JPH0360359A - Variable reluctance motor - Google Patents

Variable reluctance motor

Info

Publication number
JPH0360359A
JPH0360359A JP19425089A JP19425089A JPH0360359A JP H0360359 A JPH0360359 A JP H0360359A JP 19425089 A JP19425089 A JP 19425089A JP 19425089 A JP19425089 A JP 19425089A JP H0360359 A JPH0360359 A JP H0360359A
Authority
JP
Japan
Prior art keywords
stator
rotor
iron loss
thermal expansion
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19425089A
Other languages
Japanese (ja)
Inventor
Hideaki Oku
秀明 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP19425089A priority Critical patent/JPH0360359A/en
Publication of JPH0360359A publication Critical patent/JPH0360359A/en
Pending legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

PURPOSE:To minimize the gap fluctuation between a stator and rotor by a method wherein the thermal expansion of the rotor caused by the iron loss in the rotor and the thermal expansion of the stator caused by the iron loss and the copper loss in the stator are made to be equal to each other. CONSTITUTION:A rotor and stator are so constituted as to have an equal value for the thermal expansion of the rotor caused by a temperature rise produced by the iron loss in the rotor and for the thermal expansion of the stator caused by a temperature rise produced by the iron loss and copper loss in the stator. If both the rotor and stator are composed of laminated thin silicon steel plates made of the same material, the thickness of the silicon steel plate of the rotor is made to be larger than the thickness of the silicon steel plate of the stator in order to produce an excessive iron loss of the rotor equipment to the copper loss of the stator to approximately equalize the temperature rises. If the material of the rotor and the material of the stator are different, the thermal expansions of the rotor and the stator can be approximately made equal to each other. With this constitution, the gap can be minimized and the torque fluctuation can be suppressed, and a stable motor not effected by a temperature can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は可変リラクタンス型モータの構造に関する。[Detailed description of the invention] Industrial applications The present invention relates to the structure of a variable reluctance motor.

従来の技術 可変リラクタンス型モータは、ロータをステータの内側
に回転可能にモータ軸で保持し、ロータ及びステータに
突極歯を設け、ステータ突極歯に励磁巻線を巻き、該励
磁巻線に励磁電流を供給することによってステータ突極
歯を励磁し、ステータ突極歯に発生する磁気吸引力によ
ってロータの突極歯を引き寄せ回転力とするものである
。すなわち、励磁電流が励磁巻線に流れると磁束が発生
し、ロータ及びステータ中に磁路が形成される。
Conventional technology A variable reluctance motor has a rotor rotatably held inside a stator by a motor shaft, the rotor and stator are provided with salient pole teeth, an excitation winding is wound around the stator salient pole teeth, and the excitation winding is The stator salient pole teeth are excited by supplying an excitation current, and the magnetic attraction force generated in the stator salient pole teeth attracts the rotor salient pole teeth to generate a rotational force. That is, when the excitation current flows through the excitation winding, magnetic flux is generated and a magnetic path is formed in the rotor and stator.

そして、磁力線の力によってロータの突極歯とステータ
の突極歯が対面し、磁気抵抗の最も小さい状態になるよ
うにステータ突極歯がロータ突極歯を引き寄せようと作
用し回転力を生むものである。
Then, the salient pole teeth of the rotor and the salient pole teeth of the stator face each other due to the force of the magnetic lines of force, and the stator salient pole teeth act to pull the rotor salient pole teeth toward each other so that the magnetic resistance is minimized, producing rotational force. It is something that

また、従来の可変リラクタンス型モータは、ロータもス
テータも珪素鋼板の同一板厚の薄板を積層して作成され
ているものが一般的である。
Further, in conventional variable reluctance type motors, both the rotor and the stator are generally made by laminating thin silicon steel plates of the same thickness.

発明が解決しようとする課題 ロータとステータを同一板厚の珪素鋼板の薄板を積層し
て構成していると、磁束の変化によって生じる鉄損(ヒ
ステリシス損及び渦流損)は、ロータもステータもほぼ
等しい。しかし、ステータ側では励磁巻線に流れる電流
による銅損、即ちジュール熱があり、ステータ側の方が
温度上昇の度合いが大きく、ロータよりステータの熱膨
張が大きくなり、ロータとステータ間のギャップが広が
ることとなる。
Problems to be Solved by the Invention If the rotor and stator are constructed by laminating thin silicon steel plates of the same thickness, the iron loss (hysteresis loss and eddy current loss) caused by changes in magnetic flux will be approximately the same for both the rotor and stator. equal. However, on the stator side, there is copper loss due to the current flowing in the excitation winding, that is, Joule heat, and the degree of temperature rise on the stator side is greater, and the thermal expansion of the stator is greater than that of the rotor, and the gap between the rotor and stator is increased. It will spread.

一方、ロータ突極歯とステータ突極歯間のギャップが小
さいほど磁束密度は高く、その結果、磁力線の力も強く
なり、回転力即ちトルクは大きくなる。即ち、ギャップ
の大きさは発生トルクに影響する。上述したように、ス
テータとロータの温度上昇の差異によってギャップが変
動すると出力トルクも変動することとなる。
On the other hand, the smaller the gap between the rotor salient pole teeth and the stator salient pole teeth, the higher the magnetic flux density, and as a result, the force of the magnetic lines of force becomes stronger, and the rotational force, that is, the torque becomes larger. That is, the size of the gap affects the generated torque. As described above, if the gap changes due to the difference in temperature rise between the stator and rotor, the output torque will also change.

そこで本発明の目的は、ステータとロータの熱膨張を等
しくすることにより、ギャップ変動を最小限に抑えた可
変リラクタンス型モータを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a variable reluctance motor in which gap fluctuations are minimized by equalizing the thermal expansion of the stator and rotor.

課題を解決するための手段 本発明は、ロータの鉄損による温度上昇での熱膨張がス
テータの鉄損と銅損による温度上昇での熱膨張に等しく
なるようにロータ及びステータを構成することによって
上記課題を解決した。
Means for Solving the Problems The present invention solves the problem by configuring the rotor and stator so that the thermal expansion caused by the temperature rise due to the iron loss of the rotor is equal to the thermal expansion caused by the temperature rise caused by the iron loss and copper loss of the stator. The above issues were resolved.

特に、ステータもロータも同じ材質の成層珪素鋼板で形
成した場合には、ロータの珪素鋼板の薄板の板厚をステ
ータの板厚よりも大きくし、ステータの銅損分だけ余分
に鉄損を発生させ、温度上昇をほぼ同一とする。また、
ロータとステータの材質を変えてロータとステータの温
度上昇による熱膨張を同一とし、熱によるロータとステ
ータ間のギャップ変動を最小限とする。
In particular, when the stator and rotor are made of the same material, stratified silicon steel plates, the thickness of the thin silicon steel plate of the rotor is made larger than the thickness of the stator, which generates an extra core loss equal to the copper loss of the stator. to keep the temperature rise almost the same. Also,
By changing the materials of the rotor and stator, the thermal expansion caused by the temperature rise of the rotor and stator is the same, and the gap fluctuation between the rotor and stator due to heat is minimized.

作用 ロータに発生する熱は磁束変化による渦流損及びヒステ
リシス損からなる鉄損のみであることに対し、ステータ
は上記鉄損に加えて励磁巻線から生じる銅損即ちジュー
ル熱がある。そこで、ロータの鉄損による温度上昇での
ロータの熱膨張とステータの鉄損及び銅損による温度上
昇でのステータの熱膨張を等しくなるようにロータ及び
ステータを構成すれば、ロータ・ステータ用のギャップ
の変動はモータの全体的熱膨張に伴う変動に抑えられ、
トルク変動を最小限に抑えことができる。
The heat generated in the working rotor is only iron loss consisting of eddy current loss and hysteresis loss due to changes in magnetic flux, whereas in the stator, in addition to the above-mentioned iron loss, there is copper loss, that is, Joule heat, generated from the excitation winding. Therefore, if the rotor and stator are configured so that the thermal expansion of the rotor due to temperature rise due to rotor iron loss is equal to the thermal expansion of the stator due to temperature rise due to stator iron loss and copper loss, the rotor-stator Gap fluctuations are suppressed to fluctuations due to overall thermal expansion of the motor,
Torque fluctuations can be minimized.

すなわち、ロータ及びステータを材質同一の珪素鋼板の
薄板を積層して構成する場合には、ロータの珪素鋼板の
板厚をステータの板厚に比べ厚くしてステータの銅損分
だけロータの鉄損を余分に発生させ、温度上昇を略等し
くすることによってロータ、ステータの熱膨張を略等し
くシ、ギャップ変動を最小限とする。また、ロータとス
テータの材質を変えることによってロータ及びステータ
の熱膨張を略等しくすることによってギャップ変動を最
小限にすることができる。
In other words, when the rotor and stator are constructed by laminating thin silicon steel plates of the same material, the thickness of the silicon steel plates of the rotor is made thicker than that of the stator, and the iron loss of the rotor is reduced by the copper loss of the stator. By generating an extra amount of heat and making the temperature rise approximately equal, the thermal expansion of the rotor and stator is made approximately equal, and gap fluctuation is minimized. Further, by changing the materials of the rotor and stator, the thermal expansion of the rotor and stator can be made approximately equal, thereby minimizing gap fluctuation.

実施例 ロータ及びステータを材質同一の珪素鋼板の薄板を積層
して作成する。この場合、各パラメータを次のようにす
る。
EXAMPLE A rotor and a stator are made by laminating thin plates of silicon steel plates of the same material. In this case, set each parameter as follows.

Cr:ロータの熱容量(J/℃) C5:ステータの熱容量(J/℃) α :珪素鋼板の熱膨張係数(m m / ’C)Wr
:ロータの鉄損(J) Wc:ステータの銅損(ジュール熱)(J)Ws:ステ
ータの鉄損(J) Rr:ロータ外半径(mm) ΔRr:膨張したロータ外半径(rnm)R8:ステー
タ内半径(mm) ΔR8:膨張したステータ内半径(mm)g :ロータ
・ステータ間のギャップ (=Rs −Rrmm) Δg=膨張したロータ・ステータ間ギャップ(=ΔRs
−ΔRrmm) 熱膨張で生じるギャップの膨張Δgは次のようになる。
Cr: Heat capacity of rotor (J/℃) C5: Heat capacity of stator (J/℃) α: Coefficient of thermal expansion of silicon steel plate (mm/'C) Wr
: Rotor iron loss (J) Wc: Stator copper loss (Joule heat) (J) Ws: Stator iron loss (J) Rr: Rotor outer radius (mm) ΔRr: Expanded rotor outer radius (rnm) R8: Stator inner radius (mm) ΔR8: Expanded stator inner radius (mm) g: Gap between rotor and stator (=Rs - Rrmm) Δg = Gap between expanded rotor and stator (=ΔRs
-ΔRrmm) The expansion Δg of the gap caused by thermal expansion is as follows.

Δg=ΔRs−ΔRr R8・α・(Wc+WS)/C3−Rr・α・Wr/′
Cr−・・・・・(1) 上記第(+)式において、熱膨張によるギャップの増大
ΔgをrOJとして、ロータ鉄損Wrについて解くと、
次の第(2)式のようになる。
Δg=ΔRs−ΔRr R8・α・(Wc+WS)/C3−Rr・α・Wr/′
Cr-...(1) In the above equation (+), when the gap increase Δg due to thermal expansion is set as rOJ, and the rotor iron loss Wr is solved,
The following equation (2) is obtained.

Wr= (Cr/Cs)  ・ (Rs/Rr) ・ 
(Wc+Ws)・・・・・・(21 そこで、ステータの鉄損W s 、銅損Wc及びロータ
、ステータの熱容量Cr、Csを実験的に求め、上記第
(2)式で求められるロータ鉄損Wrが生じるようにロ
ータの珪素鋼板の板厚を厚くする。
Wr= (Cr/Cs) ・ (Rs/Rr) ・
(Wc+Ws)...(21) Therefore, the stator iron loss Ws, copper loss Wc, and the heat capacities Cr and Cs of the rotor and stator are experimentally determined, and the rotor iron loss determined by the above equation (2) is calculated. The thickness of the silicon steel plate of the rotor is increased so that Wr is generated.

また、第(1)式において、ギャップ増大Δgを「0」
としてステータ鉄損Wsについて解き、求められたステ
ータ鉄損Wsになるようにステータの珪素鋼板の板厚を
ロータの板厚より小さくしてもよい。
In addition, in equation (1), the gap increase Δg is set to "0".
The thickness of the silicon steel plate of the stator may be made smaller than the thickness of the rotor so that the stator iron loss Ws is obtained.

これにより、ロータとステータ間のギャップ変動Δgは
最小限に抑えられ、トルク変動を最小限に抑えることが
できる。
Thereby, the gap variation Δg between the rotor and the stator can be minimized, and the torque variation can be minimized.

また、ロータとステータの材質を変え、ロータの材質を
ステータの材質に比べ鉄損の大きいものにして、温度上
昇を略等しくし、ロータ、ステータの熱膨張を略等しく
するようにしてもよい。
Alternatively, the materials of the rotor and stator may be changed, and the material of the rotor may be made to have a larger iron loss than the material of the stator, so that the temperature rise is approximately equal and the thermal expansion of the rotor and stator is approximately equal.

発明の効果 本発明は、可変リラクタンス型モータを駆動中に発生す
る熱によるロータ及びステータの体積膨張によるロータ
、ステータ間のギャップ変動を最小限に抑えることによ
りトルク変動を抑えたので、温度に影響しない安定した
モータの駆動を得ることができる。
Effects of the Invention The present invention suppresses torque fluctuations by minimizing gap fluctuations between the rotor and stator due to volumetric expansion of the rotor and stator due to heat generated while driving a variable reluctance motor, thereby reducing the influence on temperature. You can get stable motor drive without any problem.

Claims (2)

【特許請求の範囲】[Claims] (1)可変リラクタンス型モータにおいて、ロータの鉄
損による温度上昇での熱膨張と、ステータの鉄損と銅損
による温度上昇での熱膨張が等しくなるようにロータ及
びステータを構成することを特徴とする可変リラクタン
ス型モータ。
(1) In a variable reluctance motor, the rotor and stator are configured so that the thermal expansion due to temperature rise due to iron loss of the rotor is equal to the thermal expansion due to temperature rise due to iron loss and copper loss of the stator. Variable reluctance motor.
(2)ステータ及びロータが同一材質の成層珪素鋼板で
形成された可変リラクタンス型モータにおいて、ロータ
の鉄損による温度上昇がステータの鉄損と銅損による温
度上昇に等しくなるようにロータの成層珪素鋼板の板厚
をステータの成層珪素鋼板の板厚より相対的に厚くした
ことを特徴とする可変リラクタンス型モータ。
(2) In a variable reluctance motor in which the stator and rotor are made of the same material, stratified silicon steel plates, the rotor's stratified silicon steel plate is adjusted so that the temperature rise due to rotor iron loss is equal to the temperature rise due to stator iron loss and copper loss. A variable reluctance motor characterized in that the thickness of the steel plate is relatively thicker than the thickness of the stratified silicon steel plate of the stator.
JP19425089A 1989-07-28 1989-07-28 Variable reluctance motor Pending JPH0360359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19425089A JPH0360359A (en) 1989-07-28 1989-07-28 Variable reluctance motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19425089A JPH0360359A (en) 1989-07-28 1989-07-28 Variable reluctance motor

Publications (1)

Publication Number Publication Date
JPH0360359A true JPH0360359A (en) 1991-03-15

Family

ID=16321488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19425089A Pending JPH0360359A (en) 1989-07-28 1989-07-28 Variable reluctance motor

Country Status (1)

Country Link
JP (1) JPH0360359A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030002309A (en) * 2001-06-28 2003-01-09 전경식 A folding fan
JP2003244911A (en) * 2002-02-19 2003-08-29 Mitsubishi Electric Corp Rotating electric machine and machine tool
JP2010045873A (en) * 2008-08-08 2010-02-25 Fuji Electric Systems Co Ltd Efficient permanent magnet motor
US20130028292A1 (en) * 2011-07-29 2013-01-31 Fanuc Corporation Temperature detection device that detects temperature of rotor of motor
WO2017126053A1 (en) * 2016-01-20 2017-07-27 三菱電機株式会社 Permanent magnet synchronous motor, compressor and air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030002309A (en) * 2001-06-28 2003-01-09 전경식 A folding fan
JP2003244911A (en) * 2002-02-19 2003-08-29 Mitsubishi Electric Corp Rotating electric machine and machine tool
JP2010045873A (en) * 2008-08-08 2010-02-25 Fuji Electric Systems Co Ltd Efficient permanent magnet motor
US20130028292A1 (en) * 2011-07-29 2013-01-31 Fanuc Corporation Temperature detection device that detects temperature of rotor of motor
US8967857B2 (en) * 2011-07-29 2015-03-03 Fanuc Corporation Temperature detection device that detects temperature of rotor of motor
WO2017126053A1 (en) * 2016-01-20 2017-07-27 三菱電機株式会社 Permanent magnet synchronous motor, compressor and air conditioner
JPWO2017126053A1 (en) * 2016-01-20 2018-03-22 三菱電機株式会社 Permanent magnet synchronous motor, compressor and air conditioner
CN108702075A (en) * 2016-01-20 2018-10-23 三菱电机株式会社 Permanent magnet synchronous motor, compressor and air conditioner

Similar Documents

Publication Publication Date Title
JP4158024B2 (en) Induction motor
JP4772503B2 (en) Three-phase synchronous machine including a permanent magnet type rotor having a squirrel-cage induction winding conductor, a traction drive device, and a production machine device
JP2006246571A (en) Reluctance motor
EP1096648B1 (en) Motor/generator having two rotors
US2871384A (en) Stator constructions for synchronous hysteresis motors
US3758800A (en) Reluctance synchronous motors and rotors for same
JPS62500140A (en) synchronous servo motor
JP5066820B2 (en) Magnet structure
JPS5810940B2 (en) M Yuki Soukouri
JPH0360359A (en) Variable reluctance motor
JP5230511B2 (en) Magnetic inductor type rotating machine
US3783502A (en) Method of making high speed homopolar generator with straight winding construction
JP5011719B2 (en) Rotating electric machine and control method thereof, compressor, blower, and air conditioner
JPS59230453A (en) Axial air gap type induction motor
JP2003333772A (en) Stator core having laminate made of iron-aluminum alloy and method for using the same
US3567978A (en) Axial airgap motors with reduced iron losses
JPS58123355A (en) Synchronous motor
JPH1080124A (en) Permanent magnet type rotating electric machine
JP2010045872A (en) Permanent magnet rotary machine
JP2007166798A (en) Dynamo-electric machine, compressor, blower, and air conditioner
JP2659368B2 (en) Brushless motor
JP3500009B2 (en) Rotating machine core and rotating machine
JP2611291B2 (en) Permanent magnet field two-phase multi-pole synchronous machine
JP2004215496A (en) Exciter, field unit, and synchronous machine using same
JPH0564383A (en) Stator of rotary electric machine