JPH0355710A - Low temperature sintered porcelain material - Google Patents

Low temperature sintered porcelain material

Info

Publication number
JPH0355710A
JPH0355710A JP19003689A JP19003689A JPH0355710A JP H0355710 A JPH0355710 A JP H0355710A JP 19003689 A JP19003689 A JP 19003689A JP 19003689 A JP19003689 A JP 19003689A JP H0355710 A JPH0355710 A JP H0355710A
Authority
JP
Japan
Prior art keywords
temperature
mol
dielectric
cuo
temperature sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19003689A
Other languages
Japanese (ja)
Other versions
JPH0817059B2 (en
Inventor
Hiroshi Morii
博史 森井
Takeshi Azumi
健 安積
Yasunobu Yoneda
康信 米田
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP19003689A priority Critical patent/JPH0817059B2/en
Publication of JPH0355710A publication Critical patent/JPH0355710A/en
Publication of JPH0817059B2 publication Critical patent/JPH0817059B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To perform sintering at a temperature not more than 1000 deg.C, to obtain permittivity of 17-80, and to decrease a ratio of temperature variation of the permittivity by using a specified composition of material. CONSTITUTION:A material that includes 44.0-99.5mol% of ZrO2,0-44.775mol% of TiO2, and 0.5-15mol% of CuO, for 100mol% in total, is used and is molded by dry press, and sintered at a temperature of 1000 deg.C, so as to form a porcelain. Mn can be added by 5.0 weight% or less calculated MnCo3 equivalent. By adding Mn, resistivity is increased, and insulating resistance can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は低温焼結磁器材料に関し、特に1000℃以
下の低温で焼威可能で、たとえば、低容量のEMIフィ
ルタ用の誘電体材料あるいは磁性体と誘電体とを一体焼
結したLC複合チップEM■フィルタ用の誘電体材料と
して使用するのに好適な低温焼結磁器材料に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to low-temperature sintered porcelain materials, particularly those that can be fired at a low temperature of 1000°C or less, and are suitable for use as dielectric materials or magnetic materials for low-capacity EMI filters, for example. The present invention relates to a low-temperature sintered porcelain material suitable for use as a dielectric material for an LC composite chip EM filter in which a body and a dielectric are integrally sintered.

(従来技術) 従来、1000℃以下で焼成が可能である低温焼結磁器
材料としては、pb系複合ベロブスヵイト材料に代表さ
れるが、pb系材料は、誘電率εが1000以上と大き
いうえに、誘電率εの温度変化率も−25℃〜+85℃
で±50%と大きい。
(Prior art) Conventionally, a low-temperature sintered porcelain material that can be fired at 1000°C or lower is represented by a PB-based composite berovskite material. Temperature change rate of dielectric constant ε is also -25℃ to +85℃
It is large at ±50%.

したがって、pb系材料では、数1 0pFの低容量を
取得しにくい。
Therefore, with pb-based materials, it is difficult to obtain a capacitance as low as several 10 pF.

さらに、低温焼結磁器材料としては、TC系材料(NP
=0)もある。TC系材料においては、7, r Q 
z  A l z○3SiO!(ガラス成分)系材料が
約1000℃で焼成可能であるが、誘電率εがIO前後
と小さい。
Furthermore, as low-temperature sintered porcelain materials, TC-based materials (NP
=0) is also available. In TC-based materials, 7, r Q
z A l z○3SiO! (Glass component) type material can be fired at about 1000°C, but the dielectric constant ε is small at around IO.

そこで、誘電率εが!00前後の低温焼結磁器材料とし
て、特公昭62−57042号にTiOz−CuO−M
n系材料が、特開昭60−106120号にTiO2−
Ni○−C u O − M n系材料がそれぞれ開示
され、それらの材料が、LC複合チップ用の誘電体材料
として用いられている。
Therefore, the dielectric constant ε! As a low temperature sintered porcelain material around 00, TiOz-CuO-M was published in Japanese Patent Publication No. 62-57042
The n-based material is TiO2-
Ni○-CuO-Mn-based materials are disclosed, respectively, and these materials are used as dielectric materials for LC composite chips.

(発明が解決しようとする課題) ?電体となる材料と磁性体となる材料とを貼り合わせ一
体焼結することによってLC複合チップが得られるが、
その誘電体としてBT系材料を用いれば、1200〜1
300℃の高い焼成温度が必要となる。ところが、電極
材料のコストおよびエネルギ的コストなどの観点から、
焼成温度は低い方が望ましい。
(Problem that the invention seeks to solve)? An LC composite chip can be obtained by bonding together an electric material and a magnetic material and sintering them together.
If a BT-based material is used as the dielectric, 1200~1
A high firing temperature of 300°C is required. However, from the viewpoint of electrode material cost and energy cost,
A lower firing temperature is desirable.

そこで、誘電体としてpb系複合ペロブス力イト材料を
用い、磁性体としてN+−Zn−Cuフェライトを用い
れば、約tooo℃で一体焼結させることによってLC
?Jj合チップが得られるが、磁性体から誘電体へのF
eなとの元素の拡散によりコンデンサ部の諸特性が劣化
し実用に供せないものとなる場合もある。
Therefore, if a PB-based composite perovskite material is used as the dielectric material and N+-Zn-Cu ferrite is used as the magnetic material, LC
? Jj joint chip is obtained, but F from magnetic material to dielectric material
In some cases, the various characteristics of the capacitor section deteriorate due to the diffusion of elements such as e, making it unusable for practical use.

また、pb系材料を用いてコンデンサ部の諸特性を満足
させても、その誘電率εが1000以上と大きいため、
数10pFの小容量を取得するのは困難である.そのp
b系材料としてPb(Ni+/ff  Nbxis  
)  Os     PbTiOz     Pb  
 (Zn17■Wl/■)O,系材料が挙げられるが、
誘電率εの温度変化が大き過ぎて、それをEMIフィル
タの材料として用いた場合、挿入損失の周波数特性が変
化し、カット・オフ周波数がシフトしてしまう・これは
、一般に、pb系材料の誘電率εの温度変化率が大きい
からである。
Furthermore, even if the various characteristics of the capacitor part are satisfied using a PB-based material, its dielectric constant ε is as large as 1000 or more.
It is difficult to obtain a small capacitance of several tens of pF. That p
Pb(Ni+/ff Nbxis
) Os PbTiOz Pb
(Zn17■Wl/■)O, type materials are mentioned,
If the temperature change in the dielectric constant ε is too large and it is used as a material for an EMI filter, the frequency characteristics of insertion loss will change and the cut-off frequency will shift. This is because the temperature change rate of the dielectric constant ε is large.

それゆえに、この発明の主たる目的は、1000℃以下
で焼結でき、しかも、17〜80の誘電率εを有し、か
つ、誘電率εの温度変化率の小さい、低温焼結磁器材料
を提供することである。
Therefore, the main object of the present invention is to provide a low-temperature sintered porcelain material that can be sintered at temperatures below 1000°C, has a dielectric constant ε of 17 to 80, and has a small temperature change rate of the dielectric constant ε. It is to be.

(課題を解決するための手段) この発明は、ZrOzを44.0 〜99.5モル%、
Tiezを0〜44.775モル%、およびCuOを0
.5〜15モル%含み、それらの合計が100モル%と
なる、低温焼結磁器材料である. (発明の効果) この発明によれば、1000℃以下で焼結でき、しかも
、17〜80の誘電率εを有し、かつ、誘電率εの温度
変化率の小さい、低温焼結磁器材料が得られる. したがって、この発明にかかる低温焼結磁器材料は、そ
れをたとえばLC複合チ・ノプEMIフィルタの誘電体
材料として使用できるほか、それを単独の誘電体材料と
して用いることもできる。
(Means for Solving the Problems) This invention contains ZrOz in an amount of 44.0 to 99.5 mol%,
Tiez 0-44.775 mol% and CuO 0
.. It is a low-temperature sintered porcelain material containing 5 to 15 mol%, with a total of 100 mol%. (Effects of the Invention) According to the present invention, there is a low-temperature sintered porcelain material that can be sintered at 1000°C or lower, has a dielectric constant ε of 17 to 80, and has a small temperature change rate of the dielectric constant ε. can get. Therefore, the low temperature sintered porcelain material according to the present invention can be used, for example, as a dielectric material of an LC composite chip EMI filter, and can also be used as a single dielectric material.

また、この発明にかかる低温焼結磁器材料は、たとえば
低温焼結基板と一体焼成することも可能である。
Furthermore, the low-temperature sintered porcelain material according to the present invention can be integrally fired with, for example, a low-temperature sintered substrate.

この発明の上述の目的,その他の目的.特徴および利点
は、図面を参照して行う以下の実施例の詳細な説明から
一層明らかとなろう。
The above objectives and other objectives of this invention. Features and advantages will become more apparent from the following detailed description of the embodiments with reference to the drawings.

(実施例) まず、原料として、zro,,TiChおよびCuQを
別表に示す組或となるように秤量し調合し、それにイオ
ン交換水および酢酸ビニル系バインダを5重量%加え、
直径5朋のジルコニアボールを玉石としてボソトミルで
24時間混合,粉砕した. そして、それを蒸発乾燥,整粒の工程を経て、2.5t
/一で乾式プレス或形を行って、直径lQmm,厚さ0
.8關の戒形体ユニットを得た。
(Example) First, as raw materials, zro, TiCh, and CuQ were weighed and mixed to have the composition shown in the attached table, and 5% by weight of ion-exchanged water and vinyl acetate binder were added thereto.
Zirconia balls with a diameter of 5 mm were used as cobblestones and mixed and crushed for 24 hours in a bosoto mill. Then, through the process of evaporation drying and sizing, 2.5 tons of
/Dry press or shape with diameter 1Qmm, thickness 0
.. Obtained a 8-piece precept unit.

それから、その成形体ユニットを空気中・ 1000℃
で2時間焼成して、磁器を形威した。そして、その磁器
の両主面に電極を形威して、試料1〜37を得た。
Then, the molded unit was heated in air at 1000°C.
The porcelain was fired for two hours to give it its shape. Then, electrodes were formed on both main surfaces of the porcelain to obtain samples 1 to 37.

それらの試料1〜37について、誘電体率ε,誘電体損
D.  F (%)および比抵抗ρ(Ω・elm)など
を測定した。その測定結果を別表に示す。
Regarding those samples 1 to 37, dielectric constant ε, dielectric loss D. F (%), specific resistance ρ (Ω·elm), etc. were measured. The measurement results are shown in the attached table.

この発明にかかる低温焼結磁器材料の組成範囲を限定し
た理由は次の通りである。
The reason for limiting the composition range of the low temperature sintered porcelain material according to the present invention is as follows.

CuOの添加量が15モル%を超えると絶縁抵抗が著し
く低下する。また、CuOの添加量が05モル%未満で
は、極めて焼結性が悪い。なお、CuOの添加量が0.
5モル%では、必ずしも焼結性がよいとは言えないが、
ZrO,およびCuOの微粉末化および混合度を強める
など粉末特性を改善することによって、焼結性の向上が
図られているので、CuOの添加量が0.5モル%のも
のも、この発明の範囲内とした。
When the amount of CuO added exceeds 15 mol %, the insulation resistance decreases significantly. Furthermore, if the amount of CuO added is less than 0.5 mol %, sinterability is extremely poor. Note that when the amount of CuO added is 0.
Although it cannot be said that sinterability is necessarily good at 5 mol%,
Since the sinterability is improved by improving the powder properties such as finely powdering ZrO and CuO and increasing the mixing degree, the present invention also has the added amount of CuO of 0.5 mol%. was within the range of

Z r 02  : T i Otのモル比が55 :
 45である場合を基準にしたとき、その基準を超える
よう?Ti○2が増加すると、CuOの添加量に対する
絶縁抵抗の低下が著しく、焼成温度およびCuOの添加
量の管理幅が狭くなる傾向にある。それに対して、この
発明にかかる低温焼結磁器材料の範囲は、Zr○z:T
iozのモル比が55=45〜100:0の範囲にあり
、誘電体特性が焼或温度およびCuOの添加量の影響に
対して安定な領域である。
The molar ratio of Z r 02 : T i Ot is 55:
If the standard is 45, does it exceed that standard? As Ti○2 increases, the insulation resistance decreases significantly with respect to the amount of CuO added, and the control range for the firing temperature and amount of CuO tends to become narrower. On the other hand, the range of the low temperature sintered porcelain material according to the present invention is Zr○z:T
The molar ratio of ioz is in the range of 55=45 to 100:0, which is a region in which dielectric properties are stable against the effects of annealing temperature and the amount of CuO added.

これらの関係の一例を、第1図ないし第4図に基づいて
説明する。
An example of these relationships will be explained based on FIGS. 1 to 4.

第1図は、この発明の実施例としてZrO■ :Tie
2のモル比を8:2とした場合のCuOの添加量(モル
%)と誘電率εおよび誘電体損D.F(%)との関係を
示すグラフであり、第2図はその場合のCuOの添加量
(モル%〉と比抵抗ρの対数値Logρとの関係を示す
グラフである。
FIG. 1 shows ZrO■:Tie as an embodiment of the present invention.
Addition amount (mol%) of CuO, dielectric constant ε, and dielectric loss D.2 when the molar ratio of D.2 is 8:2. This is a graph showing the relationship between F (%), and FIG. 2 is a graph showing the relationship between the amount of CuO added (mol %) and the logarithm value Logρ of the specific resistance ρ in that case.

一方、第3図は、比較例としてZrO.:Ti○2のモ
ル比を2:8とした場合のCuOの添加量(モル%)と
誘電率εおよび誘電体損D.  F (%)との関係を
示すグラフであり、第4図はその場合のCuOの添加量
(モル%)と比抵抗ρの対数値Logρとの関係を示す
グラフである。
On the other hand, FIG. 3 shows ZrO. : Addition amount (mol%) of CuO, dielectric constant ε, and dielectric loss D. when the molar ratio of Ti○2 is 2:8. FIG. 4 is a graph showing the relationship between the amount of CuO added (mol %) and the logarithm value Logρ of the specific resistance ρ in that case.

第1図ないし第4図に示すグラフから明らかなように、
Z r Oz  : T i Ozのモル比を2:8と
した比較例では、極めて限られた範囲の組成でないと誘
電体として使用することができない。すなわち、誘電体
特性として焼成温度およびCuOの添加量の依存が強い
のである。それに対して、Zr Oz  : T i 
OXのモル比を8:2とした実施例では、焼戊温度およ
びCuOの添加量に対して広い範囲で誘電体として使用
することができる。
As is clear from the graphs shown in Figures 1 to 4,
In a comparative example in which the molar ratio of Z r Oz :T i Oz was 2:8, it could not be used as a dielectric unless it had a composition within an extremely limited range. That is, the dielectric properties are strongly dependent on the firing temperature and the amount of CuO added. On the other hand, Zr Oz: T i
In the example in which the molar ratio of OX is 8:2, it can be used as a dielectric material over a wide range of firing temperatures and amounts of CuO added.

また、第5図および第6図に誘電率の温度変化率を示し
た。この場合、第5図には試料番号22のもの、第6図
には試料番号33のものを示した。
Moreover, the temperature change rate of the dielectric constant is shown in FIGS. 5 and 6. In this case, FIG. 5 shows sample number 22, and FIG. 6 shows sample number 33.

第5図および第6図から明らかなように、この発明にか
かる低温焼結磁器材料によれば、誘電率の温度変化率の
小さいものが得られる。
As is clear from FIGS. 5 and 6, the low temperature sintered porcelain material according to the present invention has a small rate of change in dielectric constant with temperature.

なお、この発明にかかる低温焼結磁器材料には、MnO
をMn○3に換算して5.0重量%以下添加してもよい
。このようにM n Oを添加すれば、比抵抗が増し、
絶縁抵抗が改善される。特に磁性体と一体焼結した場合
、磁性体の威分てあるFeが誘電体中に拡散する傾向が
あり、誘電体の絶縁抵抗が低下するが、MnOを添加す
ることにより絶縁抵抗の低下を抑えることができる。
Note that the low-temperature sintered porcelain material according to this invention includes MnO
may be added in an amount of 5.0% by weight or less calculated as Mn○3. By adding MnO in this way, the specific resistance increases,
Insulation resistance is improved. In particular, when sintered together with a magnetic material, Fe, which is the dominant force of the magnetic material, tends to diffuse into the dielectric material, reducing the insulation resistance of the dielectric material. It can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例としてZrO2 :T i
○2のモル比を8=2とした場合におけるCU○の添加
量(モル%)と誘電率εおよび誘電体t員D.  F 
(%)との関係を示すグラフであり、第2図はその場合
におけるCuOの添加量(モル%〉と比抵抗ρの対数値
Logρとの関係を示すグラフである。 第3図は比較例としてZ r O2: T i Ozの
モル比を2:8とした場合におけるCuOの添加壇(モ
ル%)と誘電率εおよび誘電体損D.  F (%)と
の関係を示すグラフであり、第4図はその場合における
Cu○の添加量(モル%)と比抵抗ρの対数値Logρ
との関係を示すグラフである。 第5図および第6図は、それぞれ、この発明の実施例に
かかる誘電率の温度変化率を示すグラフである。
FIG. 1 shows ZrO2 :T i as an embodiment of the present invention.
Addition amount (mol%) of CU○, dielectric constant ε, and dielectric t member D. when the molar ratio of ○2 is 8=2. F
(%), and FIG. 2 is a graph showing the relationship between the amount of CuO added (mol%) and the logarithm Logρ of the specific resistance ρ in that case. FIG. 3 is a comparative example It is a graph showing the relationship between the CuO addition stage (mol%), the dielectric constant ε, and the dielectric loss D.F (%) when the molar ratio of ZrO2:TiOz is 2:8. Figure 4 shows the amount of Cu○ added (mol%) and the logarithm of the specific resistance ρ in that case.
It is a graph showing the relationship between FIG. 5 and FIG. 6 are graphs showing the rate of change in dielectric constant with temperature according to the embodiment of the present invention, respectively.

Claims (1)

【特許請求の範囲】 1 ZrO_2を44.0〜99.5モル%、TiO_
2を0〜44.775モル%、およびCuOを0.5〜
15モル%含み、 それらの合計が100モル%となる、低温焼結磁器材料
。 2 さらに、MnをMnCO_3に換算して5.0重量
%以下含む、特許請求の範囲第1項記載の低温焼結磁器
材料。
[Claims] 1 44.0 to 99.5 mol% of ZrO_2, TiO_
0 to 44.775 mol% of 2 and 0.5 to 44.775 mol% of CuO
A low-temperature sintered porcelain material containing 15 mol%, the total of which is 100 mol%. 2. The low-temperature sintered porcelain material according to claim 1, further comprising 5.0% by weight or less of Mn in terms of MnCO_3.
JP19003689A 1989-07-21 1989-07-21 Low temperature sintered porcelain material Expired - Fee Related JPH0817059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19003689A JPH0817059B2 (en) 1989-07-21 1989-07-21 Low temperature sintered porcelain material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19003689A JPH0817059B2 (en) 1989-07-21 1989-07-21 Low temperature sintered porcelain material

Publications (2)

Publication Number Publication Date
JPH0355710A true JPH0355710A (en) 1991-03-11
JPH0817059B2 JPH0817059B2 (en) 1996-02-21

Family

ID=16251294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19003689A Expired - Fee Related JPH0817059B2 (en) 1989-07-21 1989-07-21 Low temperature sintered porcelain material

Country Status (1)

Country Link
JP (1) JPH0817059B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017926A1 (en) * 1999-08-26 2001-03-15 Universiteit Twente Device comprising a member of ceramic material and a method for manufacturing a ceramic material having a low friction coefficient

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017926A1 (en) * 1999-08-26 2001-03-15 Universiteit Twente Device comprising a member of ceramic material and a method for manufacturing a ceramic material having a low friction coefficient

Also Published As

Publication number Publication date
JPH0817059B2 (en) 1996-02-21

Similar Documents

Publication Publication Date Title
Liu et al. Phase Structure and Dielectric Properties of Bi2O3‐ZnO‐Nb2O5‐Based Dielectric Ceramics
EP0038044A1 (en) Grain boundary layer dielectric ceramic compositions
US4073846A (en) Reduction-reoxidation type semiconducting ceramic capacitor
US4638401A (en) Ceramic compositions and devices
JPH0226775B2 (en)
JPH0355710A (en) Low temperature sintered porcelain material
JPH0442855A (en) Porcelain composition and its production
EP0047815B1 (en) Grain boundary layer dielectric ceramic compositions
JPS6121183B2 (en)
JPS5857843B2 (en) porcelain dielectric composition
JPS5918159A (en) Dielectric ceramic composition
JPS6035406A (en) Dielectric porcelain composition
JPS6029211B2 (en) Manufacturing method of semiconductor ceramic capacitor
JPS6332809A (en) Dielectric ceramic composition
JPH03218601A (en) Manufacture of porcelain composition for voltage dependent nonlinear resistor and varistor
JPH02141472A (en) Dielectric porcelain composition
JPS62132755A (en) Ceramic composition
JPH0517222A (en) Porcelain composition for temperature compensation
JPS5830002A (en) Dielectric porcelain composition
JPH03218602A (en) Manufacture of porcelain composition for voltage dependent nonlinear resistor and varistor
JPH02172855A (en) Production of semiconductor porcelain material
JPS59182271A (en) Solid electrolyte and manufacture
JPH01149414A (en) Semiconductor porcelain substance
JPH0722204A (en) Semiconductor ceramic having positive resistance temperature characteristics
JPH01235202A (en) Oxide semiconductor for thermistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees