JPH0234565A - Method of in fusibilising organic silazane polymer - Google Patents

Method of in fusibilising organic silazane polymer

Info

Publication number
JPH0234565A
JPH0234565A JP63186324A JP18632488A JPH0234565A JP H0234565 A JPH0234565 A JP H0234565A JP 63186324 A JP63186324 A JP 63186324A JP 18632488 A JP18632488 A JP 18632488A JP H0234565 A JPH0234565 A JP H0234565A
Authority
JP
Japan
Prior art keywords
formula
polymer
silazane polymer
infusible
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63186324A
Other languages
Japanese (ja)
Other versions
JPH0581556B2 (en
Inventor
Yoshifumi Takeda
竹田 好文
Minoru Takamizawa
高見沢 稔
Akira Hayashida
章 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP63186324A priority Critical patent/JPH0234565A/en
Priority to US07/371,716 priority patent/US5008348A/en
Priority to US07/404,584 priority patent/US4948763A/en
Publication of JPH0234565A publication Critical patent/JPH0234565A/en
Publication of JPH0581556B2 publication Critical patent/JPH0581556B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To surely produce high-grade ceramics fibers, etc., by treating a molding of an org. silazane polymer with a gas contg. the vapor of a specific compd., then treating the same with gaseous NH3. CONSTITUTION:The org. silazane polymer is melted and molded to obtain the molding. This molding is then treated for 5-240 minutes at the temp. sufficiently lower than the m. p. of the polymer in a gas contg. 0.001-0.1mol/l or >=2 kinds of compds. selected from the org. silicon compd. expressed by the formula I (R is H, lower alkyl, alkenyl, aryl; X is Cl, Br, I; (a) is 0-2; R may be the same or different when (a) is 2), the boron compd. expressed by the formula II, the phosphorus compd. expressed by the formula III ((b) is 3, 5), and the metal compd. expressed by the formula IV (M is Al, Ti, V, Fe, Ga, Ge, Zr, Nb, Sn, Sb, Te, Ta, W, Bi; (c) is the valency of M) and is then treated for 5-240 minutes in a gas contg. 0.1-100vol.% gaseous NH3.

Description

【発明の詳細な説明】 産2分M= 本発明は前駆体法でセラミックスを製造するに当り、そ
の前駆体を所望の形状に保持した状態で熱分解する為に
必要な不融化処理方法に関する。
[Detailed Description of the Invention] Production 2 minutes M = The present invention relates to an infusible treatment method necessary for thermally decomposing the precursor while maintaining it in a desired shape when manufacturing ceramics by a precursor method. .

の   び  が  しよ゛とする セラミックスは、耐熱性、耐摩耗性、高温強度等に優れ
た材料として注目を集めているが、固く、そして脆いた
め、セラミックスを加工することは極めて困難である。
Ceramics, which tend to stretch, are attracting attention as materials with excellent heat resistance, abrasion resistance, high-temperature strength, etc., but because they are hard and brittle, it is extremely difficult to process them.

従って、セラミックス製品を製造する場合、セラミック
ス材料の微粉末を加圧等の方法により予め所望の形状に
成形した後、焼結する方法、或いはセラミックス前駆体
としての有機重合体を熔融若しくは溶剤に溶解し1、こ
れを所望の形状に加工した後、焼成して無機化する前駆
体法等が採用されている。上記前駆体法の最大の特徴は
、微粉末による焼結法では不可能な形状のセラミックス
製品を得ることができ、従って繊維状或いはシート状と
いった特殊形状の製品を製造し得ることである。
Therefore, when manufacturing ceramic products, it is necessary to form fine powder of ceramic material into a desired shape by applying pressure or other methods and then sintering it, or by melting or dissolving an organic polymer as a ceramic precursor in a solvent. 1. A precursor method is employed in which the material is processed into a desired shape and then fired to become inorganic. The most important feature of the precursor method is that it is possible to obtain ceramic products in shapes that are impossible with the sintering method using fine powder, and therefore it is possible to produce products in special shapes such as fibers or sheets.

この場合、一般にセラミックスと呼ばれるもののうちS
iC及びSi3N4は、それぞれSiCが耐熱性、高温
強度に優れ、Si、N4が耐熱衝撃性。
In this case, among what is generally called ceramics, S
Regarding iC and Si3N4, SiC has excellent heat resistance and high temperature strength, and Si and N4 have excellent thermal shock resistance.

破壊靭性に優れるなど、高温での優れた特性を有するた
めに広く注目を集めているところであり、本発明者らも
先に特願昭61−135437号、特願昭61−261
634号、特願昭62−25786号、特願昭62−3
13264号に前駆体法による5iC−8i、N、系の
セラミックスの製造に用いられる有機シラザン重合体の
製造法並びに該有機シラザン重合体からセラミックスを
得る方法を提案したものである。
It has attracted wide attention due to its excellent properties at high temperatures, such as excellent fracture toughness, and the present inventors have previously published Japanese Patent Application No. 61-135437 and Japanese Patent Application No. 61-261.
No. 634, Japanese Patent Application No. 62-25786, Japanese Patent Application No. 62-3
No. 13264 proposes a method for producing an organic silazane polymer used in the production of 5iC-8i, N, ceramics by a precursor method, and a method for obtaining ceramics from the organic silazane polymer.

而して、セラミックス前駆体からセラミックスを製造す
る場合は、セラミックス前駆体を溶融、成型した後、こ
れを不融化処理することが必要であり、その後熱分解し
、セラミックス材料を得るものであるが、かかる製造方
法において、不融化処理方法として下記■〜■の不融化
処理方法が知られている。
Therefore, when producing ceramics from a ceramic precursor, it is necessary to melt and mold the ceramic precursor and then subject it to an infusible treatment, and then thermally decompose it to obtain a ceramic material. In such a manufacturing method, the following infusibility treatment methods (1) to (4) are known as infusibility treatment methods.

即ち、■空気酸化する方法、■スチームあるいはスチー
ムと酸素を用いる方法、■紫外線照射による方法、■電
子線照射による方法、■各種有機珪素化合物による方法
などの方法が提案されている。
That is, methods such as (1) air oxidation, (2) a method using steam or steam and oxygen, (2) a method using ultraviolet irradiation, (2) a method using electron beam irradiation, and (4) a method using various organic silicon compounds have been proposed.

しかし、これらはいずれも問題点を有するものであった
。即ち、■、■の方法は空気中で加熱するだけでよく、
簡便な方法として汎く採用されているが、必要とされる
熱エネルギーが大きく、また生成されるセラミックスは
酸素含量の多いものとなり、セラミックスの持つ高強度
、高弾性などの機能が大幅に減ぜられるという不利があ
る。
However, all of these had problems. In other words, methods ① and ② only require heating in air;
Although this method is widely used as a simple method, it requires a large amount of thermal energy and the ceramics produced have a high oxygen content, which significantly reduces the high strength, high elasticity, and other functions of ceramics. There is a disadvantage of being exposed.

一方、■、■の方法は、■の方法と異なり、エネルギー
コストも低く、酸素の混入を回避できるという有利性は
あるが、この方法により不融化を行なうためには、多量
の紫外線や電子線の照射量が必要とされることと、この
ような装置は非常に高価なものであるという2点から工
業的方法として採用し難いものである。更に■の方法は
、米国特許第4,535,007号明細書に開示されて
いるように、R,5iNH−基を有するポリマーを各種
有機珪素化合物(例えば四塩化珪素、トリクロロシラン
)または金属塩素化物(例えばB CQ、。
On the other hand, methods ① and ② differ from method ③ in that they have the advantages of low energy costs and avoidance of oxygen contamination; It is difficult to adopt this method as an industrial method because of two reasons: it requires a radiation dose of 1,000 yen, and such equipment is very expensive. Furthermore, as disclosed in U.S. Pat. No. 4,535,007, the method (2) involves treating a polymer having R,5iNH- groups with various organosilicon compounds (e.g., silicon tetrachloride, trichlorosilane) or metal chlorine. compounds (e.g. B CQ,.

5nCQ4)により不融化する方法であるが、本発明者
らの知見によればR□5iNH−基を有しない有機シラ
ザン重合体に対しては何ら有効でなく、後述する比較例
に示したように融着が甚しく。
5nCQ4), but according to the findings of the present inventors, it is not effective at all for organic silazane polymers that do not have R□5iNH- groups, and as shown in the comparative example below. Severe fusion.

ポリマーの形状を留めることができないものである。な
お、この米国特許明細書中にはセラミックス前駆体法に
おいて最も重要視される熱分解後のセラミックス繊維の
強度等については全く記載がなく、不融化の有効性を明
かにしていない。
The shape of the polymer cannot be maintained. Incidentally, this US patent specification does not mention anything about the strength of ceramic fibers after pyrolysis, which is the most important aspect in the ceramic precursor method, and does not disclose the effectiveness of infusibility.

従って、上述したように、従来提案されているセラミッ
クス前駆体の不融化処理方法は種々の欠点を有するもの
であった。
Therefore, as described above, the conventionally proposed methods for making ceramic precursors infusible have various drawbacks.

本発明は、上記事情に鑑みなされたもので、有機シラザ
ン重合体(セラミックス前駆体)を容易かつ簡便にしか
も安価に不融化することができ、これにより高品位のセ
ラミックス繊維等を確実に製造することを可能にする有
機シラザン重合体の不融化方法を提供することを目的と
する。
The present invention was made in view of the above circumstances, and it is possible to easily and simply make an organic silazane polymer (ceramic precursor) infusible at low cost, thereby reliably producing high-quality ceramic fibers, etc. An object of the present invention is to provide a method for making an organic silazane polymer infusible.

を   るための   び 即ち、本発明者らは有機シラザン重合体を溶融成形し、
更に不融化処理をするに当り、この不融化処理について
鋭意研究を行なった結果、式(1) Ra S i X4−B (但し、Rは水素原子、低級アルキル基、アルケニル基
又はアリール基、Xは塩素原子、臭素原子又は沃素原子
を示す。aはO〜2であるが、aが2の場合、Rは互に
同一でも異なっていてもよい。) で示されるケイ素化合物、 式(2) (但し、Xは上記と同様の意味を示す。)で示されるホ
ウ素化合物、 式(3) (但し、又は上記と同様の意味を示し、bは3又は5で
ある。) で示されるリン化合物、及び 式(4) %式% Biを示し、Cは該金属の原子価である。Xは上記と同
様の意味を示す。) で示される金属化合物 を不融化処理剤として使用し、その1種又は2種以上の
蒸気を含む気体を用いて有機シラザン重合体の成型物を
処理すること、しかもかかる処理を行なった後にアンモ
ニアガスで処理することにより、上述した従来の不融化
方法の問題点を解決し、不融化が簡単に達成されると共
に、この不融化処理によって、高強度、高弾性のセラミ
ックス材料が製造できることを見い出し、本発明をなす
に至ったものである。
In order to achieve this, the present inventors melt-molded an organic silazane polymer and
Furthermore, as a result of intensive research on this infusibility treatment, we found that the formula (1) Ra Si X4-B (where R is a hydrogen atom, a lower alkyl group, an alkenyl group, or an aryl group, represents a chlorine atom, a bromine atom, or an iodine atom. a is O-2, but when a is 2, R may be the same or different.) A silicon compound represented by the formula (2) (However, X has the same meaning as above.) Boron compounds represented by formula (3) (However, or has the same meaning as above, and b is 3 or 5.) Phosphorus compounds represented by formula (3) , and formula (4) % formula % Bi, and C is the valence of the metal. X has the same meaning as above. ) is used as an infusibility treatment agent, and a molded article of an organosilazane polymer is treated with a gas containing one or more vapors thereof, and furthermore, after such treatment, ammonia It was discovered that by treating with a gas, the problems of the conventional infusibility method described above can be solved, and infusibility can be easily achieved, and that high strength and high elasticity ceramic materials can be manufactured by this infusibility treatment. , which led to the present invention.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明で用いられる有機シラザン重合体には特に制限は
ないが、既に本発明者らが特願昭61−135437号
、特願昭61−261634号、特願昭62−2578
6号、更には特願昭62−313264号で提案した有
機シラザン重合体が好適に用いられる。
The organic silazane polymer used in the present invention is not particularly limited, but the present inventors have already reported it in Japanese Patent Application No. 61-135437, Japanese Patent Application No. 61-261634, and Japanese Patent Application No. 62-2578.
No. 6, and furthermore, the organic silazane polymers proposed in Japanese Patent Application No. 62-313264 are preferably used.

例えば特願昭61−135437号の製造方法によれば
、メチルジクロロシラン、メチルトリクロロシラン、ジ
メチルジクロロシランの混合物とアンモニアを反応させ
てアンモノリシス生成物を得た後、該アンモノリシス生
成物を脱水素縮合可能な塩基性触媒により縮合させるこ
とによって有機シラザン重合体が得られる。
For example, according to the production method disclosed in Japanese Patent Application No. 135437/1983, a mixture of methyldichlorosilane, methyltrichlorosilane, and dimethyldichlorosilane is reacted with ammonia to obtain an ammonolysis product, and then the ammonolysis product is subjected to dehydrogenation condensation. Organosilazane polymers are obtained by condensation with possible basic catalysts.

また特願昭61−261634号、特願昭62−257
86号の方法によれば、一般式〔■〕及び(II) (但し、R2は水素、メチル基、エチル基、フェニル基
、又はビニル基、又は塩素又は臭素をそれぞれ示す。) で示される有機珪素化合物との混合物を出発原料として
用い、特願昭61−135437号の製造方法と同様に
アンモニアと反応せしめ、得られたアンモノリシス生成
物を更に脱水素縮合することによって有機シラザン重合
体が得られる。
Also, Japanese Patent Application No. 61-261634, Japanese Patent Application No. 62-257
According to the method of No. 86, organic compounds represented by the general formulas [■] and (II) (wherein R2 represents hydrogen, methyl group, ethyl group, phenyl group, or vinyl group, or chlorine or bromine, respectively) An organic silazane polymer can be obtained by using a mixture with a silicon compound as a starting material and reacting it with ammonia in the same manner as in the production method of Japanese Patent Application No. 135437/1982, and further dehydrogenating the obtained ammonolysis product. .

更に、特願昭62−313264号の製造方法によれば
、一般式(rV) 人 (但し、Rは水素、塩素、臭素、メチル基、エチル基、
フェニル基、又はビニル基、R工は水素、又はメチル基
、R8は水素、メチル基、エチル基、フェニル基、又は
ビニル基、Xは塩素又は臭素をそれぞれ示す。)で示さ
れる有機珪素化合物の少なくとも1種以上と、一般式(
III)(但し、R1はメチル基、エチル基、又はフェ
ニル基、Xは塩素、臭素をそれぞれ示す。)で示される
有機珪素化合物の1種以上と、一般式R4 (但し、R1はメチル基、エチル基、又はフェニル基、
R4は水素原子又はビニル基、Xは塩素、臭素をそれぞ
れ示す。) で示される有機珪素化合物の1種以上とを混合し、この
混合物をアンモニアと反応させてシラザン化合物を得た
後、該シラザン化合物をアルカリ触媒、例えばKOH,
NaOH等により重合させることによって有機シラザン
重合体が得られる。
Furthermore, according to the manufacturing method of Japanese Patent Application No. 62-313264, general formula (rV) (wherein R is hydrogen, chlorine, bromine, methyl group, ethyl group,
A phenyl group or a vinyl group, R represents hydrogen or a methyl group, R8 represents hydrogen, a methyl group, an ethyl group, a phenyl group, or a vinyl group, and X represents chlorine or bromine, respectively. ) and at least one organosilicon compound represented by the general formula (
III) (wherein, R1 is a methyl group, ethyl group, or phenyl group, and X is chlorine or bromine, respectively); and one or more organosilicon compounds represented by the general formula R4 (wherein, R1 is a methyl group, ethyl group or phenyl group,
R4 represents a hydrogen atom or a vinyl group, and X represents chlorine or bromine, respectively. ), and this mixture is reacted with ammonia to obtain a silazane compound, and then the silazane compound is treated with an alkali catalyst, such as KOH,
An organic silazane polymer can be obtained by polymerizing with NaOH or the like.

また、Andrianov S (Vysoko+mo
1.5oyed 4 。
Also, Andrianov S (Vysoko+mo
1.5oyed 4.

NOT、1060〜1063 (1962)) による
ザン)をKOHで加熱重合させた有機シラザン重合体も
好適に用いられる。
An organic silazane polymer obtained by thermally polymerizing Zane) by KOH in KOH is also suitably used.

前記した有機シラザン重合体は、これをセラミックス前
駆体として用い、該有機シラザン重合体をN2を含む不
活性ガス中で熱分解することにより、5iC−3i□N
4質のセラミックス材料が製造できる0例えば、セラミ
ックス繊維を製造する場合、まず有機シラザン重合体を
溶融紡糸方法により紡糸して繊維状に成型した後、熱分
解すればよい。
The above-described organic silazane polymer is used as a ceramic precursor and is thermally decomposed in an inert gas containing N2 to produce 5iC-3i□N.
For example, when producing ceramic fibers, an organic silazane polymer may be first spun into a fiber shape using a melt spinning method and then thermally decomposed.

しかしながら、かかるセラミックスの製造方法において
、不融化処理を行なわず、ただ単に熱分解したのでは繊
維等の成型物の形状を保持できず、熱分解の段階で成型
物が全て溶融してしまうため、熱分解に先立って不融化
処理が不可欠となるものであるが、本発明はこの不融化
方法として、有機シラザン重合体を溶融、成型すること
により得られた成型物をまず不融化第1工程として下記
式(1)〜(4)で示される化合物を不融化処理剤とし
て用い、その1種又は2種以上の蒸気を含む気体で処理
し、次いで不融化第2工程としてアンモニアガスで処理
するという不融化方法を採用したものである。
However, in such a method for manufacturing ceramics, if the infusibility treatment is not performed and the molded product is simply thermally decomposed, the shape of the molded product such as fibers cannot be maintained, and the molded product will completely melt during the pyrolysis stage. An infusibility treatment is essential prior to thermal decomposition, and in the present invention, as an infusibilization method, a molded product obtained by melting and molding an organic silazane polymer is first infusible as a first step of infusibility. A compound represented by the following formulas (1) to (4) is used as an infusibility treatment agent, and treated with a gas containing one or more vapors thereof, and then treated with ammonia gas as a second infusibility step. This method uses an infusible method.

式(1) %式% (但し、Rは水素原子、低級アルキル基、アルケニル基
又はアリール基、Xは塩素原子、臭素原子又は沃素原子
を示す。aはO〜2であるが、aが2の場合、Rは互に
同一でも異なっていてもよい。) で示されるケイ素化合物、 式(2) (但し、Xは上記と同様の意味を示す、)で示されるホ
ウ素化合物、 式(3) (但し、Xは上記と同様の意味を示し、bは3又は5で
ある。) で示されるリン化合物、及び 式(4) %式% Biを示し、Cは該金属の原子価である。又は上記と同
様の意味を示す。) で示される金属化合物。
Formula (1) % Formula % (However, R is a hydrogen atom, a lower alkyl group, an alkenyl group, or an aryl group, and X is a chlorine atom, a bromine atom, or an iodine atom. a is O-2, but when a is 2 In the case of , R may be the same or different.) A silicon compound represented by the formula (2) (wherein, X has the same meaning as above), a boron compound represented by the formula (3) (However, X has the same meaning as above, and b is 3 or 5.) A phosphorus compound represented by the formula (4) and the formula (4) represents Bi, and C is the valence of the metal. or has the same meaning as above. ) A metal compound represented by

ここで、上記式(1)〜(4)の不融化処理剤として、
具体的にはCH35iCQ、、 (CH3)、5iCQ
x。
Here, as the infusibility treatment agent of the above formulas (1) to (4),
Specifically, CH35iCQ, (CH3), 5iCQ
x.

(C,Hs)S i CH3,(C,H,)2S i 
CQ、、 C,H,S i CH3゜(C6Hs)、S
 i CQ、、 CH2=CH5i CH3゜(CH,
=CH)、S 1CQ2. H3icQ、、 H,5i
C11,。
(C,Hs)S i CH3, (C,H,)2S i
CQ,, C, H, S i CH3゜(C6Hs), S
i CQ,, CH2=CH5i CH3゜(CH,
=CH), S 1CQ2. H3icQ,, H,5i
C11,.

S i Cfl、、 H(CH,)SiCQ、 H(C
H,=CI()S i CH2゜(CH,=CH)C,
H5S 1CQ2. BCQ3. BB r、、 B 
I、。
S i Cfl,, H(CH,)SiCQ, H(C
H,=CI()S i CH2゜(CH,=CH)C,
H5S 1CQ2. BCQ3. BB r,, B
I.

PCIl、、PCQ、、PBr、、PI、、AQCQ、
、Ti(14゜FeCQ、、V(、H4,GaCQ、、
GaCH4,ZrCH4゜NbCQ、、5n(14,5
bCQ、、TaC11!、、TeCH4゜WCllIs
、 BiCQ、などが例示され、これらの1種又は2種
以上が使用されるが、この中でも特にH(CH,)Si
CQ、、H81CQ、BCQ3)PCIl3.AfiC
Q、、TiCH4などが好適に用いられる。
PCIl,,PCQ,,PBr,,PI,,AQCQ,
, Ti(14°FeCQ, ,V(,H4,GaCQ, ,
GaCH4, ZrCH4゜NbCQ, 5n(14,5
bCQ,,TaC11! ,,TeCH4゜WCllIs
, BiCQ, etc., and one or more of these may be used, but especially H(CH,)Si
CQ,, H81CQ, BCQ3) PCIl3. AfiC
Q, TiCH4, etc. are preferably used.

これら物質を含む気体を用いて処理する方法に特に限定
はないが、例えば、N2.Ar等の不活性ガスを用いて
、これら不融化処理剤に不活性ガスを通過させ、同伴す
る蒸気を成型物の存在する領域に流入させることによっ
て行なえばよい。この処理法において、これら不融化処
理剤のガス濃度は、不融化処理剤の温度を調整し、その
蒸気圧をコントロールすることにより、所望のガス濃度
に制御すればよく、濃度が高い場合は不活性ガスで所望
の濃度に希釈する方法も採用される。なお、一般に不融
化処理剤の蒸気濃度はO,OO1moffi/ Q ”
O、1moff / Qの範囲に制御することが特に好
ましい。処理温度、処理時間については、用いる有機シ
ラザン重合体によっても異なるが、処理中に不融状態が
維持できる十分に低い温度(即ち、ポリマーの融点より
十分低い温度)で不融化するに十分な時間(通常5〜2
40分)処理すればよい。
There are no particular limitations on the method of treatment using a gas containing these substances, but for example, N2. This may be carried out by using an inert gas such as Ar, passing the inert gas through these infusibility treatment agents, and causing the accompanying vapor to flow into the region where the molded article is present. In this treatment method, the gas concentration of these infusibilizing agents can be controlled to a desired gas concentration by adjusting the temperature of the infusibilizing agent and controlling its vapor pressure. A method of diluting to a desired concentration with an active gas may also be employed. Generally, the vapor concentration of the infusibility treatment agent is O,OO1moffi/Q”
It is particularly preferable to control it within the range of O, 1 moff/Q. The treatment temperature and treatment time will vary depending on the organosilazane polymer used, but the temperature is low enough to maintain the infusible state during the treatment (i.e., the temperature is sufficiently lower than the melting point of the polymer) and the time is sufficient to make it infusible. (Usually 5-2
40 minutes).

この第1工程の処理により、成型物は一般の有機溶剤(
例えばベンゼン、ヘキサン、トルエン。
Through this first step, the molded product is treated with a general organic solvent (
For example, benzene, hexane, toluene.

テトラヒドロフラン等)に不溶なものとなる。しかしな
がら、後述する比較例でも示したように、この第1工程
の処理のみではその後の熱分解工程において溶融してし
まうもので、不融化が完全でない、従って、本発明にお
いては次の第2工程、即ちアンモニアガス又は不活性ガ
スで希釈したアンモニアガスによる処理が不可欠である
It becomes insoluble in tetrahydrofuran, etc.). However, as shown in the comparative example described below, the treatment in this first step alone will melt in the subsequent thermal decomposition step, and the infusibility is not complete. Therefore, in the present invention, the following second step That is, treatment with ammonia gas or ammonia gas diluted with an inert gas is essential.

この第2工程においても、その処理法に特に限定はなく
、ただ単に第1工程で得られた処理成型物をアンモニア
ガス又は不活性ガスで希釈したアンモニアガスに所定の
時間暴露することによって、不融化を完成することがで
きる。またこの第2工程の処理では、アンモニアガスの
濃度が0.01〜100容量%、好ましくは2〜b り好ましくは0.5〜b ましく、ガス濃度が高い場合はアルゴン、ヘリウム等の
希ガス、窒素ガスなどの不活性ガスでアンモニアガスを
希釈し、この希釈したアンモニアガスを成型物上に通過
させ、不融化するに十分な時間処理する方法が好適に採
用される。なお、処理温度、処理時間については、第1
工程と同様に使用する有機シラザン重合体により異なる
が、ポリマーの融点より十分低い温度で不融性にする十
分な時間(通常5〜240分)処理すればよい。
In this second step, there is no particular limitation on the treatment method, and the treated molded product obtained in the first step is simply exposed to ammonia gas or ammonia gas diluted with an inert gas for a predetermined period of time. Melting can be completed. In addition, in this second step, the concentration of ammonia gas is 0.01 to 100% by volume, preferably 2 to 10% by volume, more preferably 0.5 to 100% by volume, and if the gas concentration is high, diluted with argon, helium, etc. Preferably, a method is employed in which ammonia gas is diluted with an inert gas such as nitrogen gas, and the diluted ammonia gas is passed over the molded product for a sufficient time to make it infusible. Regarding the processing temperature and processing time, please refer to the first
The process may vary depending on the organic silazane polymer used, but the treatment may be carried out at a temperature sufficiently lower than the melting point of the polymer for a sufficient period of time to make it infusible (usually 5 to 240 minutes).

このようにして不融化処理することによって得られた成
型物は、次いで常法により焼成、熱分解し、これによっ
てセラミックス成型体を得るもの゛である。例えば、上
記した本発明者らの提案した有機シラザン重合体を用い
て繊維を成型し、不融化した後、この不融化繊維を無張
力下又は張力下において高温焼成することにより、5i
C1Si、N4を主体とする強度1弾性率に優れたセラ
ミックス繊維を得ることができる6なお、この工程にお
いて、焼成は真空中あるいはArなどの不活性ガス、N
2ガス、N2ガス、NHaガス等の1種又は2種以上の
ガス中において700〜2000℃、特り、−700〜
1500℃で行なうことが好適である。この場合、繊維
は張力下で焼成することが特に好ましく、これによって
引張強度200〜300kg/J、弾性率15〜25t
/−の物性を有する高品質のセラミックス繊維を製造で
きる。
The molded product thus obtained by the infusibility treatment is then fired and thermally decomposed by a conventional method, thereby obtaining a ceramic molded product. For example, by molding fibers using the above-mentioned organic silazane polymer proposed by the present inventors and making them infusible, the infusible fibers are fired at a high temperature under no tension or under tension.
It is possible to obtain ceramic fibers with excellent strength and elastic modulus mainly composed of C1Si and N46. In this step, firing is performed in a vacuum or in an inert gas such as Ar, N
700 to 2000°C, especially -700 to 2000°C in one or more gases such as 2 gas, N2 gas, NHa gas, etc.
Preferably, the temperature is 1500°C. In this case, it is particularly preferred that the fibers be fired under tension, so that the tensile strength is 200-300 kg/J and the elastic modulus is 15-25 t.
High quality ceramic fibers having physical properties of /- can be produced.

A1jυ弧釆 以上説明したように1本発明に係る有機シラザン重合体
の不融化方法によれば、簡便にがっ工業的に有利に不融
化が達成されると共に、セラミックス繊維、セラミック
シート等を容易に得ることができる。この場合、本発明
者らが先に提案した有機シラザン重合体を用いれば、高
強度、高弾性率をもつSiC,Si□N4からなるセラ
ミックス材料を得ることができる。
As explained above, according to the method for making an organic silazane polymer infusible according to the present invention, infusibility can be achieved simply and industrially, and it can also be easily made into ceramic fibers, ceramic sheets, etc. can be obtained. In this case, if the organic silazane polymer previously proposed by the present inventors is used, a ceramic material made of SiC or Si□N4 having high strength and high elastic modulus can be obtained.

以下、実施例及び比較例を示し、本発明を具体的に説明
するが、本発明は下記実施例に限定されるものではない
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

〔実施例〕〔Example〕

特顕昭61−135437号記載の方法に準じ。 According to the method described in Tokken Sho 61-135437.

撹拌機、温度計、NH,導入管、水冷コンデンサーを装
備し、乾燥した2Qの4つロフラスコにヘキサン150
0dを仕込んだ後、メチルジクロロシラン80.5g、
メチルトリクロロシラン14.9g、ジメチルジクロロ
シラン25.agを加え、常温にて過剰の気体状アンモ
ニアを90Q / Hrの速度で1.25時間この溶液
に加えた(アンモニア全添加量5.0モル)、この反応
混合物を室温下に放置し、その際未反応アンモニアが逃
げられるように冷却器を空冷凝縮鼎に変えた。
Equipped with a stirrer, thermometer, NH, inlet pipe, and water-cooled condenser, add 150 ml of hexane to a dry 2Q four-bottle flask.
After charging 0d, 80.5g of methyldichlorosilane,
Methyltrichlorosilane 14.9g, dimethyldichlorosilane 25. Excess gaseous ammonia was added to this solution at a rate of 90 Q/Hr for 1.25 h at room temperature (total ammonia addition amount 5.0 mol). The reaction mixture was left at room temperature and its The condenser was changed to an air-cooled condenser so that unreacted ammonia could escape.

次に、ドライボックス中で反応混合物から副生じた塩化
アンモニウムを濾過により除去した。更にケークを1.
5Ωのヘキサンで3回洗浄し、濾液から減圧下(60℃
/ 1 trys Hg )においてヘキサンをストリ
ップした。残留物(アンモノリシス生成物)は透明な流
動性の液体で、52.5gを得た。
Next, by-product ammonium chloride was removed from the reaction mixture in a dry box by filtration. 1 more cake.
Washed three times with 5Ω hexane, and the filtrate was washed under reduced pressure (60°C).
Hexane was stripped at 1/1 trys Hg). The residue (ammonolysis product) was a clear flowable liquid, 52.5 g was obtained.

次いで、500m1lの3つロフラスコに撹拌機、温度
計、滴下ロートを取り付け、ドライボックス中で水素化
カリウム0.4g及びNaHで脱水処理したテトラヒド
ロフラン(THF)250dをフラスコに注入した。こ
のフラスコをドライボックス中より取り出し、窒素管路
に連結した。常温下、混合物を撹拌して水素化カリウム
を分散させながら滴下ロートよりTHF 10 Q+a
Qに溶解した上記アンモノリシス生成物52.5gを1
時間かけてゆっくりと加えた。この添加の間に大量の気
体の発生がみられ、2時間後に反応温度をTHFの還流
温度とし、この状態で更に1.5時間保持した0反応開
始から3.5時間後に気体の発生が停止した。その後、
フラスコを室温に冷却し、沃化メチル4gを加えるとK
Iの白色沈殿が生じた。
Next, a stirrer, a thermometer, and a dropping funnel were attached to a 500 ml three-bottle flask, and 0.4 g of potassium hydride and 250 d of tetrahydrofuran (THF) dehydrated with NaH were injected into the flask in a dry box. This flask was taken out of the dry box and connected to a nitrogen line. THF 10 Q+a was added from the dropping funnel at room temperature while stirring the mixture to disperse potassium hydride.
52.5 g of the above ammonolysis product dissolved in Q
I added it slowly over time. A large amount of gas was generated during this addition, and after 2 hours, the reaction temperature was raised to the reflux temperature of THF, and this state was maintained for an additional 1.5 hours. Gas generation stopped 3.5 hours after the start of the reaction. did. after that,
When the flask is cooled to room temperature and 4 g of methyl iodide is added, K
A white precipitate of I formed.

更に30分間撹拌後、大部分のTHF溶媒を減圧で留去
し、残留する白色スラリーに1001111Iのヘキサ
ンを加えた。この混合物を濾過し、濾液を減圧下(1+
+aHg)180℃にてヘキサンを除去すると49gの
粘稠固体(シラザン重合体)が得られた。このものは融
点128℃、分子量1365(ベンゼンモル凝固点降下
法)であり、ヘキサン、ベンゼン、THF及びその他の
有機溶媒に可溶であった。また、IRからは3400(
m−1にNH12980(2m−’にC−H12150
m−’に5i−H11260aa−’に5i−CH,の
各々の吸収が認められた。
After stirring for an additional 30 minutes, most of the THF solvent was distilled off under reduced pressure and 1001111I hexane was added to the remaining white slurry. The mixture was filtered and the filtrate was collected under reduced pressure (1+
+aHg) Removal of hexane at 180° C. yielded 49 g of a viscous solid (silazane polymer). This product had a melting point of 128° C., a molecular weight of 1365 (benzene molar freezing point depression method), and was soluble in hexane, benzene, THF and other organic solvents. Also, 3400 (
NH12980 on m-1 (C-H12150 on 2m-'
Absorption of 5i-H11260aa-' and 5i-CH was observed in m-'.

このようにして得られたシラザン重合体(重合体A)を
0.2mφの細孔を有する紡糸口金より150℃に加熱
して溶融紡糸した。得られた原糸は13〜14.の直径
であった。
The thus obtained silazane polymer (polymer A) was heated to 150° C. and melt-spun using a spinneret having pores of 0.2 mφ. The obtained yarn was 13-14. It was the diameter of

次いで、得られた原糸(0,1〜0.2g)をAfl、
O,ボートに乗せ、直径50mmφのムライト管型炉に
入れた。管型炉を不活性ガス(N2orAr)で置換後
、第1工程としてトリクロロシランを入れたバブラー装
置を用いてN2ガスをこのバブラー装置を通し、一定濃
度のトリクロロシランガスを含むN2ガスを管型炉に通
過させた。なお、トリクロロシランガスの濃度は温度を
コントロールすることにより所望の濃度に調整した6次
いで第2工程として炉内を再び不活性ガス(NzorA
r)で置換した後、N2ガスで希釈し、又は希釈せずに
第1表に示す濃度を有するアンモニアガスを炉内に流し
て処理し、不融化した。アンモニアガスにより所定の時
間処理した後、再び管機炉内をN2ガスにて置換し、N
3気流中で昇温速度150’C/ Hrで1200℃に
加熱し、この温度で繊維を30分間熱分解した後、冷却
した。
Next, the obtained yarn (0.1 to 0.2 g) was Afl,
O. It was placed on a boat and placed in a mullite tube furnace with a diameter of 50 mmφ. After replacing the tube furnace with an inert gas (N2 or Ar), as a first step, a bubbler device containing trichlorosilane is used to pass N2 gas through the bubbler device, and N2 gas containing a certain concentration of trichlorosilane gas is transferred to the tube furnace. passed. The concentration of trichlorosilane gas was adjusted to the desired concentration by controlling the temperature.6 Next, in the second step, the inside of the furnace was again filled with an inert gas (NzorA).
After substitution with r), ammonia gas diluted with N2 gas or without dilution having a concentration shown in Table 1 was flowed into the furnace to make it infusible. After treating with ammonia gas for a predetermined time, the inside of the tube furnace was replaced with N2 gas again.
The fibers were heated to 1200° C. at a heating rate of 150° C/Hr in 3 air currents, and the fibers were pyrolyzed at this temperature for 30 minutes, and then cooled.

第1表に上記トリクロロシラン処理条件、アンモニアガ
ス処理条件及び、焼成後の繊維の状態の結果を示す。
Table 1 shows the results of the trichlorosilane treatment conditions, ammonia gas treatment conditions, and the state of the fibers after firing.

第1表の結果かられかる通り、No、1においては、焼
成後の繊維は密着部のみ融着した部分が存在したものの
、No、2〜6においては十分に不融化され、全く融着
のない非常に良好な繊維が得られた。
As can be seen from the results in Table 1, in No. 1, the fibers after firing had some fused parts only in the adhesion part, but in No. 2 to 6, the fibers were sufficiently infusible and there was no fusion at all. No very good fibers were obtained.

なお、No、3で得られた繊維について物性を評価した
ところ、このものは繊維径10.4μで引張強度240
kg/ml、引張弾性率24t/−であった、また、こ
の繊維の組成はsi: 61.47%、C:18.56
%、N:19.97%であり、S x C−S i3 
N 4を主体とするセラミックス繊維であることが確認
された。
In addition, when the physical properties of the fiber obtained in No. 3 were evaluated, this one had a fiber diameter of 10.4μ and a tensile strength of 240.
kg/ml, tensile modulus was 24t/-, and the composition of this fiber was si: 61.47%, C: 18.56
%, N: 19.97%, S x C-S i3
It was confirmed that it was a ceramic fiber mainly composed of N4.

〔実施例2〕 実施例1で製造した重合体Aを溶融紡糸して得られた繊
維径12〜13μの繊維を用い、不融化処理第1工程の
不融化剤を種々変えた以外は実施例1と同様の方法で焼
成した。第1及び第2工程条件及び焼成後の繊維状態の
結果を第2表に示す。
[Example 2] Example 2 except that fibers with a fiber diameter of 12 to 13μ obtained by melt-spinning Polymer A produced in Example 1 were used, and the infusibility agent in the first step of the infusibility treatment was variously changed. It was fired in the same manner as 1. Table 2 shows the results of the first and second process conditions and the fiber state after firing.

第2表の結果から認められるように、不融化処理第1工
程の不融化剤としてケイ素化合物以外にホウ素、リン、
チタン、アルミニウム化合物を用いた場合のいずれも良
好な結果が得られた。この中でもN089のBCn3を
用いて処理した繊維の繊維強度は繊維径9.2μ、引張
強度250kg/−1引張弾性率23t/−の良好な物
性を有していた。
As seen from the results in Table 2, in addition to silicon compounds, boron, phosphorus,
Good results were obtained in both cases of using titanium and aluminum compounds. Among these, the fiber treated with N089 BCn3 had good physical properties such as a fiber diameter of 9.2 μ, a tensile strength of 250 kg/−1, and a tensile modulus of 23 t/−.

〔実施例3〕 出発原料にメチルジクロロシラン、1,2−ビス(メチ
ルジクロロシリル)エタン、メチルトリクロロシランの
3種のクロロシランを用い、各々混合割合を75:10
:15モル%として、実施例1と同様にアンモニアと反
応させてアンモノリシス生成物を得た後、該アンモノリ
シス生成物をKHにて脱水素縮合して、シラザン重合体
(重合体B)を得た。このものは融点90℃、分子量8
20(ベンゼンモル凝固点降下法)であった。
[Example 3] Three types of chlorosilane, methyldichlorosilane, 1,2-bis(methyldichlorosilyl)ethane, and methyltrichlorosilane, were used as starting materials, and the mixing ratio of each was 75:10.
: 15 mol%, reacted with ammonia in the same manner as in Example 1 to obtain an ammonolysis product, and then dehydrogenated the ammonolysis product with KH to obtain a silazane polymer (polymer B). . This product has a melting point of 90℃ and a molecular weight of 8.
20 (benzene molar freezing point depression method).

得られた重合体Bを実施例1と同様の紡糸装置を用いて
110℃にて溶融紡糸することにより、繊維径13〜1
4μの繊維を得た6次いで得られた繊維をムライト管型
炉に入れ、実施例1と同様に不融化剤、各種処理条件を
変更して不融化処理したのち、同様に焼成した。第1及
び第2工程条件及び焼成後の繊維状態の結果を第3表に
示す。
The obtained polymer B was melt-spun at 110°C using the same spinning device as in Example 1, so that the fiber diameter was 13 to 1.
The resulting fibers were then placed in a mullite tube furnace, subjected to infusibility treatment in the same manner as in Example 1 by changing the infusibility agent and various processing conditions, and then fired in the same manner. Table 3 shows the results of the first and second process conditions and the fiber state after firing.

第3表の結果かられかる通り、No、14の焼成後の繊
維がわずかに融着した以外は非常に良好な結果が得られ
た。
As can be seen from the results in Table 3, very good results were obtained except for the fibers of No. 14 that were slightly fused after firing.

〔実施例4〕 特願昭62−313264号記載の方法に準じ、出発原
料のジメチルジクロロシランとメチルビニルジクロロシ
ランを用い、各々の混合割合を50:50モル%として
、ヘキサン溶媒中でアンモニアと反応させた。得られた
アンモノリシス生成物aogと触媒としてKOHo、3
gtr加え、280℃にて反応させることにより、シラ
ザン重合体(重合体C)24gを得た。このものは融点
116℃、分子量1520 (ベンゼンモル凝固点降下
法)で、IRからは3400aa−’にNH12980
dl−1にC−H,1420am−”にCH2=CH,
1260cm−”に5i−CH,の各々の吸収が認めら
れた。
[Example 4] According to the method described in Japanese Patent Application No. 62-313264, dimethyldichlorosilane and methylvinyldichlorosilane were used as starting materials, and ammonia and ammonia were mixed in a hexane solvent at a mixing ratio of 50:50 mol%. Made it react. The resulting ammonolysis product aog and KOHo, 3 as a catalyst
By adding gtr and reacting at 280° C., 24 g of a silazane polymer (polymer C) was obtained. This material has a melting point of 116°C and a molecular weight of 1520 (benzene molar freezing point depression method), and from IR it is 3400 aa-' with NH12980.
C-H at dl-1, CH2=CH at 1420am-'',
Absorption of 5i-CH was observed at 1260 cm-''.

得られた重合体Cを用いて実施例1と同様に135℃に
て溶融紡糸し、繊維径12〜13μの繊維を得た1次い
で前記実施例と同様に繊維をムライト管型炉に入れ、各
種条件で不融化処理して1200℃で熱分解した。第1
.第2工程条件及び焼成後の繊維状態の結果を第4表に
示す。
The obtained polymer C was melt-spun at 135° C. in the same manner as in Example 1 to obtain fibers with a fiber diameter of 12 to 13 μm.Next, the fibers were placed in a mullite tube furnace in the same manner as in the previous example, It was subjected to infusibility treatment under various conditions and thermally decomposed at 1200°C. 1st
.. Table 4 shows the results of the second process conditions and the fiber state after firing.

第4表の結果から明らかなように、No、20〜25に
おいて、焼成後に全く融着なく、良好な状態の繊維が得
られた。
As is clear from the results in Table 4, in Nos. 20 to 25, fibers in good condition were obtained with no fusion at all after firing.

〔比較例〕[Comparative example]

実施例1,3.4で得られたシラザン重合体(重合体A
、B、C)を用い、実施例1と同様の紡糸装置を用いて
溶融紡糸し、繊維径12〜14μの繊維を得た。次いで
、これら繊維(0,05〜0.2g)をAfi、03ボ
ートニ乗せ、実施例ト1と同様にムライト管型炉にセッ
トし、各種不融化剤あるいは湿潤空気を用いて、種々条
件で処理した後、200’C/Hrの昇温速度で120
0℃にて30分間焼成して、不融化性能を評価した。
Silazane polymer obtained in Examples 1 and 3.4 (Polymer A
, B, and C) were melt-spun using the same spinning device as in Example 1 to obtain fibers with a fiber diameter of 12 to 14 μm. Next, these fibers (0.05 to 0.2 g) were placed on Afi, 03 boat, set in a mullite tube furnace in the same manner as in Example 1, and treated under various conditions using various infusibility agents or humid air. After that, the temperature was increased to 120°C at a heating rate of 200°C/Hr.
The infusible performance was evaluated by firing at 0° C. for 30 minutes.

第5表に第1工程を省略し、第2工程のアンモニアガス
のみの処理を行なった場合の結果を示す。
Table 5 shows the results when the first step was omitted and only ammonia gas was used in the second step.

なお5アンモニアガスは希釈せずに、 5 Q /’w
inの速度で通気した。
Note that 5 ammonia gas is 5 Q/'w without dilution.
Aerated at a rate of in.

また、第6表に第1工程のみを行ない、第2工程のアン
モニアガスによる処理を省略した場合の結果を示す。
Further, Table 6 shows the results when only the first step was performed and the second step of treatment with ammonia gas was omitted.

第 表 第5,6表の結果から明らかなように、第2工程(アン
モニアガス)のみによる不融化、第1工程のみによる不
融化は、これらの処理条件を種々変えても達成できなか
った。
As is clear from the results in Tables 5 and 6, infusibility by only the second step (ammonia gas) and infusibility by only the first step could not be achieved even if these treatment conditions were variously changed.

なお、No、36で一部わずかに繊維形状をとどめたも
のの繊維強度を測定したところ、繊維径9.7μ、引張
強度50kg/+d、引張弾性率6t/−と低物性であ
った。
In addition, when the fiber strength of No. 36, which partially retained its fiber shape slightly, was measured, the physical properties were low: fiber diameter 9.7 μ, tensile strength 50 kg/+d, and tensile modulus 6 t/−.

出願人  信越化学工業株式会社 代理人  弁理士 小 島 隆 司 手 続 補 正 昭和63年特許願第186324号 2、発明の名称 有機シラザン重合体の不融化方法 3、補正をする者 事件との関係Applicant: Shin-Etsu Chemical Co., Ltd. Agent: Patent Attorney Takashi Kojima hand Continued Supplementary Positive 1986 Patent Application No. 186324 2. Name of the invention Method for making organic silazane polymer infusible 3. Person who makes corrections Relationship with the incident

Claims (1)

【特許請求の範囲】[Claims] 1.有機シラザン重合体を溶融、成型した後、この成型
物を不融化処理するに当り、該成型物を下記式(1)〜
(4)で示される化合物から選ばれる1種又は2種以上
の蒸気を含む基体で処理し、次いでアンモニアガスで処
理して不融化することを特徴とする有機シラザン重合体
の不融化方法。 式(1) RaSiX_4_−_a (但し、Rは水素原子、低級アルキル基、アルケニル基
又はアリール基、Xは塩素原子、臭素原子又は沃素原子
を示す。aは0〜2であるが、aが2の場合、Rは互に
同一でも異なっていてもよい。) で示されるケイ素化合物、 式(2) BX_3 (但し、Xは上記と同様の意味を示す。) で示されるホウ素化合物、 式(3) PX_b (但し、Xは上記と同様の意味を示し、bは3又は5で
ある。) で示されるリン化合物、及び 式(4) MX_c (但し、MはAl,Ti,V,Fe,Ga,Ge,Zr
,Nb,Sn,Sb,Te,Ta,W又はBiを示し、
cは該金属の原子価である。Xは上記と同様の意味を示
す。) で示される金属化合物。
1. After melting and molding the organic silazane polymer, the molded product is treated to be infusible by the following formulas (1) to
A method for making an organic silazane polymer infusible, comprising treating it with a substrate containing one or more vapors selected from the compounds represented by (4), and then treating it with ammonia gas to make it infusible. Formula (1) RaSiX_4_-_a (wherein, R is a hydrogen atom, a lower alkyl group, an alkenyl group, or an aryl group, and X is a chlorine atom, a bromine atom, or an iodine atom. a is 0 to 2, but when a is 2 In the case of , R may be the same or different.) A silicon compound represented by the formula (2) BX_3 (However, X has the same meaning as above.) A boron compound represented by the formula (3) ) PX_b (wherein, ,Ge,Zr
, Nb, Sn, Sb, Te, Ta, W or Bi,
c is the valence of the metal. X has the same meaning as above. ) A metal compound represented by
JP63186324A 1988-06-30 1988-07-26 Method of in fusibilising organic silazane polymer Granted JPH0234565A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63186324A JPH0234565A (en) 1988-07-26 1988-07-26 Method of in fusibilising organic silazane polymer
US07/371,716 US5008348A (en) 1988-06-30 1989-06-27 Infusibilization of organic silazane polymers
US07/404,584 US4948763A (en) 1988-06-30 1989-09-08 Preparation of hollow ceramic fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63186324A JPH0234565A (en) 1988-07-26 1988-07-26 Method of in fusibilising organic silazane polymer

Publications (2)

Publication Number Publication Date
JPH0234565A true JPH0234565A (en) 1990-02-05
JPH0581556B2 JPH0581556B2 (en) 1993-11-15

Family

ID=16186347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63186324A Granted JPH0234565A (en) 1988-06-30 1988-07-26 Method of in fusibilising organic silazane polymer

Country Status (1)

Country Link
JP (1) JPH0234565A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959207A (en) * 1987-03-02 1990-09-25 Nippon Zeon Co., Ltd. Deodrant composition, deodrant resin composition and deodrant resin shaped article
US5019599A (en) * 1988-03-25 1991-05-28 Nippon Zeon Co., Ltd. Deodorizing urethane foam and process for its production
CN102375463A (en) * 2010-08-13 2012-03-14 李尔公司 System and method for controlling the output voltage of a power supply

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5612330B2 (en) * 2010-02-15 2014-10-22 公立大学法人大阪府立大学 Method for producing ceramic fiber and ceramic fiber obtained by the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959207A (en) * 1987-03-02 1990-09-25 Nippon Zeon Co., Ltd. Deodrant composition, deodrant resin composition and deodrant resin shaped article
US5019599A (en) * 1988-03-25 1991-05-28 Nippon Zeon Co., Ltd. Deodorizing urethane foam and process for its production
CN102375463A (en) * 2010-08-13 2012-03-14 李尔公司 System and method for controlling the output voltage of a power supply

Also Published As

Publication number Publication date
JPH0581556B2 (en) 1993-11-15

Similar Documents

Publication Publication Date Title
US4869854A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
US4870035A (en) Process for manufacturing organic silazane polymers and process for manufacturing ceramics from the polymers
US4847345A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
US4948763A (en) Preparation of hollow ceramic fibers
EP0323062B1 (en) Process for manufacturing organic silazane polymers
US5041515A (en) Methods for preparing polytitanocarbosilazane polymers and ceramics therefrom
JPH0234565A (en) Method of in fusibilising organic silazane polymer
US5183875A (en) Method for manufacturing a hafnium-containing silazane polymer and a method for manufacturing a ceramic from said polymer
JPH0214220A (en) Insolubilization of organic silazane polymer
US5200371A (en) Method for preparing organic silazane polymers and method for preparing ceramics from the polymers
EP0361181B1 (en) Infusibilization of organic silazane polymers and preparation of hollow ceramic fibers
US5210058A (en) Method for preparing organic silazane polymers and method for preparing ceramics from the polymers
US5145813A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
JPS63243328A (en) Production of ceramics
US5008348A (en) Infusibilization of organic silazane polymers
JP2518119B2 (en) Ceramics manufacturing method
JPH02104726A (en) Production of ceramic hollow fiber
JPH0313188B2 (en)
JPH0577691B2 (en)
JPH0274616A (en) Production of hollow ceramic fiber
JPH04153226A (en) Preparation of boron-containing silazane polymer and preparation of ceramic from the polymer
JPH06146115A (en) Inorganic filament
US5157096A (en) Method and apparatus for preparing organic silazane polymer and method for preparing inorganic fibers
JPH0219135B2 (en)