ過材を収容した
オゾン分解室とからなり、該オゾン分解室内の前
記中空筒状ろ過材の内側又は外側を前記湿度調整
室と連通せしめると共にオゾン分解室に前記中空
筒状ろ過材の外側又は内側に連通する処理ガス流
出口を設け、前記湿度調整室から流出する被処理
ガスが前記中空筒状ろ過材を通過して前記処理ガ
ス流出口から流出するようにしたことを特徴とす
るオゾン処理装置。 2 無機系繊維又は有機系高分子樹脂繊維の表面
に金属酸化物触媒を担持せしめて中空筒状に成形
したろ過材を容器内に収容し、該中空筒状ろ過材
の内側又は外側周囲に湿度調整器を配備し、前記
容器にオゾンを含有する被処理ガスの流入口を設
けて前記湿度調整器に連通せしめると共に容器に
前記中空筒状ろ過材の外側又は内側に連通する処
理ガス流出口を設け、前記湿度調整器から流出す
る被処理ガスが前記中空筒状ろ過材を通過して前
記処理ガス流出口から流出するようにしたことを
特徴とするオゾン処理装置。
[Scope of Claims] 1. A humidity control chamber equipped with an inlet through which a gas to be treated containing ozone flows, and a hollow cylinder in which a metal oxide catalyst is supported on the surface of inorganic fibers or organic polymer resin fibers. an ozone decomposition chamber containing a filter material formed into a shape, and the inside or outside of the hollow cylindrical filter material in the ozone decomposition chamber is communicated with the humidity adjustment chamber, and the hollow cylindrical filter material is placed in the ozone decomposition chamber. A processing gas outlet communicating with the outside or inside of the chamber is provided, and the processing gas flowing out from the humidity adjustment chamber passes through the hollow cylindrical filter material and flows out from the processing gas outlet. ozone treatment equipment. 2 A filtration medium formed into a hollow cylindrical shape by supporting a metal oxide catalyst on the surface of inorganic fibers or organic polymeric resin fibers is housed in a container, and humidity is applied around the inside or outside of the hollow cylindrical filtration medium. A regulator is provided, and the container is provided with an inlet for a gas to be treated containing ozone to communicate with the humidity regulator, and the container is provided with an outlet for the treated gas that communicates with the outside or inside of the hollow cylindrical filter medium. An ozone treatment apparatus characterized in that the treated gas flowing out from the humidity regulator passes through the hollow cylindrical filter material and flows out from the treated gas outlet.
JP63065770A 1988-03-22 1988-03-22 Method and device for treating ozone Granted JPH01242126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63065770A JPH01242126A (en) 1988-03-22 1988-03-22 Method and device for treating ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63065770A JPH01242126A (en) 1988-03-22 1988-03-22 Method and device for treating ozone

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2276192A Division JPH03143528A (en) 1990-10-17 1990-10-17 Treatment of ozone

Publications (2)

Publication Number Publication Date
JPH01242126A JPH01242126A (en) 1989-09-27
JPH0365213B2 true JPH0365213B2 (en) 1991-10-11

Family

ID=13296592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63065770A Granted JPH01242126A (en) 1988-03-22 1988-03-22 Method and device for treating ozone

Country Status (1)

Country Link
JP (1) JPH01242126A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109923A (en) * 1989-09-26 1991-05-09 Sakai Chem Ind Co Ltd Catalytic filter
JPH0418352U (en) * 1990-06-01 1992-02-17

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514094A (en) * 1974-07-01 1976-01-13 Mitsubishi Heavy Ind Ltd Ozonganjugasuchuno ozonbunkaijokyohoho
JPS5314688A (en) * 1976-07-28 1978-02-09 Toshiba Corp Production of ozone decomposition catalyst
JPS56133029A (en) * 1980-03-24 1981-10-17 Ryomei Eng Corp Ltd Filter for dezonizing
JPS62201648A (en) * 1986-03-03 1987-09-05 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for decomposing ozone

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514094A (en) * 1974-07-01 1976-01-13 Mitsubishi Heavy Ind Ltd Ozonganjugasuchuno ozonbunkaijokyohoho
JPS5314688A (en) * 1976-07-28 1978-02-09 Toshiba Corp Production of ozone decomposition catalyst
JPS56133029A (en) * 1980-03-24 1981-10-17 Ryomei Eng Corp Ltd Filter for dezonizing
JPS62201648A (en) * 1986-03-03 1987-09-05 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for decomposing ozone

Also Published As

Publication number Publication date
JPH01242126A (en) 1989-09-27

Similar Documents

Publication Publication Date Title
EP0360941B1 (en) Decompostion of volatile organic halogenated compounds contained in gases and aqueous solutions
US4780287A (en) Decomposition of volatile organic halogenated compounds contained in gases
US3469934A (en) Method of purifying closed atmospheres
JP4350081B2 (en) Exhaust gas treatment method and apparatus
US6391272B1 (en) Method for exhaust gas decontamination
EP0194366B1 (en) Method of cleaning exhaust gases
CN109414647B (en) Method for low-temperature gas cleaning and catalyst used for method
CN112090273A (en) Photocatalyst-loaded filler and its high-gravity NO removalxApparatus and process of
WO2013000115A1 (en) Ozone treatment of wastewater
JPH0443703B2 (en)
JPH0365213B2 (en)
JPH06142440A (en) Oxidation treatment of gas containing harmful gas and device for the same
KR102241219B1 (en) Air purifier
EP1029580A1 (en) Method for removing nitrogen oxides in exhaust gas
KR101918938B1 (en) Volatile Organic Compounds decompose device
JPH09155160A (en) Apparatus for decomposing and removing volatile organic compound and method therefor
JPH03143528A (en) Treatment of ozone
JP2002361044A (en) Method for treating waste gas and liquid chemicals
CN208340461U (en) A kind of photooxidation catalytic waste gas processing system
JP2548665B2 (en) Adsorption treatment method
JPH11179154A (en) Method and apparatus for cleaning of air pollution hazardous substance
JP2003340241A (en) Organic compound decomposition device
KR100785523B1 (en) Amonia oxidation catalyst and removal method of ammonia using the same
KR200197480Y1 (en) Wet appartus use of removed the smell using the photocatalysis
CN108554166A (en) A kind of method that vacuum ultraviolet joint ozone catalytic removes formaldehyde