JPH01149414A - Semiconductor porcelain substance - Google Patents

Semiconductor porcelain substance

Info

Publication number
JPH01149414A
JPH01149414A JP62308238A JP30823887A JPH01149414A JP H01149414 A JPH01149414 A JP H01149414A JP 62308238 A JP62308238 A JP 62308238A JP 30823887 A JP30823887 A JP 30823887A JP H01149414 A JPH01149414 A JP H01149414A
Authority
JP
Japan
Prior art keywords
rubidium
oxide
substance
crystal grain
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62308238A
Other languages
Japanese (ja)
Other versions
JP2679065B2 (en
Inventor
Osamu Kanda
修 神田
Tsutomu Sakashita
坂下 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62308238A priority Critical patent/JP2679065B2/en
Publication of JPH01149414A publication Critical patent/JPH01149414A/en
Application granted granted Critical
Publication of JP2679065B2 publication Critical patent/JP2679065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1272Semiconductive ceramic capacitors
    • H01G4/1281Semiconductive ceramic capacitors with grain boundary layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Insulating Materials (AREA)
  • Ceramic Capacitors (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain the semiconductor porcelain substance of grain boundary dielectric layer type having improved dielectric constant and insulation resistivity by a method wherein a dielectric layer is formed on the crystal grain boundary of the crystal grain of semiconductor ceramic by diffusing the composition, consisting of the specific quantity of bismuth oxide, copper oxide, and a rubidium compound, into the crystal grain boundary of the crystal grain of semiconductor porcelain. CONSTITUTION:The mixture, which is a diffusing substance, is formed into the composition consisting of bismuth oxide Bi2O3 of 10-80molar%, copper oxide CuO of 10-40molar%, and the molar% of one or more kinds selected from cesium carbonate Rb2CO3 which is a rubidium compound, rubidium hydroxide RbOH, rubidium oxide Rb2O, dirubidium trioxide Rb2O3, rubidium peroxide Rb2O2, rubidium hyperoxide RbO2. When the mixture of the above-mentioned composition is used, the dielectric constant of the title ceramic substance can be improved by 1.4-1.8 times, and the insulation resistivity can be improved by two figures when compared with the case wherein a bismuth oxide single unit or a copper oxide single unit is used, and also pertaining to the dielectric loss tangent, there is almost no deterioration in its characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は粒界誘電体層型の半導体磁器コンデンサ等とし
て用いられる半導体磁器物質に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor ceramic material used as a grain boundary dielectric layer type semiconductor ceramic capacitor or the like.

〔従来技術〕[Prior art]

一般にチタン酸ストロンチウム(SrTi(h)等を主
体とする半導体磁器の結晶粒界に誘電体層を形成して構
成される半導体磁器物質は誘電率が高く、また電気的安
定性に優れていることから、近時コンデンサ、バリスタ
ー、サーミスター等に広く利用されている。
Semiconductor porcelain materials that are generally composed of strontium titanate (SrTi(h), etc.) and formed by forming a dielectric layer on the crystal grain boundaries have a high dielectric constant and excellent electrical stability. Since then, it has been widely used in capacitors, varistors, thermistors, etc.

ところで従来におけるこの種の半導体磁器物質は主成分
であるチタン酸ストロンチウムに、結晶粒の半導体化の
ための原子価制御剤として酸化ニオブ(NbzOs) 
、酸化イツトリウム(Y2O2)等を、また焼結助剤と
して酸化ケイ素(Si(h)、酸化マンガン(MnOz
)等を夫々添加し、中性又は還元雰囲気中で焼結し、得
られた半導体磁器に拡散物質として酸化ビスマス(Bi
zOz) 、酸化銅(CuO) 、酸化マンガン(Mn
Oz)等の混合物を結晶粒界に熱拡散させることにより
得ている(特公昭58−23922号)。
By the way, conventional semiconductor ceramic materials of this type contain strontium titanate, which is the main component, and niobium oxide (NbzOs) as a valence control agent to make the crystal grains semiconductor.
, yttrium oxide (Y2O2), etc., and silicon oxide (Si(h), manganese oxide (MnOz) as a sintering aid).
), sintered in a neutral or reducing atmosphere, and added bismuth oxide (Bi) as a diffusion substance to the resulting semiconductor porcelain.
zOz), copper oxide (CuO), manganese oxide (Mn
It is obtained by thermally diffusing a mixture of 100 oz) and the like into grain boundaries (Japanese Patent Publication No. 58-23922).

(発明が解決しようとする問題点〕 拡散物質として用いる混合物はその成分が、例えばコン
デンサの電気的特性に大きな影響を及ぼすことは知られ
ているが、従来用いられている混合物である酸化ビスマ
ス(Bi20:+)はコンデンサとしての誘電率(εa
pp)、誘、型圧接(tanδ)について優れた特性が
得られる反面、絶縁抵抗率(ρapp)が低く、また酸
化銅(CuO) 、或いは酸化マンガン(MnOz)は
絶縁抵抗率(ρapp)について優れた特性が得られる
反面、誘電率(εapp)が低く、更にこれら各金属酸
化物の混合物を用いた場合にも平均的レベルの電気的特
性は得られるものの誘電率、誘電正接、絶縁抵抗率のい
ずれにも十分な値が得られないという問題があった。
(Problems to be Solved by the Invention) It is known that the components of mixtures used as diffusion substances have a large effect on the electrical characteristics of capacitors, for example, but bismuth oxide (bismuth oxide), which is a mixture used conventionally, Bi20:+) is the dielectric constant (εa
Although excellent properties can be obtained in terms of pp), dielectric strength, and type pressure welding (tan δ), the insulation resistivity (ρapp) is low, and copper oxide (CuO) or manganese oxide (MnOz) has excellent insulation resistivity (ρapp). On the other hand, the dielectric constant (εapp) is low, and even if a mixture of these metal oxides is used, average level electrical properties can be obtained, but the dielectric constant, dielectric loss tangent, and insulation resistivity are low. In either case, there was a problem in that sufficient values could not be obtained.

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは誘電率、絶縁抵抗率が共に向上した
粒界誘電体層型の半導体磁器物質を提供することにある
The present invention has been made in view of the above circumstances, and its object is to provide a grain boundary dielectric layer type semiconductor ceramic material with improved dielectric constant and insulation resistivity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る半導体磁器物質は、半導体磁器の結晶粒の
結晶粒界に、酸化ビスマス(Bi203) 10〜80
モル%、 酸(E[[cuooo〜40モル%及びルビ
ジウム系化合物10〜80モル%からなる組成物が拡散
して、前記結晶粒界に誘電体層を形成してなることを特
徴とする。
The semiconductor ceramic material according to the present invention contains bismuth oxide (Bi203) 10 to 80 at the grain boundaries of the crystal grains of the semiconductor ceramic.
A dielectric layer is formed at the grain boundaries by diffusion of a composition consisting of ~40 mole percent of an acid (E[[cuooo] and 10 to 80 mole percent of a rubidium-based compound).

〔作用〕[Effect]

本発明にあってはこれによって誘電率、絶縁抵抗率のい
ずれにも高い値が得られる。
According to the present invention, high values of both dielectric constant and insulation resistivity can be obtained.

〔実施例〕〔Example〕

例えば主成分であるチタン酸ストロンチウム(SrTi
O3)に、酸化ニオブ(NbzOs)を0.1〜2モル
%、酸化マンガン(MnO□)を0.1〜2モル%の各
範囲で添加したものを原料として直径10mm、厚さ0
゜8鶴の円板状の素体に加圧成形し、次にこの円板状の
素体を、例えば水素1〜15%、窒素99〜85%の還
元雰囲気中で1400〜1540℃で4〜10時間焼成
して半導体磁器を得、更にこの半導体磁器に拡散物質と
して下記の混合物を塗布し、大気中で1000〜135
0℃で1〜2時間焼成を行って本発明の半導体磁器物質
を得、その後この半導体磁器物質の両面に、例えば銀ペ
ーストを付着させ800 ’Cで焼付けて電極を形成し
、半導体磁器コンデンサを得た。
For example, the main component strontium titanate (SrTi)
O3) with 0.1 to 2 mol% of niobium oxide (NbzOs) and 0.1 to 2 mol% of manganese oxide (MnO
゜8 Crane is pressure-molded into a disc-shaped element body, and then this disc-shaped element body is heated at 1400 to 1540°C in a reducing atmosphere containing, for example, 1 to 15% hydrogen and 99 to 85% nitrogen. Semiconductor porcelain was obtained by firing for ~10 hours, and the following mixture was applied as a diffusion substance to this semiconductor porcelain, and the mixture was heated to 1000 to 135% in air.
Firing is performed at 0°C for 1 to 2 hours to obtain the semiconductor ceramic material of the present invention, and then, for example, silver paste is deposited on both sides of this semiconductor ceramic material and baked at 800'C to form electrodes, thereby forming a semiconductor ceramic capacitor. Obtained.

なお円板状の素体の焼結用還元雰囲気としては水素1〜
15%、窒素99〜85%に限らず、結晶粒が十分半導
体化され得る雰囲気であればよい。また電極材料につい
てもAgに限らすA/、その他の材料も用いられる。
The reducing atmosphere for sintering the disc-shaped element body is hydrogen 1~
The atmosphere is not limited to 15% nitrogen and 99 to 85% nitrogen, but any atmosphere can be used as long as the crystal grains can be sufficiently converted into a semiconductor. Further, the electrode material is not limited to Ag, but other materials may also be used.

拡散物質である混合物は酸化ビスマス(BizOz)を
10〜80モル%、酸化銅(CuO)を10〜40モル
%及びルビジウム系化合物である炭酸セシウム(Rbz
COz) 。
The mixture as a diffusive substance contains 10 to 80 mol% of bismuth oxide (BizOz), 10 to 40 mol% of copper oxide (CuO), and cesium carbonate (Rbz), which is a rubidium-based compound.
COz).

水酸化ルビジウム(RbOH) 、酸化ルビジウム(R
b20) 。
Rubidium hydroxide (RbOH), Rubidium oxide (R
b20).

三酸化二ルビジウム(RbzO+) 、過酸化ルビジウ
ム(Rh20□)、超酸化ルビジウム(RbO□)のう
ちの1種又は2種以上が10〜80モル%からなる組成
よりなる。
The composition consists of 10 to 80 mol% of one or more of dirubidium trioxide (RbzO+), rubidium peroxide (Rh20□), and rubidium superoxide (RbO□).

第1.2.3図は拡散物質である混合物として酸化ビス
マス、酸化銅及び炭酸ルビジウムの各成分についてその
組成を変えた混合物について、その電気的特性を調べた
結果を示している。
Figure 1.2.3 shows the results of examining the electrical characteristics of mixtures that are diffusive substances, with different compositions of bismuth oxide, copper oxide, and rubidium carbonate.

第1図は誘電率(εapp) x 1(l’値を、また
第2図は誘電正接(tanδ)値(%)を、更に第3図
は絶縁抵抗率(ρapp) x 10伺0値(Ω−cm
)を夫々示すグラフであり、グラフ中の黒丸印は夫々の
成分組成を拡散物質として得た半導体磁器物質の各供試
材を、また数値は10枚の試料の誘電率値、誘電正接値
、絶縁抵抗値の平均値を示している。
Figure 1 shows the dielectric constant (εapp) x 1 (l' value), Figure 2 shows the dielectric loss tangent (tan δ) value (%), and Figure 3 shows the insulation resistivity (ρapp) x 10 to 0 value ( Ω-cm
), and the black circles in the graph indicate the respective sample materials of semiconductor ceramic materials obtained as diffusion substances, and the numerical values indicate the dielectric constant value, dielectric loss tangent value, and dielectric loss tangent value of the 10 samples. Shows the average value of insulation resistance.

なお電気的特性のうち、誘電率(εapp)、誘電正接
(tanδ)は作成した半導体磁器コンデンサに周波数
1k)lz、電圧1vを印加して測定した値であり、ま
た絶縁抵抗率(ρapp)は25Vの直流電圧印加1分
後の電流値を測定し、これに基づいて算出した値である
Among the electrical characteristics, the dielectric constant (εapp) and the dielectric loss tangent (tanδ) are the values measured by applying a frequency of 1k)lz and a voltage of 1v to the prepared semiconductor ceramic capacitor, and the insulation resistivity (ρapp) is The current value was measured one minute after the application of a DC voltage of 25 V, and the value was calculated based on this.

第1.2.3図から明らかな如く、酸化ビスマス(Bi
zO+)を10〜80モル%、酸化w4(CuO)を1
0〜40モル%、炭酸ルビジウムを10〜80モル%の
範囲内とした混合物を拡散物質に用いた本発明組成物に
あっては、誘電率、誘電正接、絶縁抵抗率のいずれにお
いても優れた電気的特性を示しているのが分かる。
As is clear from Figure 1.2.3, bismuth oxide (Bi
zO+) from 10 to 80 mol%, oxidized w4(CuO) to 1
The composition of the present invention using a mixture containing 0 to 40 mol% of rubidium carbonate and 10 to 80 mol% of rubidium carbonate as a diffusing substance has excellent dielectric constant, dielectric loss tangent, and insulation resistivity. It can be seen that it shows electrical characteristics.

これに対して酸化ビスマスが10モル%未満、又は90
モル%以上では第1図から明らかなように誘電率(εa
pp)が明らかに低く、更に酸化ビスマス単体では第3
図から明らかなように絶縁抵抗率(ρapp)に著しい
低下が認められる。
In contrast, bismuth oxide is less than 10 mol%, or 90%
As is clear from Figure 1, the dielectric constant (εa
pp) is clearly low, and in addition, bismuth oxide alone ranks third.
As is clear from the figure, a significant decrease in insulation resistivity (ρapp) is observed.

また、酸化銅が50モル%以上では第1.2図から明ら
かな如く誘電率、誘電正接が共に劣り、また10モル%
未満では第1.3図から明らかな如く誘電率、絶縁抵抗
率は共に十分な値が得られていないことが分かる。
In addition, when the copper oxide content exceeds 50 mol%, both the dielectric constant and the dielectric loss tangent are inferior, as is clear from Figure 1.2;
As is clear from FIG. 1.3, if the value is less than that, sufficient values for both dielectric constant and insulation resistivity cannot be obtained.

更に炭酸ルビジウムが90モル%以上、又は10モル%
未満では誘電率に劣った値が認められる。
Furthermore, rubidium carbonate is 90 mol% or more, or 10 mol%
Below this value, an inferior value of dielectric constant is observed.

ちなみに本発明物質に用いる拡散物質として酸化ビスマ
スを45モル%、酸化銅ヲ10モル%、炭酸ルビジウム
を45モル%からなる組成の混合物を用いた場合、酸化
ビスマス単体又は酸化銅単体を用いる場合と比較して誘
電率で1.4倍乃至1.8倍、絶縁抵抗率で2桁の向上
が図れ、誘電正接についてもほとんどその特性を劣化さ
せていないことが分かった。
Incidentally, when a mixture of 45 mol% bismuth oxide, 10 mol% copper oxide, and 45 mol% rubidium carbonate is used as a diffusive substance for the substance of the present invention, the difference is the same as when bismuth oxide alone or copper oxide alone is used. In comparison, it was found that the dielectric constant was improved by 1.4 to 1.8 times, the insulation resistivity was improved by two orders of magnitude, and the properties of the dielectric loss tangent were hardly deteriorated.

なお、拡散物質の一つとして炭酸ルビジウムの場合につ
き説明したが、他の水酸化ルビジウム。
Although the case of rubidium carbonate was explained as one of the diffusive substances, other rubidium hydroxides may also be used.

酸化ルビジウム、三酸化二ルビジウム、過酸化ルビジウ
ム、超酸化ルビジウム又はこれらの2種以上の混合物に
ついても10〜80モル%の範囲内で略同様の効果があ
ることが確認された。
It was confirmed that rubidium oxide, dirubidium trioxide, rubidium peroxide, rubidium superoxide, or a mixture of two or more thereof had substantially similar effects within the range of 10 to 80 mol%.

また、本発明に係る半導体磁器物質をコンデンサに利用
する場合について説明したが、本発明はこれに限るもの
ではなくバリスタ、サーミスタ等の他の用途にも使える
ことは言うまでもない。
Moreover, although the case where the semiconductor ceramic material according to the present invention is used in a capacitor has been described, it goes without saying that the present invention is not limited to this and can be used in other applications such as varistors and thermistors.

〔効果〕〔effect〕

以上の如く本発明にあっては、拡散物質として酸化ビス
マス、酸化銅及びルビジウム系化合物を組合せてなる組
成物を用いであるから誘電率、絶縁抵抗率が大幅に向上
し得る優れた効果を奏するものである。
As described above, in the present invention, since a composition comprising a combination of bismuth oxide, copper oxide and rubidium compounds is used as a diffusing substance, the dielectric constant and insulation resistivity can be significantly improved. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は拡散物質の組成と誘電率との関係を示す図、第
2図は拡散物質の組成と誘電正接との関係を示す図、第
3図は拡散物質の組成と絶縁抵抗率との関係を示す図で
ある。 特 許 出願人  住友金属工業株式会社代理人 弁理
士  河  野  登  失策1図 第2図
Figure 1 is a diagram showing the relationship between the composition of the diffusion material and dielectric constant, Figure 2 is a diagram showing the relationship between the composition of the diffusion material and the dielectric loss tangent, and Figure 3 is the diagram showing the relationship between the composition of the diffusion material and insulation resistivity. It is a figure showing a relationship. Patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Noboru Kono Mistakes Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1.半導体磁器の結晶粒の結晶粒界に、酸化ビスマス(
Bi_2O_3)10〜80モル%,酸化銅(CuO)
10〜40モル%及びルビジウム系化合物10〜80モ
ル%からなる組成物が拡散して、前記結晶粒界に誘電体
層を形成してなることを特徴とする半導体磁器物質。
1. Bismuth oxide (
Bi_2O_3) 10-80 mol%, copper oxide (CuO)
A semiconductor ceramic material characterized in that a composition comprising 10 to 40 mol % and 10 to 80 mol % of a rubidium-based compound is diffused to form a dielectric layer at the grain boundaries.
JP62308238A 1987-12-04 1987-12-04 Semiconductor porcelain material Expired - Lifetime JP2679065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62308238A JP2679065B2 (en) 1987-12-04 1987-12-04 Semiconductor porcelain material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62308238A JP2679065B2 (en) 1987-12-04 1987-12-04 Semiconductor porcelain material

Publications (2)

Publication Number Publication Date
JPH01149414A true JPH01149414A (en) 1989-06-12
JP2679065B2 JP2679065B2 (en) 1997-11-19

Family

ID=17978596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62308238A Expired - Lifetime JP2679065B2 (en) 1987-12-04 1987-12-04 Semiconductor porcelain material

Country Status (1)

Country Link
JP (1) JP2679065B2 (en)

Also Published As

Publication number Publication date
JP2679065B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
EP0080611B1 (en) Semiconductive ceramic materials with a voltage-dependent nonlinear resistance, and process for preparation
EP0437613B1 (en) Laminated and grain boundary insulated type semiconductor ceramic capacitor and method of producing the same
US5268006A (en) Ceramic capacitor with a grain boundary-insulated structure
US4419310A (en) SrTiO3 barrier layer capacitor
EP0412167B1 (en) Laminated type grain boundary insulated semiconductor ceramic capacitor and method of producing the same
JPH0524646B2 (en)
EP0429653B1 (en) Laminated and grain boundary insulated type semiconductive ceramic capacitor and method of producing the same
US4397886A (en) Method for making a ceramic intergranular barrier-layer capacitor
JP4788274B2 (en) Oxide conductor porcelain and resistor having CTR characteristics
JPH01149414A (en) Semiconductor porcelain substance
JPH01149413A (en) Semiconductor porcelain substance
JPH1012043A (en) Conductive composition and boundary layer ceramic capacitor
JP2000228302A (en) Zinc oxide based porcelain laminated member, its manufacture and zinc oxide varistor
JP2707706B2 (en) Grain boundary insulating semiconductor ceramic capacitor and method of manufacturing the same
JPH0785459B2 (en) Grain boundary insulation type semiconductor ceramic capacitor
JPH0524645B2 (en)
JP2737280B2 (en) Ceramic capacitor and method of manufacturing the same
JPH0194609A (en) Semiconductor porcelain substance
JP2743448B2 (en) Ceramic capacitor and method of manufacturing the same
JPH0388768A (en) Semiconductor porcelain and its production
JPH02107561A (en) Semiconductor porcelain material
JPH05326211A (en) Ceramic composition for voltage nonlinear resistor
JPH03215353A (en) Barium titanate-based semiconductor ceramic composition
JPH01274411A (en) Semiconductor porcelain substance
Burn et al. SrTiO 3 barrier layer capacitor