JPS62201648A - Catalyst for decomposing ozone - Google Patents

Catalyst for decomposing ozone

Info

Publication number
JPS62201648A
JPS62201648A JP61044076A JP4407686A JPS62201648A JP S62201648 A JPS62201648 A JP S62201648A JP 61044076 A JP61044076 A JP 61044076A JP 4407686 A JP4407686 A JP 4407686A JP S62201648 A JPS62201648 A JP S62201648A
Authority
JP
Japan
Prior art keywords
catalyst
ozone
carrier
alumina
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61044076A
Other languages
Japanese (ja)
Other versions
JPH0443703B2 (en
Inventor
Kazuo Hata
和男 秦
Makoto Horiuchi
真 堀内
Keijirou Takasaki
高崎 恵次郎
Shoichi Ichihara
市原 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP61044076A priority Critical patent/JPS62201648A/en
Publication of JPS62201648A publication Critical patent/JPS62201648A/en
Publication of JPH0443703B2 publication Critical patent/JPH0443703B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To obtain a catalyst for decomposing ozone which is excellent in activity at low temp. and is enhanced in durability by constituting a carrier of the catalyst for decomposing ozone of a mineral fibrous carrier. CONSTITUTION:In a catalyst for decomposing ozone wherein specially ozone contained in gas is catalytically decomposed, as a carrier of the catalyst for decomposing ozone, a mineral fibrous molded material or laminated material having high specific surface area such as alumina and silica is used. A catalytic substance such as Mn and Fe, etc., having decomposition performance for ozone is deposited on the mineral fibrous carrier. The catalyst for decomposing ozone obtained by such a way has excellent decomposition performance for ozone at <=50 deg.C especially even at low temp. of 10-20 deg.C, and is excellent in durability.

Description

【発明の詳細な説明】 〈産業上の利用分野) 本発明はオゾン分解触媒、特にガス中に含有されるオゾ
ンを接触的に分解する触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an ozone decomposition catalyst, particularly to a catalyst that catalytically decomposes ozone contained in gas.

〈従来の技術とその問題点〉 オゾンは強い酸化能を有し、分解すると無害な酸素にな
るために脱臭、殺菌、漂白または排水中のCOD減少等
の目的でさまざまな分野において幅広く利用されている
。しかし処理に利用されたオゾンは一部未反応のまま大
気中に放出されるために光化学スモッグ等の二次公害を
発生させる恐れがある。また、航空機が成層圏を飛行す
る場合機内にオゾンを含む空気が導入されるため乗客や
搭乗員に悪影響を及ぼす危険性がある。
<Conventional technology and its problems> Ozone has strong oxidizing ability and becomes harmless oxygen when decomposed, so it is widely used in various fields for purposes such as deodorization, sterilization, bleaching, and reducing COD in wastewater. There is. However, some of the ozone used in the treatment is released into the atmosphere unreacted, which may cause secondary pollution such as photochemical smog. Furthermore, when an aircraft flies in the stratosphere, air containing ozone is introduced into the cabin, which poses a risk of adversely affecting passengers and crew.

さらに、最近、各種の高電圧発生装置を組み込んだ機器
、例えば乾式の複写機等からのオゾン発生が問題となっ
ており、これ等の機器は主に室内に置かれるためにオゾ
ンの発生は微口であっても室内が汚染される。
Furthermore, ozone generation from devices that incorporate various high-voltage generators, such as dry-type copying machines, has recently become a problem, and since these devices are mainly placed indoors, ozone generation is minimal. Even the mouth can contaminate the room.

オゾンの臭いは11)I)−以下の濃度で感知でき、2
 ppm以上の濃度では呼吸器系に刺激を引き起こし、
人体に有害となるために各種の発生源から排出されるオ
ゾンを除去し、無害化する必要がある。
The odor of ozone can be detected at concentrations below 11)I)-, and 2
Concentrations above ppm cause irritation to the respiratory system,
Ozone, which is harmful to the human body, is emitted from various sources and needs to be removed and rendered harmless.

従来、用いられてきた廃オゾンの処理技術としては活性
炭法、薬液洗浄法および熱分解法がある。
Conventionally used waste ozone treatment techniques include an activated carbon method, a chemical cleaning method, and a thermal decomposition method.

活性炭法は低濃度オゾンの処理に利用されているが、オ
ゾン分解の進行に伴って、活性炭が消耗するために補充
する必要があり、また高濃度のオゾンを処理する場合は
反応熱により活性炭自身が発火、燃焼する危険性がある
ので取り扱い上面層がある。
The activated carbon method is used to treat low-concentration ozone, but as ozone decomposition progresses, the activated carbon is consumed and needs to be replenished, and when treating high-concentration ozone, the activated carbon itself is destroyed by the heat of reaction. Since there is a risk of ignition and combustion, there is a layer on the top that must be handled.

薬液洗浄法は還元性物質の水溶液で廃オゾンを洗浄する
ために処理コストが高く、廃水処理の問題も生じる。
The chemical cleaning method involves cleaning waste ozone with an aqueous solution of a reducing substance, resulting in high treatment costs and problems in wastewater treatment.

熱分解法は分解効率を上げるためには300℃以上の加
熱が必要であり、多量の排ガスを処理するためには加熱
費用がかかり、処理コストが高くなるなどの欠点がある
The thermal decomposition method requires heating to 300° C. or higher in order to increase the decomposition efficiency, and has drawbacks such as high heating costs and high processing costs in order to treat a large amount of exhaust gas.

一方、近年廃オゾン処理方法として触媒分解法が研究さ
れており、この方法は発火、爆発の危険性がなく、廃水
処理も不要であり、低コストでオゾンを分解除去できる
ために有利な方法とされている。
On the other hand, in recent years, research has been conducted on the catalytic decomposition method as a waste ozone treatment method.This method is advantageous because it has no risk of ignition or explosion, does not require wastewater treatment, and can decompose and remove ozone at a low cost. has been done.

オゾン分解触媒には貴金属を用いた触媒(特開昭57−
122942号など)、ニッケル、マンガン、コバルト
等の酸化物を用いた触媒(特開昭60−97049号)
が知られているが、それぞれ室温から100℃での低温
度領域での活性が低く、又、実用触媒としての分解効率
が低く、耐久性にも問題があるので、低温度領域で高活
性高耐久性を示す触媒の提供が要望されている。
A catalyst using precious metals as an ozone decomposition catalyst (Japanese Unexamined Patent Publication No. 57-
122942, etc.), catalysts using oxides of nickel, manganese, cobalt, etc. (JP-A-60-97049)
However, each has low activity in the low temperature range from room temperature to 100°C, and also has low decomposition efficiency as a practical catalyst and has problems with durability. There is a need to provide catalysts that exhibit durability.

〈発明の目的〉 本発明の目的は、ガス中に含まれるオゾンを酸素へ接触
的に分解するにあたり、低温活性に優れ、耐久性の高い
オゾン分解触媒を提供するものである。
<Object of the Invention> An object of the present invention is to provide an ozone decomposition catalyst that has excellent low-temperature activity and is highly durable when catalytically decomposing ozone contained in gas into oxygen.

〈問題点を解決するための手段〉 本発明者らは、上記目的に沿って問題点を検討した結果
、無機質1111状担体にオゾン分解能を有する触媒物
質を担持せしめてなるオゾン分解触媒が50℃以下、特
に10〜20℃の低温でも優れたオゾン分解性能を示し
、且つ耐久性にも優れることを見い出し、本発明を完成
するに至った。すなわち、本発明の触媒の特徴はオゾン
分解触媒に担体として高比表面積を有する無機質lIN
状成状体型体くは積層体等の如き無機質繊維状担体を用
いることにある。本発明者らは、例えば、アルミナ、シ
リカ、チタニア、アルミナ−シリカ等からなる無機質m
Nは通気性、ガスの分散性、触媒物質の保持性が優れて
おり、耐熱性も高く、また熱容量が小さいという特性を
有し、該担体にはオゾン分解能を有する触媒物質は高分
散状態で担持されるために、従来のベレット型やモノリ
ス型触媒と異なりオゾンを含有するガスと接触せしめた
とき、その通気性により接触効率が非常に高くなり、そ
の結果優れたオゾン分解性能を有するということを知見
した。
<Means for Solving the Problems> As a result of studying the problems in accordance with the above objectives, the present inventors found that an ozone decomposition catalyst comprising an inorganic 1111-like carrier supporting a catalytic material having ozone decomposition ability was developed at 50°C. Hereinafter, it was discovered that it exhibits excellent ozone decomposition performance even at low temperatures of 10 to 20°C, and is also excellent in durability, and the present invention has been completed. That is, the feature of the catalyst of the present invention is that an inorganic lIN having a high specific surface area is used as a carrier for the ozone decomposition catalyst.
The purpose is to use an inorganic fibrous carrier such as a shaped body or a laminate. The present inventors have discovered that an inorganic matrix consisting of, for example, alumina, silica, titania, alumina-silica, etc.
N has excellent air permeability, gas dispersibility, and catalytic material retention, and has high heat resistance and low heat capacity. Because it is supported, unlike conventional pellet-type or monolith-type catalysts, when it comes into contact with ozone-containing gas, the contact efficiency is extremely high due to its air permeability, resulting in excellent ozone decomposition performance. I found out.

本発明にかかる無機質繊維状担体としては、例えば、ア
ルミナ、シリカ、チタニア、アルミナ−シリカ、ジルコ
ニア、アルミナ−シリカ−マグネ、シア等からなる繊維
の成型体もしくは積層体を用いることができるが、特に
アルミナ系繊維が好ましい。
As the inorganic fibrous carrier according to the present invention, for example, molded bodies or laminates of fibers made of alumina, silica, titania, alumina-silica, zirconia, alumina-silica-magne, shea, etc. can be used, but in particular Alumina fibers are preferred.

無機質armの比表面積は少なくとも10TrL 70
以上あればよいが、触媒物質の分散性向上のため高比表
面積を有する程よ<100〜150TrL2/Qのもの
が特に好ましく、低温活性にも優れる。
The specific surface area of the inorganic arm is at least 10TrL 70
Any above is acceptable, but those having a high specific surface area of <100 to 150 TrL2/Q are particularly preferable in order to improve the dispersibility of the catalyst substance, and are also excellent in low-temperature activity.

又、繊維径は0.5〜20μm1特に1〜10μmが好
ましく、成型体もしくは積層体のかさ密度はガスの通気
性および形状維持のためには0.005〜ICJ/cc
、特に0.02〜0.2g/ccが好ましい。
The fiber diameter is preferably 0.5 to 20 μm, especially 1 to 10 μm, and the bulk density of the molded product or laminate is 0.005 to ICJ/cc for gas permeability and shape maintenance.
, particularly preferably 0.02 to 0.2 g/cc.

本発明のオゾン分解触媒は上記の性質を有するような無
機質繊維状担体にオゾン分解能を有する触媒物質、例え
ば、マンガン(Mn)、鉄(Fe)、銅(CU)、コバ
ルト(Co)、ニッケル(Ni)、銀(Ag)、白金(
Pt)、パラジウム(Pd)、ロジウム(Rh)等の金
属塩の水溶液を含浸担持後、乾燥し焼成するか必要に応
じてさらに還元処理する等の従来の方法によって製造す
ることができる。該触媒物質の担持量は無機質繊維状担
体に対して0.1〜30重量%、好ましくは0.3〜1
0重量%の範囲であるが、これらに限定されるものでは
ない。
The ozone decomposition catalyst of the present invention uses an inorganic fibrous carrier having the above properties and a catalytic material having an ozone decomposition ability, such as manganese (Mn), iron (Fe), copper (CU), cobalt (Co), nickel ( Ni), silver (Ag), platinum (
It can be produced by a conventional method such as impregnating and supporting an aqueous solution of a metal salt such as Pt), palladium (Pd), or rhodium (Rh), followed by drying and firing, or further reduction treatment if necessary. The supported amount of the catalyst substance is 0.1 to 30% by weight, preferably 0.3 to 1% by weight based on the inorganic fibrous carrier.
The range is, but not limited to, 0% by weight.

本発明のオゾン分解触媒の製造方法の例として白金族金
属を使用した場合を一例として示すと、無!!! 14
1 M状担体に白金、パラジウム、ロジウムの水溶液の
化合物、例えば塩化白金酸、ジニトロジアンミン白金、
硝酸パラジウム、硝酸ロジウム等の水溶液を用いて;あ
るいはコロイド状の白金、パラジウム、ロジウムを用い
て公知の方法で担持し、その後乾燥、空気中で焼成し、
又は必要により水素−窒素中で還元するかヒドラジン等
の還元剤を用いて所定の触媒を得る。
As an example of the method for producing the ozone decomposition catalyst of the present invention, when a platinum group metal is used, there is no! ! ! 14
1 A compound of an aqueous solution of platinum, palladium, or rhodium on a M-shaped carrier, such as chloroplatinic acid, dinitrodiammine platinum,
Using an aqueous solution of palladium nitrate, rhodium nitrate, etc.; or using colloidal platinum, palladium, rhodium, supported by a known method, then dried and fired in air,
Alternatively, if necessary, a desired catalyst can be obtained by reduction in a hydrogen-nitrogen atmosphere or by using a reducing agent such as hydrazine.

白金、パラジウムおよびロジウムよりなる群から選ばれ
た少なくとも1種の金属の担持量は無機質繊維状担体に
対して0.1重量%以上、好ましくは0.3〜5重齢%
である。
The amount of at least one metal selected from the group consisting of platinum, palladium, and rhodium supported is 0.1% by weight or more, preferably 0.3 to 5% by weight, based on the inorganic fibrous carrier.
It is.

さらに、これら白金族金属のうち一部をマンガン、銀、
鉄、銅、コバルト、ニッケル等の金属の酸化物で置換す
ることも、又、白金族金属に添加することも可能である
Furthermore, some of these platinum group metals include manganese, silver,
It is also possible to substitute with oxides of metals such as iron, copper, cobalt, nickel, etc., or to add them to platinum group metals.

本発明の触媒によって処理されるオゾン濃度はガス中に
0.01〜io、oooppm程度含有するものである
が、必らずしもこの範囲に限定されるものではない。
The ozone concentration treated by the catalyst of the present invention is about 0.01 to io, ooppm contained in the gas, but is not necessarily limited to this range.

以下実施例および比較例を用いて本発明をさらに詳細に
説明するが、本発明はこれら実施例のみに限定されるも
のではない。
The present invention will be explained in more detail below using Examples and Comparative Examples, but the present invention is not limited only to these Examples.

実施例 1 平均繊維径約3μm、比表面積150TrL2/Qを有
し、シリカ51m%およびアルミナ95重量%よりなる
無機質繊維状担体を80℃の塩化白金酸を含有する水溶
液に浸漬した。同温度で1時間保持したのち担体を取り
出し120℃で3時間乾燥後空気中400℃で2時間焼
成して白金として2重量%を担持せしめた。
Example 1 An inorganic fibrous carrier having an average fiber diameter of about 3 μm, a specific surface area of 150 TrL2/Q, and consisting of 51 m% of silica and 95% by weight of alumina was immersed in an aqueous solution containing chloroplatinic acid at 80°C. After holding at the same temperature for 1 hour, the carrier was taken out, dried at 120°C for 3 hours, and then calcined in air at 400°C for 2 hours to support 2% by weight of platinum.

実施例 2 実施例1と同様の担体にジニトロジアンミン白金と硝酸
パラジウムを含有する水溶液に3分間浸漬した。次いで
、この担体を150℃で2時間乾燥後空気中450℃で
2時間焼成し、白金として0、8重量%、パラジウムと
してo、 a m m%を担持せしめた。
Example 2 The same carrier as in Example 1 was immersed in an aqueous solution containing dinitrodiammine platinum and palladium nitrate for 3 minutes. Next, this carrier was dried at 150° C. for 2 hours and then calcined in air at 450° C. for 2 hours to support 0.8% by weight of platinum and 0.8% by weight of palladium.

実施例 3 平均繊維径約2μm、比表面積95TrL2/Qを有し
、シリカ15重量%およびアルミナ85重量%よりなる
無機質繊維状担体を硝酸ニッケルと硝酸マンガンを含有
する水溶液に浸漬し、この担体を80℃で15時間乾燥
した後、600℃で2時間空気中で焼成した。次いで、
ジニトロジアンミン白金を含有する水溶液に浸漬し、1
50℃で2時間乾燥後空気中400℃で2時間焼成して
白金として0.8重量%、酸化ニッケル(Nip>とし
て0.5重量%、酸化マンガン(MnO2)として0.
5重量%担持せしめた。
Example 3 An inorganic fibrous carrier having an average fiber diameter of about 2 μm, a specific surface area of 95 TrL2/Q, and consisting of 15% by weight of silica and 85% by weight of alumina was immersed in an aqueous solution containing nickel nitrate and manganese nitrate. After drying at 80°C for 15 hours, it was fired in air at 600°C for 2 hours. Then,
Immersed in an aqueous solution containing dinitrodiammine platinum,
After drying at 50°C for 2 hours, it was fired in air at 400°C for 2 hours to obtain 0.8% by weight of platinum, 0.5% by weight of nickel oxide (Nip>), and 0.5% by weight of manganese oxide (MnO2).
It was supported at 5% by weight.

実施例 4 平均IM径約6μm、比表面積120TrL2/Qを有
するシリカ繊維にアルミナゾルを塗布し、150℃で3
時間乾燥後、600℃で2時間空気中で焼成してアルミ
ナとして8重置%被覆せしめた。
Example 4 Alumina sol was applied to silica fibers having an average IM diameter of about 6 μm and a specific surface area of 120 TrL2/Q, and
After drying for an hour, it was calcined in air at 600° C. for 2 hours to coat 8 layers of alumina.

次いで、硝酸パラジウムと硝酸ロジウムを含有する水溶
液に浸漬して実施例2と同様にしてパラジウムとして1
.9fiffi%、ロジウムとして0.1fl1%を担
持せしめた。
Next, it was immersed in an aqueous solution containing palladium nitrate and rhodium nitrate to obtain 1 as palladium in the same manner as in Example 2.
.. 9fiffi% and 0.1fl1% of rhodium was supported.

比較例 1 シリカ5重量%を含有する比表面積150TrL27g
の活性アルミナ粉末を3m径、長さ3mのタブレットに
打錠成型し、このベレットを80℃の塩化白金酸を含有
する水溶液に浸漬した。次いで実施例1と同様にして白
金として2重量%を担持せしめた。
Comparative Example 1 Specific surface area 150TrL27g containing 5% by weight of silica
The activated alumina powder was compressed into a tablet with a diameter of 3 m and a length of 3 m, and the pellet was immersed in an aqueous solution containing chloroplatinic acid at 80°C. Next, in the same manner as in Example 1, 2% by weight of platinum was supported.

実施例 5 実施例1〜4、比較例1で得られた各触媒につき、次に
ような方法でオゾン分解率を求めた。
Example 5 For each catalyst obtained in Examples 1 to 4 and Comparative Example 1, the ozone decomposition rate was determined by the following method.

内径20amのパイレックス製反応管に触媒12゜4−
を充填し、オゾンを10ppn+含有する空気を0.2
5Nm3/hrの流速(空間速度20. OOOHr−
1)で触媒層に導入し、反応温度20〜100℃におけ
るオゾン分解率を求めた。
Catalyst 12゜4- in a Pyrex reaction tube with an inner diameter of 20 am.
and 0.2% of air containing 10ppn+ ozone.
Flow rate of 5 Nm3/hr (space velocity 20.OOOHr-
1) was introduced into the catalyst layer, and the ozone decomposition rate at a reaction temperature of 20 to 100°C was determined.

オゾン分解率は次式により算出した。The ozone decomposition rate was calculated using the following formula.

オゾン分解率(2)= 得られた結果を表−1に示す。表−1より本発明による
触媒は20℃の室温でオゾン分解率95%以上あり低温
活性に非常に優れているが、比較例1のベレット型触媒
は20℃でのオゾン分解率が54%であり、本発明の繊
維状触媒に比較して低温活性が劣っている。
Ozone decomposition rate (2) = The obtained results are shown in Table-1. Table 1 shows that the catalyst according to the present invention has an ozone decomposition rate of 95% or more at room temperature of 20°C and has excellent low-temperature activity, but the pellet type catalyst of Comparative Example 1 has an ozone decomposition rate of 54% at 20°C. However, the low-temperature activity is inferior to that of the fibrous catalyst of the present invention.

実施例 6 実施例1〜2で得られた触媒につき実施例5と同様の方
法で100時間の耐久試験を行なった。
Example 6 The catalysts obtained in Examples 1 and 2 were subjected to a 100 hour durability test in the same manner as in Example 5.

得られた結果を表−2に示す。表−2より本発明による
触媒は100時間の耐久実験経過後もオゾン分解率は反
応初期と同じであり、耐久性の優れた触媒であることが
わかる。
The results obtained are shown in Table-2. From Table 2, it can be seen that the ozone decomposition rate of the catalyst according to the present invention was the same as that at the beginning of the reaction even after a 100-hour durability experiment, indicating that it is a catalyst with excellent durability.

表 −1オゾン分解率(%) 手  続  補  正  書  く自発)昭和61年 
3月 31日
Table 1: Ozone decomposition rate (%) (procedures, amendments, voluntary) 1985
March 31st

Claims (4)

【特許請求の範囲】[Claims] (1)オゾン分解能を有する触媒物質を担持せしめてな
るオゾン分解触媒において、担体が無機質繊維状担体で
あることを特徴とするオゾン分解触媒。
(1) An ozone decomposition catalyst comprising a catalytic material having an ozone decomposition ability supported, wherein the support is an inorganic fibrous support.
(2)該触媒物質がマンガン(Mn)、鉄(Fe)、銅
(Cu)、コバルト(Co)、ニッケル(Ni)、銀(
Ag)、白金(Pt)、パラジウム(Pd)およびロジ
ウム(Rh)よりなる群から選ばれた少なくとも一種の
元素の金属、酸化物または複合酸化物である特許請求の
範囲第(1)項記載の触媒。
(2) The catalyst material is manganese (Mn), iron (Fe), copper (Cu), cobalt (Co), nickel (Ni), silver (
Claim (1), which is a metal, oxide or composite oxide of at least one element selected from the group consisting of Ag), platinum (Pt), palladium (Pd) and rhodium (Rh). catalyst.
(3)該無機質繊維状担体がアルミナ、シリカ、チタニ
アまたはアルミナ−シリカ担体である特許請求の範囲第
(1)項記載の触媒。
(3) The catalyst according to claim (1), wherein the inorganic fibrous carrier is an alumina, silica, titania or alumina-silica carrier.
(4)該無機質繊維状担体が10m^2/g以上の比表
面積を有する担体である特許請求の範囲第(1)項記載
の触媒。
(4) The catalyst according to claim (1), wherein the inorganic fibrous carrier has a specific surface area of 10 m^2/g or more.
JP61044076A 1986-03-03 1986-03-03 Catalyst for decomposing ozone Granted JPS62201648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61044076A JPS62201648A (en) 1986-03-03 1986-03-03 Catalyst for decomposing ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61044076A JPS62201648A (en) 1986-03-03 1986-03-03 Catalyst for decomposing ozone

Publications (2)

Publication Number Publication Date
JPS62201648A true JPS62201648A (en) 1987-09-05
JPH0443703B2 JPH0443703B2 (en) 1992-07-17

Family

ID=12681531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61044076A Granted JPS62201648A (en) 1986-03-03 1986-03-03 Catalyst for decomposing ozone

Country Status (1)

Country Link
JP (1) JPS62201648A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2618134A1 (en) * 1987-07-14 1989-01-20 Nikki Universal Co Ltd CATALYST OF OZONE CRACKING
JPH01242126A (en) * 1988-03-22 1989-09-27 Ebara Infilco Co Ltd Method and device for treating ozone
JPH02218437A (en) * 1989-02-21 1990-08-31 Sakai Chem Ind Co Ltd Catalyst for ozone decomposition
JPH02222729A (en) * 1989-02-22 1990-09-05 Mitsubishi Kasei Corp Catalyst for decomposition of ozone and production thereof
JPH03101069A (en) * 1989-09-04 1991-04-25 Matsushita Electric Ind Co Ltd Catalyst plug for accumulator
JPH03143528A (en) * 1990-10-17 1991-06-19 Ebara Infilco Co Ltd Treatment of ozone
FR2679791A1 (en) * 1991-07-19 1993-02-05 Nichias Corp OZONE FILTER.
US5286700A (en) * 1990-09-29 1994-02-15 Nippon Shokubai Co., Ltd. Catalyst and method of preparing the catalyst
US5462905A (en) * 1992-08-21 1995-10-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst
US5472676A (en) * 1989-05-11 1995-12-05 Nippon Shokubai Co., Ltd. Method of deodorizing a gas containing maloderous components
JPH08192054A (en) * 1995-01-13 1996-07-30 Showa Denko Kk Ozone decomposition catalyst
EP0754493A2 (en) 1995-07-21 1997-01-22 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases and process for producing the same
JP2010048461A (en) * 2008-08-21 2010-03-04 Seibu Giken Co Ltd Total enthalpy heat exchanger
US7875251B2 (en) 2005-05-09 2011-01-25 Toyo Boseki Kabushiki Kaisha Ozone-decomposing agent
JP2016534861A (en) * 2013-10-30 2016-11-10 ビーエーエスエフ コーポレーション Catalyst coating to prevent contamination

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115187A (en) * 1974-02-21 1975-09-09
JPS5684634A (en) * 1979-12-13 1981-07-10 Paramaunto Glass Kogyo Kk Ozone decomposing filter consisting of mat made of glass fiber and its production
JPS56161836A (en) * 1980-05-16 1981-12-12 Kyushu Refract Co Ltd Catalyst for manufacture of synthetic natural gas and its manufacture
JPS60261547A (en) * 1984-06-11 1985-12-24 Shiki Roll Kk Catalyst filter and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115187A (en) * 1974-02-21 1975-09-09
JPS5684634A (en) * 1979-12-13 1981-07-10 Paramaunto Glass Kogyo Kk Ozone decomposing filter consisting of mat made of glass fiber and its production
JPS56161836A (en) * 1980-05-16 1981-12-12 Kyushu Refract Co Ltd Catalyst for manufacture of synthetic natural gas and its manufacture
JPS60261547A (en) * 1984-06-11 1985-12-24 Shiki Roll Kk Catalyst filter and its manufacture

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2618134A1 (en) * 1987-07-14 1989-01-20 Nikki Universal Co Ltd CATALYST OF OZONE CRACKING
JPH01242126A (en) * 1988-03-22 1989-09-27 Ebara Infilco Co Ltd Method and device for treating ozone
JPH0365213B2 (en) * 1988-03-22 1991-10-11
JPH02218437A (en) * 1989-02-21 1990-08-31 Sakai Chem Ind Co Ltd Catalyst for ozone decomposition
JPH02222729A (en) * 1989-02-22 1990-09-05 Mitsubishi Kasei Corp Catalyst for decomposition of ozone and production thereof
US5472676A (en) * 1989-05-11 1995-12-05 Nippon Shokubai Co., Ltd. Method of deodorizing a gas containing maloderous components
JPH03101069A (en) * 1989-09-04 1991-04-25 Matsushita Electric Ind Co Ltd Catalyst plug for accumulator
US5286700A (en) * 1990-09-29 1994-02-15 Nippon Shokubai Co., Ltd. Catalyst and method of preparing the catalyst
JPH03143528A (en) * 1990-10-17 1991-06-19 Ebara Infilco Co Ltd Treatment of ozone
FR2679791A1 (en) * 1991-07-19 1993-02-05 Nichias Corp OZONE FILTER.
US5462905A (en) * 1992-08-21 1995-10-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst
JPH08192054A (en) * 1995-01-13 1996-07-30 Showa Denko Kk Ozone decomposition catalyst
EP0754493A2 (en) 1995-07-21 1997-01-22 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases and process for producing the same
US7875251B2 (en) 2005-05-09 2011-01-25 Toyo Boseki Kabushiki Kaisha Ozone-decomposing agent
JP2010048461A (en) * 2008-08-21 2010-03-04 Seibu Giken Co Ltd Total enthalpy heat exchanger
JP2016534861A (en) * 2013-10-30 2016-11-10 ビーエーエスエフ コーポレーション Catalyst coating to prevent contamination

Also Published As

Publication number Publication date
JPH0443703B2 (en) 1992-07-17

Similar Documents

Publication Publication Date Title
JP3326836B2 (en) Catalyst body and method for producing catalyst body
EP0306945B1 (en) Oxidation of carbon monoxide and catalyst therefor
AU698375B2 (en) Catalyst with zirconia/ceria support
US4343776A (en) Ozone abatement catalyst having improved durability and low temperature performance
JPS62201648A (en) Catalyst for decomposing ozone
US5585083A (en) Catalytic process for formaldehyde oxidation
US4405507A (en) Ozone abatement catalyst having improved durability and low temperature performance
EP0107465B1 (en) Purification of gases
JP3230427B2 (en) Catalyst for purifying fumigation exhaust gas and method for purifying fumigation exhaust gas
JP3688314B2 (en) Ammonia decomposition method
KR100506813B1 (en) Mn oxide catalyst for decomposing ozone and the method therefor
WO2000033955A1 (en) Process for producing a catalyst composition
JPH0947661A (en) Process and catalyst for purifying exhaust gas
JP2743437B2 (en) Method for producing ozone decomposition catalyst
JPS6297643A (en) Ozone decomposing catalyst
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JP3321423B2 (en) Exhaust gas purification method
JP2013208621A (en) Carbon monoxide oxidation catalyst and method for producing the same
JPH02307509A (en) Ozone decomposer
JPH10286432A (en) Purifying method of harmful gas
JP2007021482A (en) Ammonia decomposition catalyst and ammonia treating method
JPH0550340B2 (en)
JPH05329334A (en) Catalyst for purifying exhaust gas and method for purifying exhaust gas
JPH057776A (en) Catalyst and its manufacture
JPH02298317A (en) Decomposing method for ozone

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees