JPH0362667B2 - - Google Patents

Info

Publication number
JPH0362667B2
JPH0362667B2 JP63057020A JP5702088A JPH0362667B2 JP H0362667 B2 JPH0362667 B2 JP H0362667B2 JP 63057020 A JP63057020 A JP 63057020A JP 5702088 A JP5702088 A JP 5702088A JP H0362667 B2 JPH0362667 B2 JP H0362667B2
Authority
JP
Japan
Prior art keywords
manufacturing
silazane polymer
gas
organic silazane
infusible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63057020A
Other languages
Japanese (ja)
Other versions
JPS63243328A (en
Inventor
Minoru Takamizawa
Mitsuo Umemura
Masato Kanari
Yoshifumi Takeda
Akira Hayashida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP63057020A priority Critical patent/JPS63243328A/en
Publication of JPS63243328A publication Critical patent/JPS63243328A/en
Publication of JPH0362667B2 publication Critical patent/JPH0362667B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Ceramic Products (AREA)
  • Silicon Polymers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、セラミツクス前駆䜓ずしお有機シラ
ザン重合䜓を甚いたセラミツクスの補造方法に関
する。 埓来の技術及び発明が解決しようずする課題 セラミツクスは、耐熱性、耐摩耗性、高枩匷床
等に優れた材料ずしお泚目を集めおいるが、固
く、そしお脆いため、セラミツクスを加工するこ
ずは極めお困難である。埓぀お、セラミツクス補
品を補造する堎合、セラミツクス材料の埮粉末を
加圧等の方法により予め所望の圢状に成圢した
埌、焌結する方法、或いはセラミツクス前駆䜓ず
しおの有機重合䜓を溶融若しくは溶剀に溶解し、
これを所望の圢状に加工した埌、焌成しお無機化
する前駆䜓法等が採甚されおいる。䞊蚘前駆䜓法
の最倧の特城は、埮粉末による焌結法では䞍可胜
な圢状のセラミツクス補品を埗るこずができ、埓
぀お繊維状或いはシヌト状ずい぀た特殊圢状の補
品を補造し埗るこずである。 この堎合、䞀般にセラミツクスず呌ばれるもの
のうちSiC及びSi3N4は、それぞれSiCが耐熱性、
高枩匷床に優れ、Si3N4が耐熱衝撃性、砎壊靱性
に優れるなど、高枩での優れた特性を有するため
に広く泚目を集めおおり、このため埓来より、䞋
蚘〜に瀺すように、前駆䜓法によるSiC−Si3
N4系セラミツクスの補造方法及びその有機珪玠
前駆䜓の補造方法に関する皮々の提案がなされお
いるが、これらの提案はいずれも問題点を有する
ものであ぀た。即ち 米囜特蚱第3853567号明现曞には、クロロシ
ラン類ずアミン類ずを反応させ、次いで200〜
800℃に加熱しおカルボシラザンを埗た埌、こ
れを玡糞、䞍融化しお800〜2000℃で高枩焌成
するこずにより、SiC−Si3N4系セラミツクス
を埗る方法が開瀺されおいる。しかし、この方
法は、カルボシラザンを埗るために520〜650℃
ずいう高枩が必芁であ぀お、工業的補法ずしお
極めお困難であるこず、たたカルボシラザンを
無機化する際にセラミツク化収率が玄55ずい
う䜎収率ずなるこずずい぀た欠点を有する。な
お、この米囜特蚱明现曞の実斜䟋には、クロロ
シラン類ずしおはメチルトリクロロシラン、ゞ
メチルゞクロロシラン、アミン類ずしおはメチ
ルアミンの䟋しか蚘述されおいない。 米囜特蚱第4097294号明现曞には、皮々の珪
玠を含有するポリマヌが熱分解によ぀おセラミ
ツク物質に倉換されるこずが瀺されおいる。し
かし、シラザンポリマヌに関しおは僅かに䞀䟋
しか開瀺されおおらず、しかもそのセラミツク
化収率は最倧で12ずいう䜎収率である。た
た、この米囜特蚱明现曞にはセラミツクスの繊
維化、薄膜化等も可胜であるず蚘茉されおいる
が、単にその可胜性を瀺唆したに過ぎず、前駆
䜓法で最も重芁ずされるポリマヌの成圢性、加
工性に぀いおは党く蚀及されおいない。 特開昭57−117532号公報には、クロロゞシラ
ン類ずゞシラザン類ずの反応により、特開昭57
−139124号公報にはクロロシラン類ずゞシラザ
ン類ずの反応により、特開昭58−63725号公報
にはクスゞシラン類ずアンモニアずの反応によ
り、特開昭60−135431号公報にはトリクロロシ
ランずゞシラザン類ずの反応により、それぞれ
シラザンポリマヌを埗るこずが瀺されおいる。
たた、米囜特蚱第4535007号明现曞にはクロロ
シラン類及びゞシラザン類に金属ハロゲン化物
を添加するこずにより、特開昭60−208331号公
報にはクロロゞシラン類及びゞシラザン類に金
属ハロゲン化物を添加するこずにより、それぞ
れシラザンポリマヌを補造するこずが開瀺され
おいる。以䞊のシラザンポリマヌは、いずれも
熱分解によ぀おセラミツク化が可胜であるずさ
れおいる。しかしながら、セラミツク化収率は
いずれのシラザンポリマヌも50〜60であ぀お
䜎収率である。たた、䞊蚘各刊行物は、の明
现曞ず同様に前駆䜓法で最も重芁であるポリマ
ヌの成圢性、加工性に぀いおは詳しく蚘茉され
おおらず、特に、繊維化の実斜䟋のないもの、
或いは繊維化した実斜䟋はあ぀おもそのセラミ
ツク化繊維の匷床に぀いおは蚀及しおいないも
のが殆どである。僅かに特開昭60−208331号公
報に匷床の蚘茉が芋られるが、この堎合も匕匵
匷床で53Kgmm2或いは63Kgmm2ずいう極めお匷
床の䜎いものしか埗られおいない。 特開昭60−226890号公報には、
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing ceramics using an organic silazane polymer as a ceramic precursor. Problems to be Solved by Conventional Technologies and Inventions Ceramics are attracting attention as materials with excellent heat resistance, wear resistance, and high-temperature strength, but it is extremely difficult to process ceramics because they are hard and brittle. It is. Therefore, when manufacturing ceramic products, there are two methods: first forming a fine powder of ceramic material into a desired shape using a method such as pressurization, and then sintering it, or melting an organic polymer as a ceramic precursor or using a solvent. dissolve,
A precursor method is employed in which the material is processed into a desired shape and then fired to become inorganic. The most important feature of the above precursor method is that it is possible to obtain ceramic products in shapes that are impossible with the sintering method using fine powder, and it is therefore possible to produce products with special shapes such as fibers or sheets. be. In this case, SiC and Si 3 N 4 , which are generally called ceramics, are heat resistant and SiC, respectively.
Si 3 N 4 has attracted wide attention due to its excellent properties at high temperatures, such as excellent thermal shock resistance and fracture toughness. SiC−Si 3 by physical method
Various proposals have been made regarding methods for producing N 4 -based ceramics and methods for producing organosilicon precursors thereof, but all of these proposals have had problems. That is, US Pat. No. 3,853,567 discloses that chlorosilanes and amines are reacted, and then
A method is disclosed in which SiC-Si 3 N 4 ceramics are obtained by heating to 800°C to obtain carbosilazane, spinning it, making it infusible, and firing at a high temperature of 800 to 2000°C. However, this method requires 520-650℃ to obtain carbosilazane.
This method requires high temperatures, making it extremely difficult as an industrial production method, and has drawbacks such as the low ceramicization yield of about 55% when carbosilazane is mineralized. In addition, in the examples of this US patent specification, only methyltrichlorosilane and dimethyldichlorosilane are described as chlorosilanes, and methylamine is described as an amine. U.S. Pat. No. 4,097,294 shows that various silicon-containing polymers are converted into ceramic materials by pyrolysis. However, only one example of silazane polymers has been disclosed, and the yield of ceramic formation is as low as 12% at maximum. Additionally, although this US patent specifies that it is possible to make ceramics into fibers and thin films, this is merely a suggestion of that possibility, and it is not intended to be a mere suggestion of the possibility of making ceramics into fibers or thin films. There is no mention of moldability or processability. JP-A No. 57-117532 discloses that the reaction between chlorodisilanes and disilazane
-139124 describes the reaction between chlorosilanes and disilazane, JP-A-58-63725 describes the reaction between chlorosilane and ammonia, and JP-A-60-135431 describes the reaction between trichlorosilane and disilazane. It has been shown that silazane polymers can be obtained by reaction with each other.
Furthermore, US Pat. No. 4,535,007 discloses that a metal halide is added to chlorosilanes and disilazane, and JP-A-60-208331 discloses that a metal halide is added to chlorodisilanes and disilazane. disclose the production of silazane polymers, respectively. It is said that all of the above silazane polymers can be made into ceramics by thermal decomposition. However, the ceramicization yield for all silazane polymers is 50 to 60%, which is a low yield. In addition, the above-mentioned publications do not describe in detail the moldability and processability of polymers, which are most important in the precursor method, as in the specification of .
In addition, even if there are examples of fiberized fibers, most of them do not mention the strength of the ceramicized fibers. There is a slight description of strength in JP-A-60-208331, but even in this case, only extremely low tensile strength of 53 Kg/mm 2 or 63 Kg/mm 2 was obtained. In Japanese Patent Application Laid-Open No. 60-226890,

【匏】 で瀺される有機珪玠化合物アンモニアずの反応
により、アンモノリシス生成物を埗た埌、この
生成物をアルカリ金属又はアルカリ土類金属の
氎玠化物で脱氎玠瞮合させおシラザンポリマヌ
を埗る方法が開瀺されおいる。この方法で埗ら
れるポリマヌは、脱氎玠瞮合の床合いによ぀お
その性状をオむル状から融点を持たない固䜓た
で皮々調敎するこずが可胜であるずされおい
る。しかし、ポリマヌを溶融した状態から成
圢、加工する堎合、䟋えば溶融玡糞法で連続繊
維を補造する堎合には、ポリマヌが䞀定重合床
でか぀熱的に安定であるこずが必芁であるが、
䞊蚘方法では重合を途䞭で停止させないずポリ
マヌが融点を持たない固䜓ずな぀おいたい、溶
融可胜なポリマヌを埗るためには反応時間、反
応枩床、觊媒量、溶媒量等の埮劙なコントロヌ
ルを必芁ずし、その調敎が非垞に困難であるず
共に、再珟性にかけるずいう問題がある。曎
に、この方法によ぀お埗られるポリマヌは熱的
に安定でなく、ゲル状物の生成を䌎うずい぀た
欠点があり、以䞊の二぀の点から䞊蚘方法はシ
ラザンポリマヌの工業的補法ずしお適圓ではな
い。 特開昭60−228489号公報には、
Discloses a method for obtaining an ammonolysis product by reacting an organosilicon compound represented by the formula with ammonia, and then dehydrogenating and condensing this product with an alkali metal or alkaline earth metal hydride to obtain a silazane polymer. has been done. It is said that the properties of the polymer obtained by this method can be varied from oil-like to solid with no melting point depending on the degree of dehydrogenation condensation. However, when molding and processing a polymer from a molten state, for example when producing continuous fibers by melt spinning, it is necessary that the polymer has a constant degree of polymerization and is thermally stable.
In the above method, unless the polymerization is stopped midway, the polymer will become a solid with no melting point, and in order to obtain a meltable polymer, delicate control of reaction time, reaction temperature, amount of catalyst, amount of solvent, etc. is required. However, the adjustment is very difficult and there are problems with reproducibility. Furthermore, the polymer obtained by this method has disadvantages such as not being thermally stable and accompanied by the formation of gel-like substances.For these two reasons, the above method is not suitable as an industrial method for producing silazane polymers. do not have. In Japanese Patent Application Laid-Open No. 60-228489,

〔実斜䟋 〕[Example 1]

アンモノリシス工皋 〔メチルゞクロロシランメチルトリクスロロ
シランゞメチルゞクロロシラン751510
モル〕 攪拌機、枩床蚈、NH3導入管、深冷コンデン
サヌを装備し、也燥したの぀口フラスコに
ヘキサン850mlを仕蟌んだ埌、メチルゞクロロシ
ラン43.1、メチルトリクロロシラン11.2、ゞ
メチルゞクロロシラン6.5を加え、−20℃に冷华
した。過剰の気䜓状アンモニアを12Hrの速
床で時間この溶液に加えたNH3党添加量2.1
モル。この反応混合物を宀枩たで枩め、その際
未反応NH3が逃げられるよう冷华噚を空冷凝瞮
噚に倉えた。 次に、ドラむボツクス䞭で反応混合物から副生
した塩化アンモニりムを過により陀去した。曎
にケヌクを200mlのヘキサンで掗浄し、液から
枛圧䞋60℃mmHgにおいおヘキサンをス
トリツプした。残留物アンモノリシス生成物
は透明な流動性の液䜓で、26を埗た。 アンモノリシス工皋 〔メチルゞクロロシランメチルトリクロロシ
ランゞメチルゞクロロシラン652510モ
ル〕 䞊蚘ず同様な装備をも぀の぀口フラスコ
にヘキサン850mlを仕蟌み、これにメチルゞクロ
ロシラン29.9、メチルトリクロロシラン14.9
、ゞメチルゞクロロシラン5.2を加え、−20℃
に冷华した。気䜓状アンモニアを12Hrの速
床で時間この溶液に加えた。その埌、䞊蚘ず
同様の凊理を行ない、透明な流動性の液䜓アン
モノリシス生成物20を埗た。 アンモノリシス工皋 〔メチルゞクロロシランメチルトリクロロシ
ランゞメチルゞクロロシラン652015モ
ル〕 䞊蚘ず同様な装備をも぀の぀口フラスコ
に脱氎ヘキサン1500mlを入れ、メチルゞクロロシ
ラン59.8、メチルトリクロロシラン23.9、ゞ
メチルゞクロロシラン15.5を加え、同様に気䜓
状アンモニアず反応させた。その埌、䞊蚘ず同
様に凊理し、透明な流動性液䜓アンモノリシス
生成物42を埗た。 重合工皋 300mlの぀口フラスコに撹拌機、枩床蚈、滎
䞋ロヌトをずり぀け、ドラむボツクス䞭で氎玠化
カリりム0.2ミリモル及びNaHで脱氎凊
理したTHF125mlをフラスコに泚入した。このフ
ラスコをドラむボツクス䞭よりずり出し、窒玠管
路に連結した。垞枩䞋、混合物を撹拌しおKHを
分散させながら滎䞋ロヌトよりTHF75mlに溶解
したアンモノリシス工皋で埗られた生成物10
を15分かけおゆ぀くりず加えた。この添加の間に
気䜓の発生がみられ、時間埌に気䜓の発生が停
止した。沃化メチルを加えるずKIの癜色沈
殿が生じた。曎に30分間撹拌埌、倧郚分のTHF
溶媒を枛圧で陀去し、残留する癜色スラリヌに80
mlのヘキサンを加えた。この混合物を過し、
液を枛圧䞋mmHg70℃におヘキサンを陀去
するず、9.1の粘皠固䜓シラザン重合䜓が
埗られた。 このものは固有粘床ベンれン、20℃0.07、
融点90℃で、ヘキサン、ベンれン、THF及びそ
の他の有機溶媒に可溶性であ぀た。たた、IRか
らは3400cm-1にNH、2980cm-1に−、2150cm
−にSi−、1260cm-1にSiCH3の各々の吞収が認
められた。たた、ベンれン凝固点降䞋法による分
子量枬定では1020であ぀た。 重合工皋 アンモノリシス工皋で埗られたアンモノリシ
ス生成物10を重合工皋ず同様にTHFäž­
KH0.2で90分反応させた。ガスの発生停止埌
CH3を添加し、以䞋同様の凊理をした。粘皠固
䜓シラザン重合䜓9.3が埗られ、このもの
は固有粘床0.08、融点120℃であ぀た。 重合工皋 アンモノリシス工皋で埗られたアンモノリシ
ス生成物10を重合工皋ず同様にTHFäž­
KH0.2で90分反応させた。ガスの発生停止埌
CH3を添加し、以䞋同様の凊理をした。粘皠固
䜓シラザン重合䜓9.1が埗られ、このもの
は固有粘床0.07、融点115℃であ぀た。 繊維化工皋 重合工皋で埗られたシラザン重合䜓30をモ
ルホヌル玡糞装眮ノズル盎埄0.5mmにより130
℃にお溶融玡糞した。玡糞は時間埌も非垞に良
奜で、捲取速床400mminで実斜し、曎に埗ら
れた生糞を電子線にお120Mradで䞍融化凊理を
行な぀た。その埌、わずかな匵力䞋、N2気流䞭
100℃Hrの昇枩速床で1100℃にお30分間焌成し
た。セラミツク収率は75であり、埗られた繊維
は繊維埄6Ό、匕匵匷床250Kgmm2、匟性率25tmm2
ずいう物性であ぀た。たた、繊維組成を元玠分析
により分析したずころ、Si58.3、C20.3、
N19.4、O2からなるSiC−Si3N4を䞻䜓ずす
る繊維であるこずが確認された。 繊維化工皋 重合工皋で埗られたシラザン重合䜓10を繊
維化工皋ず同様の玡糞装眮を甚いお160℃にお
溶融玡糞した。捲取速床は420mminで、玡糞
は非垞に良奜であ぀た。曎に埗られた生糞をわず
かな匵力䞋、空気䞭にお90〜110℃℃Hr
で加熱しお䞍融化を行な぀た。次いで無匵力䞋
N2気流䞭で100℃Hrの昇枩速床で1200℃にお
30分間焌成した。セラミツク収率は80であり、
埗られた繊維は繊維埄8Ό、匕匵匷床200Kgmm2、
匟性率17tmm2であ぀た。繊維組成を元玠分析し
たずころ、Si56.2、C19.2、N15.4、O9.2
からなるSiC−Si3N4を䞻䜓ずする繊維であ぀た。 繊維化工皋 重合工皋で埗られたシラザン重合䜓20をド
ラむボツクス䞭においお繊維化工皋ず同様の玡
糞装眮を甚いお150℃にお450mminの捲取速床
で溶融玡糞した。玡糞は終始良奜であ぀た。埗ら
れた生糞を真空䞭電子線装眮にお90Mradの照射
を行ない、䞍融化した。その埌、埗られた繊維を
匵力䞋N2気流䞭1250℃100℃Hrにお30分
間焌成した。セラミツク収率は77であ぀た。た
た、繊維は繊維埄6Ό、匕匵匷床260Kgmm2、匟性
率23tmm2であ぀た。 〔比范䟋〕 アンモノリシス工皋 撹拌機、枩床蚈、NH3導入管、深冷コンデン
サヌを装備したの぀口フラスコに脱氎ヘキ
サン850mlを仕蟌んだ埌、メチルゞクロロシラン
46を加えた。これに気䜓状アンモニアを12
Hrの速床で3.5時間導入し、反応させた。以䞋、
䞊蚘実斜䟋のアンモノリシス工皋ず同様の凊理
を行ない、2085の透明な流動性液䜓を埗
た。 重合工皋 300mlの぀口フラスコにKH0.2ずTHF125
mlを泚入埌、撹拌しおKHを分散させ、滎䞋ロヌ
トよりTHF75mlず前に埗られた透明な流動性液
䜓10の混合物を垞枩にお15分かけお滎䞋した。
滎䞋終了埌、30分しお反応を途䞭で停止するため
CH3I2を加えた。以䞋、実斜䟋の重合工皋ず
同様の凊理を行ない、粘皠固䜓9.0を埗た。こ
のものの固有粘床は0.06、融点は75℃であ぀た。
なお、この系での重合を枩床、觊媒量、重合時間
をコントロヌルしおポリマヌの重合床を䞀定にし
ようず詊みたが党く再珟性に欠けるものであ぀
た。 繊維化工皋 埗られたシラザン重合䜓をモノホヌルノ
ズル盎埄0.5mm玡糞装眮に仕蟌み、110℃にお溶
融させ、玡糞を行な぀た。初めはノズルよりの吐
出もよく、玡糞可胜であ぀たが、30分埌ノズルよ
り吐出しなくな぀た。枩床を埐々に䞊げたが党く
吐出せず、冷华埌、ポリマヌを取り出し、融点を
枬定したずころ、300℃でも溶融せず、曎には溶
媒にも䞍溶なものであ぀た。倚少玡糞できた生糞
を電子線にお90Mrad照射埌、N2気流䞭100℃
Hrの昇枩速床で1100℃にお30分間焌成した。セ
ラミツク収率は58であり、埗られた繊維は繊維
埄7Όで、匕匵匷床50Kgmm2、匟性率5tmm2ず䜎物
性であ぀た。 実斜䟋  実斜䟋の重合工皋で埗られた有機シラザン
重合䜓20重量郚、炭化珪玠粉末80重量郚、ヘキサ
ン100重量郚を混合しお分散・混緎した埌、ヘキ
サンを蒞発させた。埗られた混合粉末を1tmm2の
成圢圧で加圧成圢しお盎埄25mm×厚さ10mmのシヌ
ト䞊の圧粉成圢䜓を埗た。次いで、この圧粉成圢
䜓を宀枩から℃分の昇枩速床で150℃迄昇枩
し、150℃で時間保持しお䞍融化凊理した埌、
アルゎン気流䞭で宀枩から100℃Hrの昇枩速床
で1200℃たで昇枩し、この枩床で時間保持した
埌、炉を冷华した。埗られたセラミツク成圢䜓は
密床2.2cm3、曲げ匷床12Kgmm2であ぀た。 実斜䟋  実斜䟋の重合工皋で埗られた有機シラザン20
重量郚、窒化珪玠埮粉末平均粒埄1ÎŒm70重量
郚、炭化珪玠りむスカヌ15重量郚、キシレン30重
量郚をボヌルミルに入れお時間混合した。混合
終了埌、キシレンを枛圧䞋で陀去し、粉䜓を冷华
粉砕し、埮现な粉末ずした。この粉末を金型に入
れ、均䞀にならしお、1.5tcm2の圧力で加圧成圢
した埌、金型から成圢物を取り出し、厚さmmの
シヌト状成圢物を埗た。次いで、このシヌトを空
気䞭で宀枩から℃分の昇枩速床で150℃迄昇
枩し、150℃で時間保持しお、䞍融化凊理を行
った。曎に、䞍融化凊理したシヌトを窒玠雰囲気
䞋、200℃Hrの昇枩速床で1200℃たで昇枩し、
この枩床に時間保持した埌、炉を冷华した。埗
られたセラミツクシヌトは厚さ0.95mm、密床2.2
cm3で、可ずう性を有するものであ぀た。 実斜䟋  平均粒埄0.5ÎŒmのβ−炭玠珪玠粉末に、ホり玠
重量及び実斜䟋の重合工皋で埗られた有
機シラザン重合䜓15重量を添加し、混合したも
のず、長さcm、倪さ10〜15ÎŒmの炭化珪玠繊維
を䞀方向に均䞀に配向させたものを繊維含有量が
40容量になるように亀互に積局させた埌、金型
プレスで0.4tmm2の圧力で成圢した。この成圢䜓
を宀枩から℃分の昇枩速床で150℃たで昇枩
し、150℃で時間保持しお䞍融化凊理した埌、
窒玠気流䞋240℃Hrの昇枩速床で1600℃に加熱
し、次いで1400℃で時間保持しお、無機繊維匷
化耇合セラミツクスを埗た。このものの宀枩での
抗折匷床は40Kgmm2で、高物性であ぀た。
Ammonolysis step [Methyldichlorosilane: Methyltricchlorosilane: Dimethyldichlorosilane = 75:15:10
(mol%)] After charging 850 ml of hexane into a dry four-necked flask (1) equipped with a stirrer, thermometer, NH 3 inlet tube, and deep-cooled condenser, 43.1 g of methyldichlorosilane, 11.2 g of methyltrichlorosilane, 6.5 g of dimethyldichlorosilane was added and the mixture was cooled to -20°C. Excess gaseous ammonia was added to this solution at a rate of 12/Hr for 4 hours (total addition of NH 3 2.1
mole). The reaction mixture was warmed to room temperature while the condenser was replaced with an air-cooled condenser to allow unreacted NH3 to escape. Next, by-produced ammonium chloride was removed from the reaction mixture in a dry box by filtration. The cake was further washed with 200 ml of hexane, and the hexane was stripped from the liquid under reduced pressure (60°C/1 mmHg). Residue (ammonolysis product)
Obtained 26 g of clear fluid liquid. Ammonolysis process [Methyldichlorosilane: methyltrichlorosilane: dimethyldichlorosilane = 65:25:10 (mol%)] 850 ml of hexane was charged into a four-necked flask (1) equipped with the same equipment as above, and 29.9 ml of methyl dichlorosilane was added to the 4-necked flask. g, methyltrichlorosilane 14.9
g, add 5.2 g of dimethyldichlorosilane, -20℃
It was cooled to Gaseous ammonia was added to this solution at a rate of 12/Hr for 4 hours. Thereafter, the same treatment as above was carried out to obtain 20 g of a transparent fluid liquid (ammonolysis product). Ammonolysis process [Methyldichlorosilane: Methyltrichlorosilane: Dimethyldichlorosilane = 65:20:15 (mol%)] Pour 1500ml of dehydrated hexane into No. 2 four-necked flask equipped with the same equipment as above, and add 59.8g of methyldichlorosilane. , 23.9 g of methyltrichlorosilane, and 15.5 g of dimethyldichlorosilane were added, and reacted with gaseous ammonia in the same manner. It was then treated in the same manner as above to obtain 42 g of a clear fluid liquid (ammonolysis product). Polymerization Step A 300 ml three-necked flask was equipped with a stirrer, a thermometer, and a dropping funnel, and 0.2 g (5 mmol) of potassium hydride and 125 ml of THF dehydrated with NaH were poured into the flask in a dry box. This flask was taken out of the dry box and connected to a nitrogen pipe. 10 g of the product obtained in the ammonolysis step was dissolved in 75 ml of THF from the dropping funnel at room temperature while stirring the mixture to disperse KH.
was added slowly over 15 minutes. Gas evolution was observed during this addition and stopped after 1 hour. Addition of 3 g of methyl iodide resulted in a white precipitate of KI. After stirring for another 30 minutes, most of the THF
The solvent was removed under reduced pressure and the remaining white slurry was
ml of hexane was added. Strain this mixture
When the hexane was removed from the liquid at 70° C. under reduced pressure (1 mmHg), 9.1 g of a viscous solid (silazane polymer) was obtained. This one has an intrinsic viscosity (benzene, 20℃) of 0.07,
It had a melting point of 90°C and was soluble in hexane, benzene, THF and other organic solvents. Also, from IR, NH at 3400cm -1 , C-H at 2980cm -1 , and C-H at 2150cm
Absorption of Si-H at -1 and SiCH 3 at 1260 cm -1 were observed. Furthermore, the molecular weight was determined to be 1020 by benzene freezing point depression method. Polymerization process 10g of the ammonolysis product obtained in the ammonolysis process was added to THF in the same manner as in the polymerization process.
The reaction was carried out with 0.2 g of KH for 90 minutes. After gas generation stops
CH 3 I was added and the same treatment was carried out. 9.3 g of a viscous solid (silazane polymer) was obtained, which had an intrinsic viscosity of 0.08 and a melting point of 120°C. Polymerization process 10g of the ammonolysis product obtained in the ammonolysis process was added to THF in the same manner as in the polymerization process.
The reaction was carried out with 0.2 g of KH for 90 minutes. After gas generation stops
CH 3 I was added and the same treatment was carried out. 9.1 g of a viscous solid (silazane polymer) was obtained, which had an intrinsic viscosity of 0.07 and a melting point of 115°C. Fiberization process 30g of the silazane polymer obtained in the polymerization process was spun into fibers using a molhole spinning device (nozzle diameter 0.5mm).
Melt spinning was carried out at ℃. The spinning was very good even after 4 hours, and it was carried out at a winding speed of 400 m/min, and the obtained raw silk was further infusible treated with an electron beam at 120 Mrad. Then under slight tension and in a N2 stream
It was baked at 1100°C for 30 minutes at a temperature increase rate of 100°C/Hr. The ceramic yield was 75%, and the obtained fibers had a fiber diameter of 6Ό, a tensile strength of 250Kg/mm 2 , and an elastic modulus of 25t/mm 2
This is the physical property. In addition, when the fiber composition was analyzed by elemental analysis, Si58.3%, C20.3%,
It was confirmed that the fiber was mainly composed of SiC-Si 3 N 4 consisting of 19.4% N and 2% O. Fiberization step 10 g of the silazane polymer obtained in the polymerization step was melt-spun at 160° C. using the same spinning device as in the fiberization step. The winding speed was 420 m/min, and the spinning was very good. Furthermore, the obtained raw silk was heated at 90 to 110℃ (5℃/Hr) in air under slight tension.
It was heated to make it infusible. Then under no tension
At 1200°C with a heating rate of 100°C/Hr in a N2 stream
Bake for 30 minutes. The ceramic yield is 80%,
The obtained fiber has a fiber diameter of 8Ό, a tensile strength of 200Kg/mm 2 ,
The elastic modulus was 17t/ mm2 . Elemental analysis of the fiber composition revealed that Si56.2%, C19.2%, N15.4%, O9.2%
The fiber was mainly composed of SiC-Si 3 N 4 . Fiberization Step 20 g of the silazane polymer obtained in the polymerization step was melt-spun in a dry box at 150° C. at a winding speed of 450 m/min using the same spinning device as in the fiberization step. The spinning was good from beginning to end. The obtained raw silk was irradiated with 90 Mrad using an electron beam device in a vacuum to make it infusible. Thereafter, the obtained fibers were fired for 30 minutes at 1250° C. (100° C./Hr) in a N 2 stream under tension. The ceramic yield was 77%. The fibers had a fiber diameter of 6Ό, a tensile strength of 260Kg/mm 2 , and an elastic modulus of 23t/mm 2 . [Comparative example] Ammonolysis process After charging 850 ml of dehydrated hexane into a four-necked flask (1) equipped with a stirrer, thermometer, NH 3 inlet tube, and deep cooling condenser, methyldichlorosilane was added.
Added 46g. Add 12% gaseous ammonia to this
The reaction was carried out at a rate of Hr for 3.5 hours. below,
A treatment similar to the ammonolysis step of the above example was carried out to obtain 20 g (85%) of a clear flowable liquid. Polymerization process KH0.2g and THF125 in a 300ml three-necked flask
ml was injected, the KH was dispersed by stirring, and a mixture of 75 ml of THF and 10 g of the previously obtained transparent fluid liquid was added dropwise from the dropping funnel over 15 minutes at room temperature.
To stop the reaction 30 minutes after completion of the dropwise addition.
2 g of CH 3 I was added. Thereafter, the same treatment as in the polymerization step of the example was carried out to obtain 9.0 g of a viscous solid. This product had an intrinsic viscosity of 0.06 and a melting point of 75°C.
An attempt was made to control the temperature, amount of catalyst, and polymerization time to maintain a constant degree of polymerization in this system, but this resulted in a complete lack of reproducibility. Fiberization Step 8 g of the obtained silazane polymer was charged into a monohole (nozzle diameter: 0.5 mm) spinning device, melted at 110° C., and spun. Initially, the nozzle discharged well and spinning was possible, but after 30 minutes the nozzle no longer discharged. Although the temperature was gradually raised, the polymer did not discharge at all. After cooling, the polymer was taken out and its melting point was measured, and it was found that it did not melt even at 300°C and was also insoluble in the solvent. After irradiating the slightly spun raw silk with an electron beam at 90 Mrad, it was heated at 100°C in a N2 stream.
It was baked at 1100°C for 30 minutes at a heating rate of Hr. The ceramic yield was 58%, and the obtained fibers had a fiber diameter of 7Ό, a tensile strength of 50Kg/mm 2 , and an elastic modulus of 5t/mm 2 , which were low physical properties. [Example 2] 20 parts by weight of the organic silazane polymer obtained in the polymerization step of Example 1, 80 parts by weight of silicon carbide powder, and 100 parts by weight of hexane were mixed, dispersed and kneaded, and then the hexane was evaporated. The obtained mixed powder was pressure molded at a molding pressure of 1 t/mm 2 to obtain a compacted powder compact on a sheet with a diameter of 25 mm and a thickness of 10 mm. Next, this compacted compact was heated from room temperature to 150°C at a temperature increase rate of 2°C/min, and held at 150°C for 1 hour to be infusible.
The temperature was raised from room temperature to 1200°C at a temperature increase rate of 100°C/Hr in an argon stream, and after holding at this temperature for 1 hour, the furnace was cooled. The obtained ceramic molded body had a density of 2.2 g/cm 3 and a bending strength of 12 Kg/mm 2 . [Example 3] Organic silazane 20 obtained in the polymerization process of Example 1
Parts by weight, 70 parts by weight of silicon nitride fine powder (average particle size 1 Όm), 15 parts by weight of silicon carbide whiskers, and 30 parts by weight of xylene were placed in a ball mill and mixed for 8 hours. After mixing, the xylene was removed under reduced pressure, and the powder was cooled and ground into a fine powder. This powder was placed in a mold, leveled uniformly, and pressure-molded at a pressure of 1.5 t/cm 2 , and then the molded product was taken out from the mold to obtain a sheet-like molded product with a thickness of 1 mm. Next, this sheet was heated in air from room temperature to 150°C at a heating rate of 2°C/min, and held at 150°C for 1 hour to perform an infusibility treatment. Furthermore, the temperature of the infusible sheet was raised to 1200°C at a heating rate of 200°C/Hr in a nitrogen atmosphere.
After holding this temperature for 1 hour, the furnace was cooled. The obtained ceramic sheet has a thickness of 0.95 mm and a density of 2.2
g/cm 3 and had flexibility. [Example 4] 3% by weight of boron and 15% by weight of the organic silazane polymer obtained in the polymerization process of Example 1 were added to β-carbon silicon powder with an average particle size of 0.5 Όm, and a mixture of Silicon carbide fibers with a length of 5 cm and a thickness of 10 to 15 Όm are uniformly oriented in one direction, and the fiber content is
After layering them alternately to a volume of 40%, they were molded using a mold press at a pressure of 0.4t/mm 2 . This molded body was heated from room temperature to 150°C at a heating rate of 2°C/min, and held at 150°C for 1 hour to make it infusible.
The mixture was heated to 1600°C at a temperature increase rate of 240°C/Hr under a nitrogen stream, and then held at 1400°C for 1 hour to obtain inorganic fiber reinforced composite ceramics. This material had a bending strength of 40 Kg/mm 2 at room temperature and had high physical properties.

Claims (1)

【特蚱請求の範囲】  メチルゞクロロシラン、メチルトリクロロシ
ラン及びゞメチルゞクロロシランの混合物ずアン
モニアずを反応させおアンモノリシス生成物を埗
るず共に、このアンモノリシス生成物を脱プロト
ン化が可胜な塩基性觊媒により重合させお有機シ
ラザン重合䜓を埗、次いでこの有機シラザン重合
䜓を溶融、成圢し、曎に䞍融化した埌、焌成しお
セラミツクスを埗るこずを特城ずするセラミツク
スの補造方法。  メチルゞクロロシランずメチルトリクロロシ
ランずゞメチルゞクロロシランずの混合比が55〜
80モル10〜30モル〜25モルである特
蚱請求の範囲第項蚘茉の補造方法。  有機シラザン重合䜓が融点60〜200℃のもの
である特蚱請求の範囲第項又は第項蚘茉の補
造方法。  有機シラザン重合䜓を溶融、成圢した埌、空
気䞭で50〜150℃に加熱しお䞍融化するようにし
た特蚱請求の範囲第項乃至第項のいずれか
項に蚘茉の補造方法。  有機シラザン重合䜓を溶融、成圢した埌、真
空䞭又はN2ガス䞭においお50〜200Mradの照射
量で電子線照射を行な぀お䞍融化するようにした
特蚱請求の範囲第項乃至第項のいずれか項
に蚘茉の補造方法。  成圢工皋が玡糞工皋であり、溶融した有機シ
ラザン重合䜓を玡糞しおセラミツク繊維を埗るよ
うにした特蚱請求の範囲第項乃至第項のいず
れか項に蚘茉の補造方法。  焌成枩床が700〜2000℃である特蚱請求の範
囲第項乃至第項のいずれか項に蚘茉の補造
方法。  焌成雰囲気が真空䞭又は䞍掻性ガス、N2ガ
ス、H2ガス及びNH3ガスから遞ばれるガス䞭で
ある特蚱請求の範囲第項乃至第項のいずれか
項に蚘茉の補造方法。
[Claims] 1 A mixture of methyldichlorosilane, methyltrichlorosilane and dimethyldichlorosilane is reacted with ammonia to obtain an ammonolysis product, and this ammonolysis product is polymerized using a basic catalyst capable of deprotonation. 1. A method for producing ceramics, which comprises: obtaining an organic silazane polymer, then melting and molding the organic silazane polymer, making it infusible, and then firing it to obtain ceramics. 2 The mixing ratio of methyldichlorosilane, methyltrichlorosilane, and dimethyldichlorosilane is 55~
80 mol%: 10 to 30 mol%: 5 to 25 mol%. The manufacturing method according to claim 1. 3. The manufacturing method according to claim 1 or 2, wherein the organic silazane polymer has a melting point of 60 to 200°C. 4. Any one of claims 1 to 3, wherein the organic silazane polymer is melted and molded and then heated in air to 50 to 150°C to make it infusible.
The manufacturing method described in section. 5. Claims 1 to 3, in which the organic silazane polymer is melted and molded and then irradiated with an electron beam at a dose of 50 to 200 Mrad in vacuum or N2 gas to make it infusible. The manufacturing method according to any one of Items. 6. The manufacturing method according to any one of claims 1 to 5, wherein the forming step is a spinning step, and the ceramic fiber is obtained by spinning a molten organic silazane polymer. 7. The manufacturing method according to any one of claims 1 to 6, wherein the firing temperature is 700 to 2000°C. 8. The manufacturing method according to any one of claims 1 to 7, wherein the firing atmosphere is in a vacuum or in a gas selected from inert gas, N 2 gas, H 2 gas, and NH 3 gas. .
JP63057020A 1988-03-10 1988-03-10 Production of ceramics Granted JPS63243328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63057020A JPS63243328A (en) 1988-03-10 1988-03-10 Production of ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63057020A JPS63243328A (en) 1988-03-10 1988-03-10 Production of ceramics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61135437A Division JPS62290730A (en) 1986-06-10 1986-06-10 Production of organosilazane polymer and production of ceramics using said polymer

Publications (2)

Publication Number Publication Date
JPS63243328A JPS63243328A (en) 1988-10-11
JPH0362667B2 true JPH0362667B2 (en) 1991-09-26

Family

ID=13043749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63057020A Granted JPS63243328A (en) 1988-03-10 1988-03-10 Production of ceramics

Country Status (1)

Country Link
JP (1) JPS63243328A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176941A (en) * 1987-11-07 1993-01-05 Hoechst Aktiengesellschaft Process of producing a ceramic/fiber composite using a molten polysilazone
JPH02307916A (en) * 1989-05-19 1990-12-21 Japan Atom Energy Res Inst Production of silicon carbide-silicon nitride-based ceramic fiber
FR2653131A1 (en) * 1989-10-17 1991-04-19 Rhone Poulenc Chimie PROCESS FOR THE PREPARATION OF POLYORGANOSILAZANE OF HIGH MOLECULAR WEIGHT
WO2014032817A1 (en) * 2012-08-30 2014-03-06 Clariant International Ltd Method for producing thermoplastic pre-ceramic polymers

Also Published As

Publication number Publication date
JPS63243328A (en) 1988-10-11

Similar Documents

Publication Publication Date Title
JPH0215577B2 (en)
US4869854A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
US4482669A (en) Preceramic organosilazane polymers
US4414403A (en) Branched polycarbosilanes and their use in the production of silicon carbide
US5312942A (en) Silicon boron nitride ceramic and precursor compounds, a process for their preparation and their use
US4847345A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
CA1281477C (en) Method for converting si-h containing polysiloxanes to new and useful preceramic polymers and ceramic materials
EP0323062B1 (en) Process for manufacturing organic silazane polymers
JPH0362667B2 (en)
JPH0662776B2 (en) Polytitanocarbosilazane polymer and method for producing ceramics using the polymer
JPH0238127B2 (en)
JPH0313188B2 (en)
JPH0219135B2 (en)
JPH0577691B2 (en)
JP2518119B2 (en) Ceramics manufacturing method
US5863848A (en) Preparation of substantially crystalline silicon carbide fibers from borosilazanes
US5145813A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
JPH0798865B2 (en) Ceramics manufacturing method
JPH0615619B2 (en) Method for producing hafnium-containing silazane polymer and method for producing ceramics using the polymer
US5210058A (en) Method for preparing organic silazane polymers and method for preparing ceramics from the polymers
JPH0234565A (en) Method of in fusibilising organic silazane polymer
JPH05148720A (en) Polysilazane fiber, its production and ceramic fiber
JPH0798866B2 (en) Ceramics manufacturing method
US5008348A (en) Infusibilization of organic silazane polymers
JPH07119283B2 (en) Method for infusibilizing organic silazane polymer