JPH0362568A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法

Info

Publication number
JPH0362568A
JPH0362568A JP1196569A JP19656989A JPH0362568A JP H0362568 A JPH0362568 A JP H0362568A JP 1196569 A JP1196569 A JP 1196569A JP 19656989 A JP19656989 A JP 19656989A JP H0362568 A JPH0362568 A JP H0362568A
Authority
JP
Japan
Prior art keywords
layer
type
diffusion layer
mos
bip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1196569A
Other languages
English (en)
Inventor
Kazuhiko Sagara
和彦 相良
Kiyoo Ito
清男 伊藤
Goro Kitsukawa
橘川 五郎
Yoshifumi Kawamoto
川本 佳史
Yoshiki Kawajiri
良樹 川尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1196569A priority Critical patent/JPH0362568A/ja
Priority to KR1019900011153A priority patent/KR910003834A/ko
Priority to EP19900114193 priority patent/EP0418505A3/en
Priority to US07/557,649 priority patent/US5118633A/en
Publication of JPH0362568A publication Critical patent/JPH0362568A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/318DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor the storage electrode having multiple segments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/144Shallow diffusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】
〔産業上の利用分野〕 本発明は、半導体装置澄の製造方法に関し、特に、高性
能のBiCMOSLSIを実現可能な半導体素子構造を
容易かつ高い精度で形成できる半導体装置の製造方法に
関する。 〔従来の技術〕 従来の半導体装置は、電子情報通信学会集積回路研究会
1987年(ICD87−33) に記載されているよ
うに、バイポーラトランジスタ(以下、Bipと略)、
nチャネル型MOSトランジスタ(以下n M OSと
略)、および、pチャネル型MOSトランジスタ(以下
pMO3と略)から構成されていた(第2図参l照)。 以下、第2図を用いて、上記従来装置の製造方法につい
て述べる、始めに、p型基板の一部にN型埋込層を形威
し、引き続き、p型エピタキシャル層を成長させる。こ
の後、Nウェルを形成し1選択酸化を行ない素子分離を
する。次に、コレクタの引上げ部を形成し、チャネルイ
ンプラを行なう。この後、ゲート電極を形成し、#4A
縁膜を堆積後、nMO8,9MO8のソース、ドレイン
拡散層を形威し、引き続き、Bipのベース、エミッタ
拡散層を形成する。この後、コンタクト穴を開孔後、配
線を形成し、第2図に示すBiCMOSLSIが完成す
る。 以上の製造方法で説明したように、従来の半導体装置で
は、始めにlMOSトランジスタを形成した後に、バイ
ポーラトランジスタを形成していることを特徴としてい
る。また、エミッタ拡散層の深さxjE(Bi p)が
0.15 μmであるのに対して、n M OSのソー
ス、ドレイン拡散層の深さは0.20μm、9MO8の
ソース、ドレイン拡散層の深さは0.35μmであり、
xj (CMO8)>xjE(Bi p)なる関係が成
立していることか多かった。 〔発明が解決しようとする課題〕 上記従来技術では、素子を微細化した際に、MOSトラ
ンジスタの特性が劣化し、高集積のBiCMOSLSI
が実現できない、といった問題点があった。さらに、x
j(MOS)>xje(Bip)の関係を保ったまま、
素子を微細化すると、バイポーラトランジスタの特性が
劣化し、高性能のBiCMO3LSIが実現できない、
といった問題点があった。 本発明は、上記従来技術の欠点を除去した高性能・高集
積のBiCMOS半導体装置を比較的簡単な工程でこれ
を実現することのできる製造方法を提供することにある
。 〔課題を解決するための手段〕 上記の目的を達成するために、本発明では、バイポーラ
トランジスタのエミッタ拡散層を形成した後に、MOS
トランジスタのソース、ドレイン拡散層を形成した。ま
た、xjE(Bjp)とj (MOS)の関係を逆転し
、常に、Xj(MOS)≦xjE(Bip)≦0.15
μmとなるように素子を設計した。 一般に、拡散層の深さxjは、シリコン中の不純物の拡
散係数をD、拡散時間をtとすると、v7″Dtで表わ
される。また、比例定数をり。、絶対温度をT、ボルツ
マン定数をk、活性化エネルギをEとすると、D=D、
exρ(−1キ)で表わされる。すなわち、拡散時間を
一定とした場合、xjは熱処理温度が低い程、小さくな
る。 ところで、素子の高集積化に伴い、MOSトランジスタ
、および、バイポーラトランジスタの両者を微細化する
必要がある。しかし、従来技術でMOSトランジスタを
微細化すると、ソース、ドレイン拡散層と空乏層が接触
し、パンチスルーが発生する。このため、素子の平面寸
法の縮小に比例して、Xjを小さくする必要があり、熱
処理温度の低温化は必須である。一方、バイポーラトラ
ンジスタの特性は、縦方向の不純物分布で決まり、xj
を小さくする必要はない。また、熱処理温度すなわち、
現在のプレーナ技術では、ベース拡散層を形成後に、エ
ミッタ拡散層を形成するために、ベース幅は、両者の拡
散層の深さの差で決められている。しかし、熱処理温度
を、特に、850℃以下にすると、ベース拡散層に含ま
れるボロンの拡散係数と、エミッタ拡散層に含まれるヒ
素の拡散係数の差が拡がり、ベース幅が広くなり、トラ
ンジスタの特性が劣化する。すなわち、熱処理温度の低
温化には限界がある。このため、本発明ではバイポーラ
トランジスタのエミッタ拡散層を900℃以上の熱処理
温度が形成後に、MOSトランジスタのソース、ドレイ
ン拡散層を850℃以下の熱処理温度で形成することに
より、高集積・高性能のBiCMOSLSIを得ること
ができる。また、xj(MOS)≦xjE(B i p
)≦0、■5μmとすることにより、高集積のMOSト
ランジスタと高性能のバイポーラトランジスタを同時に
形成できる。さらに、微細化に伴ないMOSトランジス
タのゲート酸化膜厚も薄くする必要がある。従来技術で
は、ゲート酸化膜厚は25nmであるが、今後は、ゲー
ト酸化膜厚は10nm以下となる。このため、バイポー
ラトランジスタ形成後に、MOSトランジスタを形成す
ることにより、ゲート酸化膜厚の一層の高品質化が実現
でき、高集積・高性能のBiCMOSLSIを形成でき
る。 〔作用〕 バイポーラのエミッタ拡散層を形成後に、MOSトラン
ジスタのソース、ドレイン拡散層を形成することにより
、MOSトランジ゛スタ形成時の熱処理温度をエミッタ
形成時の熱処理温度よりも低温化でき、xj(MOS)
を0.13μm以下とすることができる。また、xj(
MOS)≦xjE(Bip)≦0.15 μmとするこ
とにより、xjE(Bip)を0.15 μm以下に保
ちながら素子の微細化が可能である 〔実施例〕 以下、本発明の一実施例を第1図、および、第3図〜第
8図を用いて説明する。
【末流例1】 本実施例では、シングル・ドレイン構造のMOSトラン
ジスタ有する半導体装置に、本発明を適用したものであ
る。 初めに、第3図に示すように、p型シリコン基板1の一
部にn型埋込層2を形成し、エピタキシャル層を成長さ
せる。次に、上記エピタキシャル層の表面に二酸化シリ
コン6を形成し、BipおよびpMO5を形成する部分
にリンを打込み、また、n M OSを形成する部分に
ボロンを打込み、Nウェル3,5.および、pウェル4
を形成する。 次に、第4図で、選択酸化を行ない、二酸化シリコン7
を形成し、素子分離を行なう。この後、第5図で、コレ
クタ引出し部にリンを打込み、950℃で熱処理を行な
いn型拡散層8を形成する。さらに、ベース領域にボロ
ンを打込み、900℃で熱処理を行ないp型拡1!IM
9を形成する。次に、二酸化シリコン6の一部に開孔部
を設け、n型多結晶シリコン11を堆積後、900℃で
熱処理を行ない、エミッタ領域のn型拡散層10を形成
する。次に、第6図で、n型多結晶シリコン■2と二酸
化シリコン13からなるゲート電極を形成する。さらに
、n M OS部にヒ素を、また、pMO8部にボロン
を打込み、850℃で熱処理を行なうことにより、各々
、n型拡散層14とn型拡散層15を形成した。最後に
、第1図に示すように、ゲート電極の側壁に二酸化シリ
コン16を形成し、本発明のBiCMOSLSIを完成
させた。尚、第7図に、本実施例で適用した熱処理温度
の推移を示す。MOSトランジスタを、バイポーラトラ
ンジスタの後で形成したために、x j  (n M 
OS ) = O、↓2μm、xj (pMO8)=0
.13μm、xja(Bip)=0.15μmが実現で
きxj(MOS)≦xjH(Bip)≦0.15 μm
となった。また、第8図に、電界緩和型(LDD)MO
S トランジスタに、本発明を適用した例を示す。本例
においても、MOSトランジスタをバイポーラトランジ
スタの後に形成したために、xj(MOS)≦xjH(
Bip)50.15μmとなった。もちろん、従来技術
においても、イオン打込み時の加速電圧を調整すること
により、例えば、xj(MOS)=0.3μm、xjp
 (I3i p)=0.4μmとすることも可能である
。しかし、xjE(Bip)が0.15μm以上である
と、バイポーラトランジスタの直流・交流特性が著しく
劣化し、高性能のBiCMO3LSIを得ることは不可
能である。さらに、従来技術では、MOSトランジスタ
形成後に、バイポーラトランジスタを形成するために、
900℃以上の熱処理が加わり、0.20μm以下のソ
ース、ドレイン拡散層を得ることは不可能である。この
ため、第2の実施例で述べるような最小加工寸法0.3
μmを用いたBiCMO3LSIに適用可能な高性能M
OSトランジスタを形成することは不可能である。尚、
上記の実施例において、n M OSをLDD構造、お
よび、pMO3をシングル・ドレイン構造、または、そ
の逆に、n M OSをシングルドレイン構造、および
、PMO8をLDD構造としても、本発明が適用可能で
あることは言うまでもない。また、本例コン基板も、も
ちろん、適用可能である。
【実施例2】 第9図〜第17図を用いて、本発明の他の実施例を示す
。本例では、第9図(a)のダイナミックメモリセル(
ITrs、+ICap)に本発明を適用したが、同図(
b)に示すスタティックメモリセルにも、もちろん、適
用可能である。さらに、リードオンリメモリセルを用い
たLSIに限定されることなく、チップ内にMOSとバ
イポーラトランジスタを共存させたBiCMOSLSI
に広く適用可能である。また、以下の説明では、メモリ
セルがn M OS、周辺が9MO8、および、Bip
から構成されるBiCMOSDRAMの場合を記述する
が、メモリセルが複数個のnM○Sと9MO8,および
、周辺が複数個のn M OSとpMO3から構成され
るDRAMメモリセルの場合にも1本発明は適用可能で
ある。 始めに5第10図〜第12図に、本発明を用いて製造し
たBiCMO3回路の1例を示す。第ECLインタフェ
ースの入力回路、第12図は、ECLインターフェース
の出力回路の一例を示している。第10図において、メ
モリ等の集積度を上げるために、電圧降下回路L□ある
いはL2により、電源電圧より下げた電圧で、ゲート長
0.5μm以下の近耐圧微細MOSトランジスタを用い
たメモリセル、あるいは、デユーダ等の論理回路を動作
させる。また、入力回路、出力回路で、外部ECL、あ
るいは、TTL信号とチップ内信号とのレベル変換を行
なっている。この様にして。 入出力インターフェースは従来と同じまま、高集積で高
速のBiCMOSLSIを構成できる。 もちろん、入出力インタフェースとして、CMOSイン
タフェースも適用できる。また、電源電圧が、微細MO
8の耐圧より低い場合は、第10図の電圧降下回路L1
.L、を省略して、BiCMO3LSIを構成すること
もできる。 次に、上記半導体装置の製造方法の一例を、第13図〜
第16図を用いて述べる。初めに、第■3図で、P型シ
リコン基板21の一部にn型拡散層22およびp型拡散
H26を形成し、その後、エピタキシャル層を成長させ
る。次に、イオン打込み法を用いて、nウェル23.2
7とpウェル28を形成し、引き続き、選択酸化を行な
い、素子分離用の二酸化シリコン24を形成する。この
後、表面に二酸化シリコン25を形成する。次に、第1
4図で、まず、コレクタ引出し用のn型拡散層29を形
威し、さらに、ベース用のn型拡散層30を形成する。 この後、周辺pMO3とメモリセルn M OSのゲー
ト電極を加工する。始めに、第13図での二酸化シリコ
ン25の一部を除去し、ゲート酸化膜33を形成する。 膜厚は約6.5nmである。この後、n型多結晶シリコ
ン34と二酸化シリコン35を堆積し、上記2層膜を高
精度ホトリソグラフィー技術とドライエツチング技術を
用いて、加工する。本例では、n M OSのゲート長
は0.3pmであり、p’MO8のゲート長は0.4μ
mである。この後、ゲート端部を利用して、n M O
S部にn型拡散N38を形成する。 次に、n型多晶シリコン31.40を堆積してパターニ
ング後、900℃で熱処理を行ない、Bip部にエミッ
タ用のn型拡散層32とn M O8部にn型拡散層3
9を同時に形成する。この後、pMO8部に、n型拡散
層37を形成する。尚、上記の実施例では、n型拡散層
32と39を同時に形成したが、エミッタ部のn型拡散
層32を先に形威し、その後、n M OS部のn型拡
散JrI39を形成することも、もちろん可能である。 この場合、nMO8部のxj(MOS)をバイポーラ部
のXjE(B i p)よりも浅くでき、MOSトラン
ジスタの一層の短チヤネル化が実現できる。次に、第1
5図で、素子表面に二酸化シリコン41を堆積後、メモ
リセル部の二酸化シリコン41を除去し、n型多結晶シ
リコン42を形成する。この後、850℃で熱処理を行
ない、n型拡散層46を形成する。次に、絶縁膜43、
金属配線44から構成される電荷蓄積容量を形成する。 本例では、絶縁膜43として五酸化タンタル、また、金
属配線44としてタングステンを用いたが、もちろん、
他の材料も適用可能である。次に、第16図で、二酸化
シリコン45を堆積し、コンタクト穴を開孔し、電極を
形成することにより、本発明のBiCMOSLSIが完
成する。第17図は、上記B1CMOS  LSIの主
要構成部品である(a)Bip部、(b)メモリセルの
n M OS部、および、(c)周辺pMOs部の拡大
図を示す。Bipのエミッタ拡散層を形成後に、MOS
トランジスタのソース、ドレイン拡散層を形成したため
に、x jE(B i p) =0.12 pmxj 
(nMOs)=0.10μm、および、xj(pMO3
) =0.12μmとなり、xj(MOS)≦xjE(
Bip)=≦0.15μmが実現できた。
【実施例3】 本発明のもう一つの実施例を第18図に示す。 本例は、シリコン溝に電荷を蓄積させるダイナミックメ
モリセルに、本発明を適用した。電荷は。 n型拡散層54、二酸化シリコン52、絶縁膜53、お
よびn型多結晶シリコン55で構成され荷蓄積用のシリ
コン溝を、バイポーラトランジスタの素子分離溝と共用
できる。このため、バイポーラトランジスタの寄生容量
が小さくでき、より高性能のBiCMOSLSIを実現
できる。 尚、上記の実施例1〜3において、すべてのn型、p型
拡散層を逆転しても、本発明が適用可能であることは言
うまでもない。 〔発明の効果〕 以上説明したように、本発明を用いてLSIを試作した
結果、工程数の増加はなく、エミッタ拡散層の深さxj
E(Bi p)=0.12μm、エミッタ面積0.5X
4.0μm”、電流利得100、遮断周波数10GHz
のバイポーラトランジスタと、ゲート長0 、37A 
m cx j  (n M OS ) =0.10 μ
mのn M OSと、ゲート長0.4μmでXj (p
MO8)=0.12μmのpMO3を同時に形成できた
。また、上記トランジスタを用いて4Mbit  Bi
CMO3DRAMを設計すれば、メモリセル面積1.2
8μm2で、アクセス時間7nsが得られ、従来のCM
O3DRAMと比較して、回路速度が5倍となる見通し
を得た。 さらに本発明を適用すれば、アクセス時間が20ns以
下の64 M bitのBiCMOSDRAMあるいは
16MbitのBiCMO3SRAMといった、高集積
・高速のメモリLSIを実現することができる。またメ
モリLSIばかりでなく、通常の論理LSIやアナログ
回路を内蔵したLSI等の広汎なりiCMO3LSIに
も広く適用可能である。
【図面の簡単な説明】
第を図、および、第3図〜第8図は、本発明の一実施例
を示す素子の工程断面図である。第2図は、従来例を示
す素子の工程断面図である。第9図〜第17図は、本発
明の他の実施例を示す素子の回路図、および、工程断面
図である。また、第18図は、本発明のもう一つの実施
例を示す素子の工程断面図である。 く符号の説明〉 p型シリコン基板・・・1,21.47n型埋込層・・
・2,22,48 nウェル・ 3,5,23,27.50pウエル・・・
4,28.5に 酸化シリコン・・・6,7,13,16,24゜25.
33,35,36,41,45゜49.52 N型拡散層・・・8,10,14,17,18,29゜
32.38,39,46.54 p型拡散層・・・9,15,19.20,26,30゜
7 n型多結晶シリコン−11,12,31,34゜40.
42.55 絶縁膜・・・43.53 金属配線・・・44 b 〜) 積へカ 第 図 科算アニー+lz特間(分) 第q 図 ((L) り行ミッフメ乞りτIし Cb) ス7ティッフメ乞りCル 第 0 図 cc ly、12 電FL幻鮒引路 N〜〜 N 17 図 4P9P 32、 u、4e : n4’jXn137.4θ、4
2:れ9多を吉品シソコンIH,4!; ’、二油釘乙
ンソフン 23 : れウェル  2!:PクエルJθ :P型オ
ム4ダ、看 第17図 7 竹ウェル 4 7 4ノ、二面6A乙ンリコン P等1才IAイ叉檜

Claims (1)

  1. 【特許請求の範囲】 1、バイポーラトランジスタとMOSトランジスタをそ
    なえてBiCMOS半導体装置の形成に際し、上記バイ
    ポーラトランジスタの最終拡散層を形成した後に、上記
    MOSトランジスタのソース、または、ドレイン拡散層
    を形成することを特徴とする半導体装置の製造方法。 2、上記最終拡散層をエミッタ拡散層とすることを特徴
    とする請求項第1項記載の半導体装置の製造方法。 3、上記MOSトランジスタがメモリセルの一部を形成
    することを特徴とする請求項第1項記載の半導体装置の
    製造方法。 4、請求項第1項乃至第3項記載の半導体装置の製造方
    法によって形成されたBiCMOS半導体装置であって
    、バイポーラトランジスタのエミッタ拡散層の深さをx
    j_E(Bip)、または、MOSトランジスタのソー
    スまたは、ドレイン拡散層の深さをxj(MOS)とし
    たとき、Xj(MOS)≦Xj_E(Bip) である半導体装置。
JP1196569A 1989-07-31 1989-07-31 半導体装置の製造方法 Pending JPH0362568A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1196569A JPH0362568A (ja) 1989-07-31 1989-07-31 半導体装置の製造方法
KR1019900011153A KR910003834A (ko) 1989-07-31 1990-07-23 반도체장치의 제조방법
EP19900114193 EP0418505A3 (en) 1989-07-31 1990-07-24 Method of manufacturing a bi cmos semiconductor device
US07/557,649 US5118633A (en) 1989-07-31 1990-07-25 Method for manufacturing a bicmos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1196569A JPH0362568A (ja) 1989-07-31 1989-07-31 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JPH0362568A true JPH0362568A (ja) 1991-03-18

Family

ID=16359921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1196569A Pending JPH0362568A (ja) 1989-07-31 1989-07-31 半導体装置の製造方法

Country Status (4)

Country Link
US (1) US5118633A (ja)
EP (1) EP0418505A3 (ja)
JP (1) JPH0362568A (ja)
KR (1) KR910003834A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234941A (ja) * 2011-04-28 2012-11-29 Denso Corp 半導体装置の製造方法及び半導体装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648288A (en) * 1992-03-20 1997-07-15 Siliconix Incorporated Threshold adjustment in field effect semiconductor devices
US5508541A (en) * 1992-09-22 1996-04-16 Kabushiki Kaisha Toshiba Random access memory device with trench-type one-transistor memory cell structure
US6350640B1 (en) 1994-07-18 2002-02-26 Intersil Americas Inc. CMOS integrated circuit architecture incorporating deep implanted emitter region to form auxiliary bipolar transistor
JP2616569B2 (ja) * 1994-09-29 1997-06-04 日本電気株式会社 半導体集積回路装置の製造方法
KR100190029B1 (ko) * 1996-03-19 1999-06-01 윤종용 바이씨모스 에스램 소자의 제조방법
US5780329A (en) * 1997-04-03 1998-07-14 Symbios, Inc. Process for fabricating a moderate-depth diffused emitter bipolar transistor in a BICMOS device without using an additional mask
JPH10289961A (ja) * 1997-04-15 1998-10-27 Nec Corp 半導体装置の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936514B1 (ja) * 1970-05-13 1974-10-01
US3873373A (en) * 1972-07-06 1975-03-25 Bryan H Hill Fabrication of a semiconductor device
JPS539469A (en) * 1976-07-15 1978-01-27 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device having electrode of stepped structure and its production
US4182023A (en) * 1977-10-21 1980-01-08 Ncr Corporation Process for minimum overlap silicon gate devices
US4149904A (en) * 1977-10-21 1979-04-17 Ncr Corporation Method for forming ion-implanted self-aligned gate structure by controlled ion scattering
JPS5467778A (en) * 1977-11-10 1979-05-31 Toshiba Corp Production of semiconductor device
US4534806A (en) * 1979-12-03 1985-08-13 International Business Machines Corporation Method for manufacturing vertical PNP transistor with shallow emitter
US4356623A (en) * 1980-09-15 1982-11-02 Texas Instruments Incorporated Fabrication of submicron semiconductor devices
US4369072A (en) * 1981-01-22 1983-01-18 International Business Machines Corp. Method for forming IGFET devices having improved drain voltage characteristics
JPS58225663A (ja) * 1982-06-23 1983-12-27 Toshiba Corp 半導体装置の製造方法
JPS6080267A (ja) * 1983-10-07 1985-05-08 Toshiba Corp 半導体集積回路装置の製造方法
JPH0665225B2 (ja) * 1984-01-13 1994-08-22 株式会社東芝 半導体記憶装置の製造方法
JPS6156446A (ja) * 1984-08-28 1986-03-22 Toshiba Corp 半導体装置およびその製造方法
US4808548A (en) * 1985-09-18 1989-02-28 Advanced Micro Devices, Inc. Method of making bipolar and MOS devices on same integrated circuit substrate
US4737472A (en) * 1985-12-17 1988-04-12 Siemens Aktiengesellschaft Process for the simultaneous production of self-aligned bipolar transistors and complementary MOS transistors on a common silicon substrate
EP0256315B1 (de) * 1986-08-13 1992-01-29 Siemens Aktiengesellschaft Integrierte Bipolar- und komplementäre MOS-Transistoren auf einem gemeinsamen Substrat enthaltende Schaltung und Verfahren zu ihrer Herstellung
US4734382A (en) * 1987-02-20 1988-03-29 Fairchild Semiconductor Corporation BiCMOS process having narrow bipolar emitter and implanted aluminum isolation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234941A (ja) * 2011-04-28 2012-11-29 Denso Corp 半導体装置の製造方法及び半導体装置

Also Published As

Publication number Publication date
KR910003834A (ko) 1991-02-28
US5118633A (en) 1992-06-02
EP0418505A3 (en) 1991-09-25
EP0418505A2 (en) 1991-03-27

Similar Documents

Publication Publication Date Title
US4879255A (en) Method for fabricating bipolar-MOS devices
US5468666A (en) Using a change in doping of poly gate to permit placing both high voltage and low voltage transistors on the same chip
JP2703970B2 (ja) Mos型半導体装置
US4213139A (en) Double level polysilicon series transistor cell
US5789790A (en) Semiconductor device
JPH03145761A (ja) 半導体装置
KR100420870B1 (ko) Eeprom-반도체구조물의제조방법
JPS5994861A (ja) 半導体集積回路装置及びその製造方法
JPH0521726A (ja) BiCMOS装置及びその製造方法
KR960000713B1 (ko) 반도체장치
US4488348A (en) Method for making a self-aligned vertically stacked gate MOS device
TWI654769B (zh) 半導體裝置中之電容結構及其形成之方法
JPH0458191B2 (ja)
JPH05251555A (ja) Mos型集積回路の製造方法
EP0918356A1 (en) Semiconductor device and manufacturing method thereof
JPH0362568A (ja) 半導体装置の製造方法
JP2001093997A (ja) 混合信号回路用集積バイポーラ接合形トランジスタ
JP3111948B2 (ja) 半導体集積回路
US5430317A (en) Semiconductor device
US4570175A (en) Three-dimensional semiconductor device with thin film monocrystalline member contacting substrate at a plurality of locations
EP0716454A2 (en) MOSFET device formed in epitaxial layer
EP0889530B1 (en) Closed transistor with small W/L ratios
US6110767A (en) Reversed MOS
JPS6038856A (ja) 半導体装置及びその製造方法
JPS63131565A (ja) 半導体装置