JP2010045872A - Permanent magnet rotary machine - Google Patents

Permanent magnet rotary machine Download PDF

Info

Publication number
JP2010045872A
JP2010045872A JP2008206182A JP2008206182A JP2010045872A JP 2010045872 A JP2010045872 A JP 2010045872A JP 2008206182 A JP2008206182 A JP 2008206182A JP 2008206182 A JP2008206182 A JP 2008206182A JP 2010045872 A JP2010045872 A JP 2010045872A
Authority
JP
Japan
Prior art keywords
stator
permanent magnet
core
rotor
rotating machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008206182A
Other languages
Japanese (ja)
Inventor
Akihide Mashita
明秀 真下
Hideo Hirose
英男 廣瀬
Daishi Shimada
大志 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2008206182A priority Critical patent/JP2010045872A/en
Publication of JP2010045872A publication Critical patent/JP2010045872A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet rotary machine that reduces iron loss and copper loss in a balanced manner to further enhance efficiency. <P>SOLUTION: The permanent magnet rotary machine includes: a stator 3 having a stator core 8 and an exciting coil wound on the stator core; and a rotor 4 opposed to the stator with a predetermined gap in-between and having a rotor core 13 and multiple permanent magnets 15 formed in the rotor core 13. In the rotary machine, the number of magnetic poles is set to six. The width W of the yoke 8a of the stator 3 and the pole pitch τ are so set that the their ratio W/τ meets the relation of 0.3≤W/τ≤0.5. The inside diameter Di of the stator 3 and its outside diameter Da are so set that their ratio Di/Da meets the relation of 0.55≤Di/Da≤0.65. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固定子とこの固定子に所定の空隙を有して対向して回転する永久磁石を有する回転子とを備えた永久磁石式回転機に関する。   The present invention relates to a permanent magnet type rotating machine that includes a stator and a rotor having a permanent magnet that rotates opposite to the stator with a predetermined gap.

最近、環境問題、省資源、省エネルギの観点から、回転機の効率化に注目が集まっている。従来、交流可変速機として誘導電動機が広く用いられており、簡易構造で堅固であり、インバータによる駆動システムも完成度が高い。しかしながら、誘導電動機は駆動原理的にスリップを必要とするため、2次側導体に損失が発生し効率低下を招く。
誘導電動機に対し、同じ交流可変速機として用いられる同期電動機は上述のスリップを必要とせず、特に同期電動機の一つである永久磁石式回転機は界磁に回転子の永久磁石を用いるため励磁損失を発生せず、高効率駆動可能であるため、誘導電動機に変わり主流となり得る回転機として期待が集まっている。
Recently, attention has been focused on increasing the efficiency of rotating machines from the viewpoint of environmental problems, resource saving, and energy saving. Conventionally, induction motors have been widely used as AC variable speed machines, and have a simple structure and are robust. A drive system using an inverter is also highly complete. However, since the induction motor requires slip in terms of driving principle, a loss occurs in the secondary conductor, resulting in a reduction in efficiency.
In contrast to induction motors, synchronous motors used as the same AC variable speed machine do not require the above-mentioned slip. In particular, a permanent magnet type rotating machine, which is one of synchronous motors, uses a permanent magnet of a rotor as a field magnet. Since loss is not generated and high-efficiency driving is possible, there is an expectation as a rotating machine that can become a mainstream instead of an induction motor.

永久磁石式回転機では、誘導電動機に比べ回転子に損失が発生しないため全体の損失が少なく高効率のため、誘導電動機と同じ出力を得る場合には全体を小型化することができる。従来では、固定子のヨーク部の磁束密度を1T以上に設定することが通常である。
一方、従来、シャフトとシャフト外周に永久磁石を装着してなる回転子と、スロット構造のステータコアと電機子巻線からなる固定子で構成され、かつ2nポール3nスロット(nは整数)構造のACモータにおいて、固定子の歯部の幅Bt/スロットピッチを0.45〜0.7の範囲にするとともに、固定子ヨーク厚みDyと固定子スロット歯部の幅Btを0.42〜0.58の範囲に設定したACモータの固定子が提案されている(例えば、特許文献1参照)。
特開2005−27387号公報
In the permanent magnet type rotating machine, the loss is not generated in the rotor as compared with the induction motor, so that the overall loss is small and the efficiency is high. Therefore, when the same output as that of the induction motor is obtained, the whole can be downsized. Conventionally, the magnetic flux density of the yoke portion of the stator is usually set to 1T or more.
On the other hand, an AC having a 2n pole 3n slot (n is an integer) structure, which is conventionally composed of a shaft and a rotor having permanent magnets mounted on the outer circumference of the shaft, a stator core having a slot structure, and an armature winding. In the motor, the stator tooth width Bt / slot pitch is in the range of 0.45 to 0.7, and the stator yoke thickness Dy and the stator slot tooth width Bt are 0.42 to 0.58. The stator of the AC motor set in the range is proposed (for example, see Patent Document 1).
JP 2005-27387 A

しかしながら、上記特許文献1に記載された従来例にあっては、小型化を目的としているので、ヨーク厚みを大きくすることはできず、ヨークの磁束密度を低減することできず、永久磁石式回転機をさらなる高効率化を図ることはできないという未解決の課題がある。
すなわち、永久磁石式回転でさらなる高効率化を図るためには、巻線の断面積を増やして銅損を低減すると同時に、積層鋼板の磁束密度を下げて鉄損を低減する必要がある。このとき、鉄損を減らすために巻線の断面積を増加させるとスロット面積が増加し、積層鋼板のヨーク部やティース部の幅が狭くなり磁束密度が増加し、鉄損も増加してしまう。銅損及び鉄損を同時に減少させることは困難になるという未解決の課題がある。
そこで、本発明は上記従来例の未解決の課題に着目してなされたものであり、鉄損と銅損とをバランス良く低減してさらなる高効率化を図ることができる永久磁石式回転機を提供することを目的としている。
However, since the conventional example described in Patent Document 1 is aimed at miniaturization, the yoke thickness cannot be increased, and the magnetic flux density of the yoke cannot be reduced. There is an unsolved problem that the machine cannot be made more efficient.
That is, in order to further increase the efficiency by rotating the permanent magnet, it is necessary to increase the cross-sectional area of the winding to reduce the copper loss, and simultaneously reduce the magnetic flux density of the laminated steel sheet to reduce the iron loss. At this time, if the cross-sectional area of the winding is increased in order to reduce the iron loss, the slot area increases, the width of the yoke part and the tooth part of the laminated steel sheet becomes narrower, the magnetic flux density increases, and the iron loss also increases. . There is an unsolved problem that it is difficult to simultaneously reduce copper loss and iron loss.
Therefore, the present invention has been made paying attention to the unsolved problems of the above-described conventional example, and a permanent magnet type rotary machine capable of further reducing the iron loss and copper loss in a well-balanced manner and achieving higher efficiency. It is intended to provide.

上記目的を達成するために、請求項1に係る永久磁石式回転機は、固定子コアと該固定子コアに巻装した励磁コイルとを有する固定子と、該固定子と所定の空隙を隔てて対向し、回転子コアと該回転子コアに形成された複数の永久磁石とを有する回転子とを備えた永久磁石式回転機であって、磁極数を6極とし、前記固定子のヨーク部の幅Wと極ピッチτとの比W/τが0.3≦W/τ≦0.5の関係を満たすように設定されていることを特徴としている。   In order to achieve the above object, a permanent magnet type rotating machine according to claim 1 includes a stator having a stator core and an exciting coil wound around the stator core, and a predetermined gap between the stator and the stator. And a rotor having a rotor core and a plurality of permanent magnets formed on the rotor core, the number of magnetic poles being six, and the stator yoke The ratio W / τ between the width W of the portion and the pole pitch τ is set so as to satisfy the relationship of 0.3 ≦ W / τ ≦ 0.5.

また、請求項2に係る永久磁石式回転機は、固定子コアと該固定子コアに巻装した励磁コイルとを有する固定子と、該固定子と所定の空隙を隔てて対向し、回転子コアと該回転子コアに形成された複数の永久磁石とを有する回転子とを備えた永久磁石式回転機であって、磁極数を6極とし、前記固定子の内径Diと固定子外径Daとの比Di/Daが0.55≦Di/Da≦0.65の関係を満たすように設定されていることを特徴としている。   A permanent magnet type rotating machine according to claim 2 is a rotor having a stator core and an exciting coil wound around the stator core, and the stator facing the stator with a predetermined gap therebetween. A permanent magnet rotating machine including a rotor having a core and a plurality of permanent magnets formed on the rotor core, wherein the number of magnetic poles is six, the inner diameter Di of the stator and the outer diameter of the stator The ratio Di / Da with Da is set to satisfy the relationship of 0.55 ≦ Di / Da ≦ 0.65.

また、請求項3に係る永久磁石式回転機は、固定子コアと該固定子コアに巻装した励磁コイルとを有する固定子と、該固定子と所定の空隙を隔てて対向し、回転子コアと該回転子コアに形成された複数の永久磁石とを有する回転子とを備えた永久磁石式回転機であって、磁極数を6極とし、前記固定子のヨーク部の幅Wと極ピッチτとの比W/τが0.3≦W/τ≦0.5の関係を満たし、且つ前記固定子の内径Diと固定子外径Daとの比Di/Daが0.55≦Di/Da≦0.65の関係を満たすように設定されていることを特徴としている。   According to a third aspect of the present invention, there is provided a permanent magnet type rotating machine, wherein a stator having a stator core and an exciting coil wound around the stator core is opposed to the stator with a predetermined gap therebetween. A permanent magnet type rotating machine having a core and a rotor having a plurality of permanent magnets formed on the rotor core, wherein the number of magnetic poles is 6, and the width W of the yoke portion of the stator and the pole The ratio W / τ with the pitch τ satisfies the relationship of 0.3 ≦ W / τ ≦ 0.5, and the ratio Di / Da between the stator inner diameter Di and the stator outer diameter Da is 0.55 ≦ Di. It is characterized by being set so as to satisfy the relationship of /Da≦0.65.

また、請求項4に係る永久磁石式回転機は、請求項1乃至3の何れか1つに係る発明において、前記固定子コア及び前記回転子コアは高透磁率の鋼板で形成されたコアプレートを積層して構成され、前記固定子コアのコアプレートの板厚が前記回転子コアのコアプレートの板厚より薄く設定されていることを特徴としている。
また、請求項5に係る永久磁石式回転機は、請求項1乃至4の何れか1つに係る発明において、前記回転子は永久磁石式回転機の埋込磁石構造を有することを特徴としている。
また、請求項6に係る永久磁石式回転機は、請求項1乃至4の何れか1つに係る発明において、前記回転子は永久磁石式回転機の表面磁石構造を有することを特徴としている。
According to a fourth aspect of the present invention, there is provided the permanent magnet type rotating machine according to any one of the first to third aspects, wherein the stator core and the rotor core are formed of a high permeability steel plate. The thickness of the core plate of the stator core is set to be thinner than the thickness of the core plate of the rotor core.
According to a fifth aspect of the present invention, there is provided the permanent magnet type rotating machine according to any one of the first to fourth aspects, wherein the rotor has an embedded magnet structure of the permanent magnet type rotating machine. .
According to a sixth aspect of the present invention, there is provided the permanent magnet type rotating machine according to any one of the first to fourth aspects, wherein the rotor has a surface magnet structure of the permanent magnet type rotating machine.

請求項1に係る発明によれば、磁極数を6極としたときに、固定子コアのヨーク部の幅Wと極ピッチτとの比W/τが0.3≦W/τ≦0.5の関係を満たすように設定されているので、固定子コアのヨーク部での磁束密度を低減させることができ、銅損及び鉄損をバランス良く低減して高効率化を図ることができる。ここで、比W/τが0.3未満であるときにはヨーク部での磁束密度が増加して効率が低下し、比W/τが0.5を超えると回転機の体格が大きくなり、小型化の要求に答えられなくなる。   According to the first aspect of the present invention, when the number of magnetic poles is six, the ratio W / τ between the width W of the yoke portion of the stator core and the pole pitch τ is 0.3 ≦ W / τ ≦ 0. Therefore, the magnetic flux density at the yoke portion of the stator core can be reduced, and the copper loss and the iron loss can be reduced in a well-balanced manner to achieve high efficiency. Here, when the ratio W / τ is less than 0.3, the magnetic flux density in the yoke portion is increased and the efficiency is lowered, and when the ratio W / τ exceeds 0.5, the physique of the rotating machine is increased and the size is reduced. It becomes impossible to respond to the request of crystallization.

また、請求項2に係る発明によれば、磁極数を6極としたときに、固定子内径Diと固定子外径Daとの比Di/Daを0.55≦Di/Da≦0.65の関係を満足することにより、固定子コアのヨーク部における磁束密度を低下させて効率を増加させることができる。ここで、比Di/Daが0.55未満であるときには界磁の磁束が不足してトルク出力が低下してしまい、比Di/Daが0.65を超えるとヨーク部での磁束密度が増加して効率が低下してしまう。   According to the invention of claim 2, when the number of magnetic poles is 6, the ratio Di / Da between the stator inner diameter Di and the stator outer diameter Da is 0.55 ≦ Di / Da ≦ 0.65. By satisfying this relationship, the magnetic flux density in the yoke portion of the stator core can be reduced to increase the efficiency. Here, when the ratio Di / Da is less than 0.55, the magnetic flux of the field is insufficient and the torque output decreases, and when the ratio Di / Da exceeds 0.65, the magnetic flux density at the yoke portion increases. Efficiency will be reduced.

また、請求項3に係る発明によれば、請求項1及び2に係る発明の条件をアンド条件としたので、大型化を抑制しながら高効率化を図ることができる。
また、請求項4に係る発明によれば、固定子コアのコアプレートの板厚を回転子コアのコアプレートの板厚より薄くすることにより、固定子コアの渦電流損失を低下させて、より高効率化を図ることができる。
また、請求項5に係る発明によれば、回転子を埋込磁石構造とした永久磁石式回転機で高効率化を図ることができる。
また、請求項6に係る発明によれば、回転子を表面磁石構造とした永久磁石式回転機で高効率化を図ることができる。
According to the invention of claim 3, since the conditions of the inventions of claims 1 and 2 are AND conditions, it is possible to achieve high efficiency while suppressing an increase in size.
Further, according to the invention of claim 4, by reducing the thickness of the core plate of the stator core to be smaller than the thickness of the core plate of the rotor core, the eddy current loss of the stator core is reduced, and more High efficiency can be achieved.
Further, according to the invention of claim 5, high efficiency can be achieved with a permanent magnet type rotating machine having a rotor with an embedded magnet structure.
Moreover, according to the invention which concerns on Claim 6, high efficiency can be achieved with the permanent-magnet-type rotary machine which used the rotor as the surface magnet structure.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明を適用し得る永久磁石形回転機の上半部を断面とした側面図、図2は図1のA−A線上の断面図である。図1において、永久磁石式回転機1は埋込磁石(IPM:Interior Permanent Magnet)構造を有する永久磁石式回転機で構成されている。
この永久磁石式回転機1は、外周面にフィンを形成した円筒状フレーム2を有する。この円筒状フレーム2の内周側には固定子3が配置され、この固定子3の内周側には所定のエアギャップGを介して対向する回転子4が配置されている。この回転子4はフレーム2に配設された一対の軸受5a及び5bによって回転自在に支持された回転軸6に装着されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a side view in which the upper half of a permanent magnet type rotary machine to which the present invention can be applied is a cross-sectional view, and FIG. In FIG. 1, a permanent magnet type rotating machine 1 is constituted by a permanent magnet type rotating machine having an interior permanent magnet (IPM) structure.
This permanent magnet type rotating machine 1 has a cylindrical frame 2 in which fins are formed on the outer peripheral surface. A stator 3 is disposed on the inner peripheral side of the cylindrical frame 2, and a rotor 4 is disposed on the inner peripheral side of the stator 3 with a predetermined air gap G therebetween. The rotor 4 is mounted on a rotating shaft 6 that is rotatably supported by a pair of bearings 5 a and 5 b disposed on the frame 2.

固定子3は、図2に示すように、高透磁率の鋼板を打ち抜いた固定子用コアプレート7が積層されて形成された固定子コア8を有し、この固定子コア8には、外周面側にヨーク部8aが形成されているとともに、内周面側に、磁極単位で円周方向に等間隔で6個のスロット8bが形成されて平行な側面を有する6個のティース8cが形成されている。各ティース8cには図1に示すようにスロット8b内に巻装された励磁コイル9が巻回されている。ここで、励磁コイル9の巻き方については大別すると集中巻と分布巻とに分けられる。本発明は集中巻及び分布巻の両者において効果を発揮するものであり、巻き方が限定されるものではない。
そして、本実施形態では、さらなる高効率化を図るために、図2に示すように、磁極数が6極即ち磁極角度が60度に設定されている。
このときの固定子コア8のヨーク部8aの幅Wと固定子3の内径における1極ピッチ分の弧の長さである極ピッチτとの比W/τが
0.3≦W/τ≦0.5 …………(1)
の関係を満たすように設定されている。
As shown in FIG. 2, the stator 3 has a stator core 8 formed by laminating a stator core plate 7 formed by punching a high-permeability steel plate. A yoke portion 8a is formed on the surface side, and six slots 8b are formed on the inner peripheral surface side at equal intervals in the circumferential direction in units of magnetic poles to form six teeth 8c having parallel side surfaces. Has been. As shown in FIG. 1, an exciting coil 9 wound in a slot 8b is wound around each tooth 8c. Here, the winding method of the exciting coil 9 is roughly classified into concentrated winding and distributed winding. The present invention is effective in both concentrated winding and distributed winding, and the winding method is not limited.
In this embodiment, in order to further increase the efficiency, as shown in FIG. 2, the number of magnetic poles is set to 6 poles, that is, the magnetic pole angle is set to 60 degrees.
At this time, the ratio W / τ between the width W of the yoke portion 8a of the stator core 8 and the pole pitch τ which is the arc length of one pole pitch in the inner diameter of the stator 3 is 0.3 ≦ W / τ ≦. 0.5 ………… (1)
It is set to satisfy the relationship.

このように、比W/τを0.3≦W/τ≦0.5を満足するように設定することにより、固定子コア8のヨーク部8aでの磁束密度を低減させると共に、スロット8bの面積を可能な限り広くすることができる。このため、銅損及び鉄損をバランス良く低減してさらなる高効率化を図ることができる。例えば、一般的なエアギャップGにおける平均の磁束密度は高くても0.6T程度であり、このときのヨーク部8aの磁束密度は、W/τが上記(1)式を満たす場合、0.6/0.3/2=1.0Tから0.6/0.5/2=0.6Tの範囲となる。結果として、同一出力の通常の永久磁石式回転機と比べ、固定子内径を同一とした場合は、固定子3の外径を大きくし、スロット8bの面積とヨーク部8aの幅Wを広くすることとなる。その範囲を規定するのが前記(1)式となる。   Thus, by setting the ratio W / τ to satisfy 0.3 ≦ W / τ ≦ 0.5, the magnetic flux density in the yoke portion 8a of the stator core 8 is reduced, and the slot 8b The area can be made as wide as possible. For this reason, copper loss and iron loss can be reduced in a well-balanced manner, and further efficiency improvement can be achieved. For example, the average magnetic flux density in a general air gap G is at most about 0.6 T, and the magnetic flux density of the yoke portion 8a at this time is 0. When W / τ satisfies the above equation (1), The range is 6 / 0.3 / 2 = 1.0T to 0.6 / 0.5 / 2 = 0.6T. As a result, when the stator inner diameter is the same as that of a normal permanent magnet rotating machine having the same output, the outer diameter of the stator 3 is increased, and the area of the slot 8b and the width W of the yoke portion 8a are increased. It will be. The range is defined by the equation (1).

ここで、比W/τが0.3未満であるときにはヨーク部での磁束密度が増加して効率が低下し、比W/τが0.5を超えると回転機の体格が大きくなり、小型化の要求に答えられなくなる。
また、上記(1)式の条件と共に固定子の内径Diと固定子外径Daとの比Di/Daが
0.55≦Di/Da≦0.65 …………(2)
の関係を満たすように設定されている。
この(2)式の条件を満足することにより、固定子コア8のヨーク部8aにおける磁束密度を低下させて効率を増加させることができる。ここで、比Di/Daが0.55未満であるときには界磁の磁束が不足してトルク出力が低下してしまい、比Di/Daが0.65を超えるとヨーク部での磁束密度が増加して効率が低下してしまう。
Here, when the ratio W / τ is less than 0.3, the magnetic flux density in the yoke portion is increased and the efficiency is lowered, and when the ratio W / τ exceeds 0.5, the physique of the rotating machine is increased and the size is reduced. It becomes impossible to respond to the request of crystallization.
In addition, the ratio Di / Da between the inner diameter Di of the stator and the outer diameter Da of the stator is 0.55 ≦ Di / Da ≦ 0.65 together with the condition of the above expression (1) (2)
It is set to satisfy the relationship.
By satisfying the condition of the expression (2), the magnetic flux density in the yoke portion 8a of the stator core 8 can be reduced to increase the efficiency. Here, when the ratio Di / Da is less than 0.55, the magnetic flux of the field is insufficient and the torque output decreases, and when the ratio Di / Da exceeds 0.65, the magnetic flux density at the yoke portion increases. Efficiency will be reduced.

ところで、通常の標準形の永久磁石式回転機では小型化を図ることを重視するため、前記(2)式の条件を外れたDi/Da>0.65に設定されるため、固定子コア8のヨーク部8aの幅Wも小さくなって比W/τが前記(1)式の条件を外れたW/τ<0.3に設定される。この標準形の永久磁石式回転機でもモータ効率は、図3の特性曲線L1で示すように、JIS規格で規定されている高効率誘導モータの特性曲線L0で表されるモータ効率に比較して高いモータ効率を得ることができる。   By the way, in order to attach importance to downsizing in a normal standard permanent magnet type rotating machine, Di / Da> 0.65 that is out of the condition of the expression (2) is set, so that the stator core 8 The width W of the yoke portion 8a is also reduced, and the ratio W / τ is set to W / τ <0.3, which is outside the condition of the expression (1). In this standard permanent magnet type rotating machine, the motor efficiency is compared with the motor efficiency represented by the characteristic curve L0 of the high-efficiency induction motor defined by the JIS standard, as shown by the characteristic curve L1 in FIG. High motor efficiency can be obtained.

これに対して、上記実施形態のように、上記(1)式及び(2)式の条件を共に満足することにより、図3の特性曲線L2で示すように、JISで規定されている高効率誘導モータの特性曲線L0よりも高く、標準形の永久磁石式回転機よりも高いモータ効率を実現することができ、さらなる高効率化を図ることができる。
一方、回転子4は、図2に示すように、高透磁率の鋼板を打ち抜いた回転子用コアプレート11が積層されて形成された4つの磁極12を有する回転子コア13を備えている。この回転子コア13は、軸方向に貫通して形成された複数例えば4個のスロット14と、これらスロット14内に周方向に隣り合う磁極12が異極性となるように挿入した永久磁石15とを備えている。ここで、永久磁石15は希土類磁石で構成されている。
On the other hand, by satisfying both the conditions of the above formulas (1) and (2) as in the above embodiment, the high efficiency defined by JIS as shown by the characteristic curve L2 in FIG. Motor efficiency higher than the characteristic curve L0 of the induction motor and higher than that of the standard permanent magnet rotating machine can be realized, and further higher efficiency can be achieved.
On the other hand, as shown in FIG. 2, the rotor 4 includes a rotor core 13 having four magnetic poles 12 formed by laminating a rotor core plate 11 formed by punching a high-permeability steel plate. The rotor core 13 includes a plurality of, for example, four slots 14 formed penetrating in the axial direction, and permanent magnets 15 inserted in the slots 14 so that the magnetic poles 12 adjacent in the circumferential direction have different polarities. It has. Here, the permanent magnet 15 is composed of a rare earth magnet.

そして、本実施形態では、固定子用コアプレート7の板厚が回転子用コアプレート11の板厚よりも薄く設定されている。具体的には、回転子用コアプレート11の板厚が0.5mmに設定され、固定子用コアプレート7の板厚が0.5mm未満で且つ0.1mm以上の範囲内に設定し、好ましくは電磁鋼板で市販されている板厚0.35mm又は0.2mmに設定する。   In this embodiment, the thickness of the stator core plate 7 is set to be thinner than the thickness of the rotor core plate 11. Specifically, the plate thickness of the rotor core plate 11 is set to 0.5 mm, and the plate thickness of the stator core plate 7 is set within a range of less than 0.5 mm and 0.1 mm or more, preferably Is set to 0.35 mm or 0.2 mm, which is a commercially available electromagnetic steel sheet.

このように、固定子用コアプレート7の板厚t〔mm〕を0.5>t≧0.1の範囲内に設定する理由は、以下の通りである。
固定子コア8及び回転子コア13に生じる渦電流損失は、回転機を駆動するインバータのキャリア高調波の次数別に表すと図4(a)及び(b)に示すように、固定子3の渦電流損失の方が回転子4の渦電流損失より大きくなることが知られている(「キャリア高調波を考慮したIPMモータの鉄損解析」電機学会論文誌D、125巻7号、2005年参照)。
Thus, the reason why the thickness t [mm] of the stator core plate 7 is set in the range of 0.5> t ≧ 0.1 is as follows.
When the eddy current loss generated in the stator core 8 and the rotor core 13 is expressed by the order of the carrier harmonic of the inverter that drives the rotating machine, as shown in FIGS. It is known that the current loss is larger than the eddy current loss of the rotor 4 (see “Iron Loss Analysis of an IPM Motor Considering Carrier Harmonics”, IEEJ Transactions, Vol. 125, No. 7, 2005) ).

一方、電磁鋼板を打ち抜いて形成される固定子用コアプレート7の板厚に対する渦電流損失の関係は、図5に示すように、固定子用コアプレート7の板厚を回転子用コアプレート11の板厚と等しい0.5mmであるときの渦電流損失を100%として規格化したとき、渦電流損失が5%程度となり、大きな渦電流損失低減効果を発揮する。
ところで、固定子用コアプレート7の板厚を0.1mm未満とした場合には、さらなる渦電流損失低減効果を発揮することができるものであるが、固定子用コアプレート7の板厚が0.1mm未満となると、所定厚みの固定子コア8を形成するために必要とする積層枚数が増加して固定子コア8を形成するための工数が増加すると共に、極薄電磁鋼板を所望形状に成形加工するために高度な加工技術、設備を必要とするため、回転機の製造コストが大幅に増加してしまうことになり、固定子コアプレート7の板厚の下限値は0.1mmに設定する。
On the other hand, the relationship of the eddy current loss with respect to the plate thickness of the stator core plate 7 formed by punching out the electromagnetic steel plate is as shown in FIG. 5 by changing the plate thickness of the stator core plate 7 to the rotor core plate 11. When the eddy current loss when the thickness is 0.5 mm, which is equal to the plate thickness, is normalized as 100%, the eddy current loss is about 5%, and a large eddy current loss reduction effect is exhibited.
By the way, when the thickness of the stator core plate 7 is less than 0.1 mm, a further eddy current loss reduction effect can be exhibited, but the thickness of the stator core plate 7 is 0. When the thickness is less than 1 mm, the number of laminated layers required to form the stator core 8 having a predetermined thickness increases, and the man-hour for forming the stator core 8 increases, and the ultrathin electrical steel sheet is formed into a desired shape. Since advanced processing technology and equipment are required for forming, the manufacturing cost of the rotating machine will increase significantly, and the lower limit of the thickness of the stator core plate 7 is set to 0.1 mm. To do.

このため、市販の電磁鋼板の厚みを考慮すると、回転子用コアプレート11の板厚を0.5mmとしたとき、固定子用コアプレート7の板厚を0.35又は0.2に設定することが製造コストの面からより好ましく、製造コスト面から判断する固定子用コアプレート1の板厚tを0.35に設定することにより、製造コストを低減しながら板厚tを0.5mmとしたときの渦電流損失に対して渦電流損失を約50%低減することができる。
したがって、固定子用コアプレート7の板厚tは、使用する電磁鋼板のコストと、渦電流損失低減効果との兼ね合いによって0.1mm≦t<0.5mmの範囲内で所望の板厚を設定すればよい。
For this reason, when the thickness of the commercially available electromagnetic steel sheet is taken into consideration, when the thickness of the rotor core plate 11 is 0.5 mm, the thickness of the stator core plate 7 is set to 0.35 or 0.2. It is more preferable from the viewpoint of manufacturing cost, and by setting the thickness t of the stator core plate 1 judged from the manufacturing cost to 0.35, the thickness t is set to 0.5 mm while reducing the manufacturing cost. The eddy current loss can be reduced by about 50% with respect to the eddy current loss.
Therefore, the thickness t of the stator core plate 7 is set to a desired thickness within a range of 0.1 mm ≦ t <0.5 mm in consideration of the cost of the electromagnetic steel sheet to be used and the effect of reducing the eddy current loss. do it.

上記実施形態によると、永久磁石式回転機1が埋込永久磁石式回転電機の構成を有するので、回転子4の磁極12における永久磁石15間の円周方向の中央部と回転軸6の軸心とを結ぶ線がd軸となる。また、回転子4の隣接する磁極12間における異なる磁極の永久磁石15間と回転軸6の軸心とを結ぶ線がq軸となる。このため、d軸方向の磁束の磁路にはエアギャップGと同じ磁気抵抗の大きな永久磁石15が存在し、磁束は通りにくいが、q軸方向の磁束は回転子コア13を通ることができるため、この方向の磁気抵抗は小さくなり、d軸インダクタンスLdとq軸インダクタンスLqとがLd<Lqの突極性を有する。このため、電機子巻線の自己インダクタンス及び相互インダクタンスは回転角の2倍で変化し、さらに永久磁石の電機子鎖交磁束も回転子4の回転角の余弦で変化する。   According to the above embodiment, since the permanent magnet type rotating machine 1 has a configuration of an embedded permanent magnet type rotating electrical machine, the central portion in the circumferential direction between the permanent magnets 15 in the magnetic poles 12 of the rotor 4 and the axis of the rotating shaft 6. The line connecting the hearts is the d-axis. A line connecting between the permanent magnets 15 of different magnetic poles between the adjacent magnetic poles 12 of the rotor 4 and the axis of the rotary shaft 6 is the q axis. For this reason, the permanent magnet 15 having the same magnetic resistance as the air gap G exists in the magnetic path of the magnetic flux in the d-axis direction, and the magnetic flux does not easily pass through, but the magnetic flux in the q-axis direction can pass through the rotor core 13. Therefore, the magnetic resistance in this direction is reduced, and the d-axis inductance Ld and the q-axis inductance Lq have saliency Ld <Lq. For this reason, the self-inductance and mutual inductance of the armature winding change at twice the rotation angle, and the armature linkage magnetic flux of the permanent magnet also changes at the cosine of the rotation angle of the rotor 4.

したがって、マグネットトルクにリラクタンストルクを加算した高トルク化を図ることができる。ここでマグネットトルクは、永久磁石の電機子鎖交磁束のみの変化によりエネルギ変換が行なわれて発生するトルクである。また、リラクタンストルクは電機子自己及び相互インダクタンスの変化に応じてエアギャップGに貯えられた磁気エネルギが機械エネルギに変換されて発生するトルクである。   Therefore, the torque can be increased by adding the reluctance torque to the magnet torque. Here, the magnet torque is a torque generated by energy conversion due to a change in only the armature linkage magnetic flux of the permanent magnet. The reluctance torque is a torque generated by converting magnetic energy stored in the air gap G into mechanical energy in accordance with changes in the armature self and mutual inductance.

そして、前述したように、永久磁石式回転機1においては、回転子4の渦電流損失が固定子3の渦電流損失に比較して小さいので、回転子4の回転子コア13を形成する回転子用コアプレート11の板厚tを0.5mmに設定しても、渦電流損失は小さく抑制することができる。しかも、使用する電磁鋼板のコストは板厚が薄くなる程高くなるので、回転子用コアプレート11の板厚tとして0.5mmを選択することにより、固定子3を構成する場合の製造コストを抑制することができる。   As described above, in the permanent magnet type rotating machine 1, since the eddy current loss of the rotor 4 is smaller than the eddy current loss of the stator 3, the rotation that forms the rotor core 13 of the rotor 4. Even if the thickness t of the child core plate 11 is set to 0.5 mm, the eddy current loss can be suppressed small. In addition, since the cost of the electromagnetic steel sheet to be used increases as the plate thickness decreases, the manufacturing cost for configuring the stator 3 can be reduced by selecting 0.5 mm as the plate thickness t of the rotor core plate 11. Can be suppressed.

一方、固定子用コアプレート7については、固定子3の渦電流損失が回転子4の渦電流損失より大きいので、回転子用コアプレート7の板厚より薄い板厚を選択することにより、固定子3の渦電流損失を低減させることができる。
そして、固定子用コアプレート7の板厚tの下限値は前述したように固定子コア8を形成する工数増や極薄電磁鋼板を所望形状に成形加工するために高度な加工技術、設備を必要とするため、回転機の製造コストが大幅に増加してしまうことを考慮して0.1mmに設定する。好ましくは電磁鋼板の市販品の板厚である0.35mm又は0.2mmを、電磁鋼板価格と固定子3の渦電流損失の低減効果との兼ね合いによって選択する。
On the other hand, since the eddy current loss of the stator 3 is larger than the eddy current loss of the rotor 4, the stator core plate 7 is fixed by selecting a thickness that is thinner than the thickness of the rotor core plate 7. The eddy current loss of the child 3 can be reduced.
The lower limit value of the thickness t of the stator core plate 7 is an increase in man-hours for forming the stator core 8 and, as described above, advanced processing technology and equipment for forming an ultrathin electromagnetic steel sheet into a desired shape. Since it is necessary, the thickness is set to 0.1 mm in consideration of a significant increase in the manufacturing cost of the rotating machine. Preferably, 0.35 mm or 0.2 mm, which is the thickness of a commercially available electromagnetic steel sheet, is selected depending on the balance between the price of the electromagnetic steel sheet and the effect of reducing the eddy current loss of the stator 3.

このように、上記実施形態によると、固定子コア8を構成する電磁鋼板から打ち抜いて形成する固定子用コアプレートの板厚を、回転子コア13を構成する同様に電磁鋼板から打ち抜いて形成する回転子用コアプレート11の板厚未満に設定することにより、固定子3の渦電流損失を低減させることができる。
具体的には、回転子用コアプレート11の板厚tを電磁鋼板の市販品の板厚である0.5mmに設定し、固定子用コアプレート7の板厚t〔mm〕を0.5>t≧0.1の範囲内に設定することにより、固定子3の渦電流損失を低減しながら大幅な製造コストのアップを抑制することができる。
Thus, according to the said embodiment, the plate | board thickness of the core plate for stators formed by stamping from the electromagnetic steel plate which comprises the stator core 8 is formed by punching from the electromagnetic steel plate which comprises the rotor core 13 similarly. By setting the thickness less than the thickness of the rotor core plate 11, the eddy current loss of the stator 3 can be reduced.
Specifically, the thickness t of the rotor core plate 11 is set to 0.5 mm, which is the thickness of a commercially available electromagnetic steel plate, and the thickness t [mm] of the stator core plate 7 is set to 0.5 mm. By setting within the range of> t ≧ 0.1, a significant increase in manufacturing cost can be suppressed while reducing eddy current loss of the stator 3.

このように、上記実施形態によると、前記(1)式及び(2)式のアンド条件をとることにより、大型化を抑制しながら、銅損及び鉄損をバランス良く低減することができ、さらなる高効率モータを提供することができる。しかも、固定子コア8を構成するコアプレート7の板厚を回転子コア13を構成するコアプレート11の板厚より薄くすることにより、固定子3に発生する渦電流損失を低減することができ、よりモータ効率を向上させることができる。
なお、上記実施形態においては、前記(1)式及び(2)式のアンド条件で固定子3を構成した場合について説明したが、これに限定されるものではなく、前記(1)式及び(2)式の条件の一方を満足すれば、ヨーク部8bでの磁束密度を低下させてモータ効率を向上させることができる。
Thus, according to the above embodiment, by taking the AND condition of the formulas (1) and (2), the copper loss and the iron loss can be reduced in a well-balanced manner while suppressing an increase in size. A highly efficient motor can be provided. In addition, the eddy current loss generated in the stator 3 can be reduced by making the plate thickness of the core plate 7 constituting the stator core 8 thinner than the plate thickness of the core plate 11 constituting the rotor core 13. The motor efficiency can be further improved.
In addition, in the said embodiment, although the case where the stator 3 was comprised by AND condition of said Formula (1) and Formula (2) was demonstrated, it is not limited to this, Formula (1) and ( If one of the conditions of the formula (2) is satisfied, the magnetic flux density in the yoke portion 8b can be reduced and the motor efficiency can be improved.

また、上記実施形態においては、永久磁石式回転機1として、埋込磁石構造の永久磁石式回転機を適用した場合について説明したが、これに限定されるものではなく、図6に示すように、回転子4の回転子コア13の外周面に円周方向に複数例えば4つの永久磁石31を等間隔で配置した構成を有する表面磁石(SPM:Surface Permanent Magnet)構造の永久磁石式回転機にも本発明を適用することができる。
さらに、上記実施形態においては、磁極単位の固定子3のティース8cを6個とした場合について説明した。しかしながら、上記構成に限定されるものではなく、固定子3のティース数は任意に設定することができる。
Moreover, in the said embodiment, although the case where the permanent-magnet-type rotary machine of an embedded magnet structure was applied as the permanent-magnet-type rotary machine 1 was demonstrated, as shown in FIG. 6, it is not limited to this. A permanent magnet rotating machine having a surface permanent magnet (SPM) structure having a configuration in which a plurality of, for example, four permanent magnets 31 are arranged in the circumferential direction on the outer peripheral surface of the rotor core 13 of the rotor 4 at equal intervals. The present invention can also be applied.
Furthermore, in the said embodiment, the case where the number of teeth 8c of the stator 3 of a magnetic pole unit was six was demonstrated. However, it is not limited to the said structure, The number of teeth of the stator 3 can be set arbitrarily.

本発明を埋込磁石構造の永久磁石式回転に適用した場合の一実施形態を示す上半部を断面とした側面図永久磁石式回転電機を示す断面図である。It is sectional drawing which shows the side view permanent magnet type rotary electric machine which made the cross section the upper half part which shows one Embodiment at the time of applying this invention to the permanent magnet type rotation of an embedded magnet structure. 1つの磁極分の固定子及び回転子を示す拡大断面図である。It is an expanded sectional view which shows the stator and rotor for one magnetic pole. 軸出力に対するモータ効率を示す特性線図である。It is a characteristic diagram which shows the motor efficiency with respect to a shaft output. 固定子及び回転子のキャリア高調波の次数に対する渦電流損失を示す特性線図である。It is a characteristic diagram which shows the eddy current loss with respect to the order of the carrier harmonic of a stator and a rotor. 固定子用コアプレートの板厚と渦電流損失との関係を示す特性線図である。It is a characteristic diagram which shows the relationship between the plate | board thickness of the core plate for stators, and an eddy current loss. 表面磁石構造の永久磁石式回転機を示す断面図である。It is sectional drawing which shows the permanent-magnet-type rotary machine of a surface magnet structure.

符号の説明Explanation of symbols

1…永久磁石式回転機
2…円筒状フレーム
3…固定子
G…エアギャップ
4…回転子
6…回転軸
7…固定子用コアプレート
8…固定子コア
8a…ヨーク部
8b…スロット
8c…ティース
9…励磁コイル
11…回転子用コアプレート
12…磁極
13…回転子コア
14…スロット
15…永久磁石
DESCRIPTION OF SYMBOLS 1 ... Permanent magnet type rotating machine 2 ... Cylindrical frame 3 ... Stator G ... Air gap 4 ... Rotor 6 ... Rotating shaft 7 ... Core plate for stator 8 ... Stator core 8a ... Yoke part 8b ... Slot 8c ... Teeth DESCRIPTION OF SYMBOLS 9 ... Excitation coil 11 ... Core plate for rotors 12 ... Magnetic pole 13 ... Rotor core 14 ... Slot 15 ... Permanent magnet

Claims (6)

固定子コアと該固定子コアに巻装した励磁コイルとを有する固定子と、該固定子と所定の空隙を隔てて対向し、回転子コアと該回転子コアに形成された複数の永久磁石とを有する回転子とを備えた永久磁石式回転機であって、
磁極数を6極とし、前記固定子のヨーク部の幅Wと極ピッチτとの比W/τが
0.3≦W/τ≦0.5
の関係を満たすように設定されていることを特徴とする永久磁石式回転機。
A stator having a stator core and an exciting coil wound around the stator core, and a plurality of permanent magnets formed on the rotor core and the rotor core, facing the stator with a predetermined gap therebetween A permanent magnet rotating machine having a rotor having
The number of magnetic poles is 6, and the ratio W / τ between the width W of the yoke portion of the stator and the pole pitch τ is 0.3 ≦ W / τ ≦ 0.5.
A permanent magnet type rotating machine, characterized in that it is set to satisfy the above relationship.
固定子コアと該固定子コアに巻装した励磁コイルとを有する固定子と、該固定子と所定の空隙を隔てて対向し、回転子コアと該回転子コアに形成された複数の永久磁石とを有する回転子とを備えた永久磁石式回転機であって、
磁極数を6極とし、前記固定子の内径Diと固定子外径Daとの比Di/Daが
0.55≦Di/Da≦0.65
の関係を満たすように設定されていることを特徴とする永久磁石式回転機。
A stator having a stator core and an exciting coil wound around the stator core, and a plurality of permanent magnets formed on the rotor core and the rotor core, facing the stator with a predetermined gap therebetween A permanent magnet rotating machine having a rotor having
The number of magnetic poles is 6, and the ratio Di / Da between the inner diameter Di of the stator and the outer diameter Da of the stator is 0.55 ≦ Di / Da ≦ 0.65.
A permanent magnet type rotating machine, characterized in that it is set to satisfy the above relationship.
固定子コアと該固定子コアに巻装した励磁コイルとを有する固定子と、該固定子と所定の空隙を隔てて対向し、回転子コアと該回転子コアに形成された複数の永久磁石とを有する回転子とを備えた永久磁石式回転機であって、
磁極数を6極とし、前記固定子のヨーク部の幅Wと極ピッチτとの比W/τが
0.3≦W/τ≦0.5
の関係を満たし、且つ前記固定子の内径Diと固定子外径Daとの比Di/Daが
0.55≦Di/Da≦0.65
の関係を満たすように設定されていることを特徴とする永久磁石式回転機。
A stator having a stator core and an exciting coil wound around the stator core, and a plurality of permanent magnets formed on the rotor core and the rotor core, facing the stator with a predetermined gap therebetween A permanent magnet rotating machine having a rotor having
The number of magnetic poles is 6, and the ratio W / τ between the width W of the yoke portion of the stator and the pole pitch τ is 0.3 ≦ W / τ ≦ 0.5.
The ratio Di / Da between the inner diameter Di of the stator and the outer diameter Da of the stator is 0.55 ≦ Di / Da ≦ 0.65
A permanent magnet type rotating machine, characterized in that it is set to satisfy the above relationship.
前記固定子コア及び前記回転子コアは高透磁率の鋼板で形成されたコアプレートを積層して構成され、前記固定子コアのコアプレートの板厚が前記回転子コアのコアプレートの板厚より薄く設定されていることを特徴とする請求項1乃至3の何れか1項に記載の永久磁石式回転機。   The stator core and the rotor core are configured by laminating core plates formed of high permeability steel plates, and the thickness of the core plate of the stator core is greater than the thickness of the core plate of the rotor core. The permanent magnet rotating machine according to any one of claims 1 to 3, wherein the permanent magnet rotating machine is thin. 前記回転子は埋込磁石構造を有することを特徴とする請求項1乃至4の何れか1項に記載の永久磁石式回転機。   The permanent magnet rotating machine according to any one of claims 1 to 4, wherein the rotor has an embedded magnet structure. 前記回転子は表面磁石構造を有することを特徴とする請求項1乃至4の何れか1項に記載の永久磁石式回転機。   The permanent magnet type rotating machine according to any one of claims 1 to 4, wherein the rotor has a surface magnet structure.
JP2008206182A 2008-08-08 2008-08-08 Permanent magnet rotary machine Pending JP2010045872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008206182A JP2010045872A (en) 2008-08-08 2008-08-08 Permanent magnet rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008206182A JP2010045872A (en) 2008-08-08 2008-08-08 Permanent magnet rotary machine

Publications (1)

Publication Number Publication Date
JP2010045872A true JP2010045872A (en) 2010-02-25

Family

ID=42016761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008206182A Pending JP2010045872A (en) 2008-08-08 2008-08-08 Permanent magnet rotary machine

Country Status (1)

Country Link
JP (1) JP2010045872A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087143A (en) * 2012-10-23 2014-05-12 Hitachi Appliances Inc Permanent magnet synchronous motor
US20180175715A1 (en) * 2016-12-21 2018-06-21 Chieftek Precision Co., Ltd. Core-type linear motor
WO2018138864A1 (en) * 2017-01-27 2018-08-02 三菱電機株式会社 Stator, electric motor, compressor, and refrigerating/air conditioning device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308198A (en) * 1996-05-16 1997-11-28 Matsushita Electric Ind Co Ltd Permanent magnet motor
JP2007124828A (en) * 2005-10-28 2007-05-17 Nsk Ltd Rotating electric machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308198A (en) * 1996-05-16 1997-11-28 Matsushita Electric Ind Co Ltd Permanent magnet motor
JP2007124828A (en) * 2005-10-28 2007-05-17 Nsk Ltd Rotating electric machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087143A (en) * 2012-10-23 2014-05-12 Hitachi Appliances Inc Permanent magnet synchronous motor
US20180175715A1 (en) * 2016-12-21 2018-06-21 Chieftek Precision Co., Ltd. Core-type linear motor
US10784760B2 (en) * 2016-12-21 2020-09-22 Chieftek Precision Co., Ltd. Core-type linear motor
WO2018138864A1 (en) * 2017-01-27 2018-08-02 三菱電機株式会社 Stator, electric motor, compressor, and refrigerating/air conditioning device
JPWO2018138864A1 (en) * 2017-01-27 2019-03-22 三菱電機株式会社 Stator, motor, compressor, and refrigeration air conditioner

Similar Documents

Publication Publication Date Title
JP4926107B2 (en) Rotating electric machine
WO2015161668A1 (en) Permanent magnet synchronous motor and rotor thereof
JP5605388B2 (en) Synchronous motor
US20080246362A1 (en) Radial airgap, transverse flux machine
JP5868513B2 (en) Permanent magnet embedded motor
KR101092321B1 (en) Rotor of a line start permanent magnet synchronous motor
EP1501172A2 (en) Brushless permanent magnet machine with axial modules of rotor magnetization skew and method of producing the same
JP2009219331A (en) Permanent magnet type generator and hybrid vehicle using the same
JP2007074870A (en) Rotor embedded with permanent magnet and motor embedded with permanent magnet
JP6048191B2 (en) Multi-gap rotating electric machine
JP2002369473A (en) Synchronous motor using permanent magnet
JP5526495B2 (en) Permanent magnet rotating electric machine
JP2011103769A (en) Permanent-magnet generator and hybrid vehicle using the same
JP2014533086A (en) Rotor having permanent magnets with different thicknesses and motor including the same
JP6497173B2 (en) Switched reluctance rotating machine
JPH1189133A (en) Permanent magnet type motor
JP2010045872A (en) Permanent magnet rotary machine
JP2005287265A (en) Permanent magnet motor
JP2010045870A (en) Rotating machine
JP5337382B2 (en) Permanent magnet synchronous motor
JP4491211B2 (en) Permanent magnet rotating electric machine
JP2014082838A (en) Electric motor for vehicle, and dynamo for vehicle
JP6661960B2 (en) Self-starting permanent magnet motor
JP2007288838A (en) Embedded magnet type motor
JP5320900B2 (en) Manufacturing method of rotating machine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130917