JPH0354190B2 - - Google Patents

Info

Publication number
JPH0354190B2
JPH0354190B2 JP59050498A JP5049884A JPH0354190B2 JP H0354190 B2 JPH0354190 B2 JP H0354190B2 JP 59050498 A JP59050498 A JP 59050498A JP 5049884 A JP5049884 A JP 5049884A JP H0354190 B2 JPH0354190 B2 JP H0354190B2
Authority
JP
Japan
Prior art keywords
thin film
conditions
coating
sample
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59050498A
Other languages
Japanese (ja)
Other versions
JPS60194074A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5049884A priority Critical patent/JPS60194074A/en
Publication of JPS60194074A publication Critical patent/JPS60194074A/en
Publication of JPH0354190B2 publication Critical patent/JPH0354190B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は連続型の金属薄膜形成装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous metal thin film forming apparatus.

この種の装置は、基板を連続的に自動で薄膜形
成室に送り込み、薄膜形成後も自動で試料を薄膜
形成室から回収する。
This type of apparatus automatically feeds the substrate into the thin film forming chamber continuously and automatically collects the sample from the thin film forming chamber even after forming the thin film.

従来、この種の連続装置では基板表面に薄膜を
形成した後、作業者が装置から試料を取り出し、
作成された薄膜の特性を測定し条件通りの薄膜が
形成されているか否かの判定をしていた。この従
来の方法では、薄膜形成時の条件に異常があり、
最初に設定した条件と異なつた薄膜が形成されて
しまつた場合でも、試料を装置から取り出して測
定するまでは、その事実を判定することができな
い。この為もし多量の試料を連続的に処理してい
く場合には多量の不良品を作つてしまう危険性が
ある。
Conventionally, in this type of continuous equipment, after forming a thin film on the substrate surface, an operator takes out the sample from the equipment and
The characteristics of the formed thin film were measured to determine whether the thin film was formed according to the conditions. This conventional method has abnormal conditions during thin film formation.
Even if a thin film is formed that differs from the initially set conditions, this fact cannot be determined until the sample is removed from the apparatus and measured. For this reason, if a large number of samples are processed continuously, there is a risk of producing a large number of defective products.

薄膜の諸元のうち、膜厚に対してこの危険を防
ぐ目的で改善がなされたものに特開昭58−141381
の発明がある。
Among the specifications of thin films, the film thickness has been improved in order to prevent this danger.
There are inventions.

その発明の方法は、薄膜形成部の下流にシート
抵抗を測定する測定部を設け、形成された薄膜の
膜厚を自動で測定し、そのデーターを薄膜形成部
にフイードバツクして膜厚のコントロールを行う
ものである。この方法を使えば先に述べたような
多量の不良品を作つてしまう危険は防止できる。
The method of the invention includes a measuring section for measuring sheet resistance downstream of the thin film forming section, which automatically measures the thickness of the formed thin film, and feeds the data back to the thin film forming section to control the film thickness. It is something to do. By using this method, the risk of producing a large number of defective products as mentioned earlier can be avoided.

しかし、最近の基板の表面が平坦でなく、極め
て多くの段差を持つたものが極く普通に用いられ
ている。このような段差をもつた基板に対して形
成される薄膜の膜厚が基板表面の平坦部で所定値
であるだけでは不充分であり段差に対する被膜も
所定値、所定形状でなければならない。段差に対
する被膜は膜厚が一定であつても成膜条件によつ
てかなり変化するので、段差に対する被膜度、被
膜形状を所定のものに保つ為には成膜条件を常に
所定の状態に保つ必要がある。
However, recently, substrates whose surfaces are not flat and have a large number of steps are very commonly used. It is not sufficient that the thickness of a thin film formed on a substrate having such a step difference be a predetermined value on a flat portion of the substrate surface, and the coating for the step portion must also have a predetermined value and a predetermined shape. Even if the film thickness is constant, the coating on steps varies considerably depending on the coating conditions, so in order to maintain the desired coating degree and shape on steps, it is necessary to always maintain the coating conditions at the specified state. There is.

本発明は試料表面の段差に対する被膜を常に所
定のものに保つ為に、薄膜形成室から送り出され
た試料の段差の被膜状況を自動で測定し、そのデ
ータを薄膜形成条件にフイードバツクして常に同
一の所定の段差被膜を得ることを特徴とし、その
目的は、薄膜形成条件の変動を押え多量の不良品
が発生するのを防止することにある。
In order to always keep the coating on the step on the sample surface to a predetermined level, the present invention automatically measures the coating condition on the step on the sample sent out from the thin film forming chamber, and feeds the data back to the thin film forming conditions to ensure that the coating is always the same. The purpose of this method is to suppress fluctuations in the thin film forming conditions and prevent a large number of defective products from being produced.

薄膜形成装置には種々あるが、以下ではスパツ
タリング装置を例にとつて本発明の説明を行う。
Although there are various thin film forming apparatuses, the present invention will be explained below using a sputtering apparatus as an example.

第1図は従来のスパツタリング装置の例であ
る。試料5がロード室1にストツクされ、一枚づ
つ薄膜形成室2へ、矢印16の向きに送られ、先
ずランプ9によつて加熱処理されたのちカソード
4から飛来したスパツタ原子によつて被膜され、
被膜終了後矢印17の方向にアンロード室3へ送
り込まれこゝにストツクされる。アンロード室3
にストツクされた試料8は、所定の量がたまつた
後取り出されて次工程へ進む。
FIG. 1 is an example of a conventional sputtering device. Samples 5 are stored in the load chamber 1 and sent one by one to the thin film forming chamber 2 in the direction of the arrow 16, where they are first heated by a lamp 9 and then coated with spatter atoms flying from the cathode 4. ,
After the coating is completed, it is fed into the unloading chamber 3 in the direction of arrow 17 and stored there. Unloading room 3
The sample 8 stored in the chamber is taken out after a predetermined amount has been accumulated and proceeds to the next step.

このような従来の装置では、薄膜形成条件に異
常あり、試料表面の段差被膜に変化が生じても、
アンロード室3にストツクされた試料8を取り出
して測定して見るまでは、その異常が判らない。
With such conventional equipment, even if there is an abnormality in the thin film forming conditions and a change occurs in the step film on the sample surface,
The abnormality cannot be determined until the sample 8 stored in the unloading chamber 3 is taken out and measured.

第2図は試料表面の段差への正常な被膜状態を
示したものである。試料21の表面の左側には極
めて多数の段差22があり、形成される薄膜23
はこの第2図のようになめらかに段差を被うもの
でなければならない。
FIG. 2 shows a normal coating state on a step on the sample surface. There are an extremely large number of steps 22 on the left side of the surface of the sample 21, and a thin film 23 to be formed.
must cover the difference in level smoothly as shown in Figure 2.

第3図は段差への被膜状態の異常な例を示した
ものである。第2図と比べて薄膜24の段差への
被膜形状が異常であり、この様な薄膜は、出来上
る製品の性能を低下させる。段差被膜形状がこの
ように異常になる原因にはいくつか考えられ、ス
パツタリングにより薄膜形成を行う場合では薄膜
形成条件のうち段差被膜形状に影響する要因には
基板温度、スパツタリングガス圧力、スパツタリ
ング電力(成膜速度)等があるがこの中でも基板
温度の影響が最も大きい。
FIG. 3 shows an example of an abnormal coating state on a step. Compared to FIG. 2, the shape of the coating on the step of the thin film 24 is abnormal, and such a thin film deteriorates the performance of the finished product. There are several possible reasons why the shape of the step film becomes abnormal. When forming a thin film by sputtering, the factors that affect the shape of the step film among the thin film forming conditions include substrate temperature, sputtering gas pressure, and sputtering. Among these factors, the substrate temperature has the greatest influence.

但しそれら条件の組合せには薄膜の組成、膜厚
によつて決る一定の拘束があり、それぞれの最適
条件は他の条件によつて微妙に変化する。
However, the combination of these conditions is subject to certain constraints determined by the composition and thickness of the thin film, and each optimum condition slightly changes depending on other conditions.

第4図は本発明の実施例であり、薄膜形成室2
にて薄膜形成後、矢印17の方向に送り出された
試料10は非接触型の面積抵抗測定器11(例え
ば渦電流型の測定器がある)で、形成された金属
薄膜の面積抵抗が測定され、その後アンロード室
3にストツクされる。
FIG. 4 shows an embodiment of the present invention, in which the thin film forming chamber 2
After forming a thin film, the sample 10 is sent out in the direction of an arrow 17, and the sheet resistance of the formed metal thin film is measured using a non-contact type sheet resistance measuring device 11 (for example, there is an eddy current type measuring device). , and then stored in the unloading chamber 3.

第5図は形成された金属薄膜の膜厚(横軸)x
と、面積抵抗測定器11で測定された測定値を膜
厚に換算した値(縦軸)yの関係の一例を示すも
のである。図中aの曲線は全面が平坦な基板、即
ち図の25の上に金属薄膜を形成した場合のもの
である。図中b及びcの曲線は表面に数多くの段
差を持つ基板の上に金属薄膜を形成した場合のも
のであり、このうち曲線bは段差への被膜が良好
な場合、すなわち第2図の23の状態のものに相
当し、曲線cは段差への被膜が不良である場合、
すなわち第3図の24の状態のものに相当する。
一定の条件下では第5図の横軸は時間軸と考えて
も支障はない。
Figure 5 shows the thickness of the formed metal thin film (horizontal axis) x
An example of the relationship between y and the value (vertical axis) y obtained by converting the measurement value measured by the sheet resistance measuring device 11 into film thickness is shown. The curve a in the figure is for a case where a metal thin film is formed on a substrate whose entire surface is flat, that is, 25 in the figure. Curves b and c in the figure are for the case where a metal thin film is formed on a substrate with many steps on the surface, and curve b is for the case where the coating on the steps is good, that is, 23 in FIG. Curve c corresponds to the condition when the coating on the step is poor,
That is, it corresponds to the state 24 in FIG.
Under certain conditions, there is no problem in considering the horizontal axis in FIG. 5 as the time axis.

さてこの第5図の曲線bをたどるように、即ち
第2図に示される良好な被膜を形成するように諸
条件を設定してスパツタリングを行つても、工程
中に次第に金属薄膜の形成条件が変化し、第3図
のような不良の膜を生ずるようになつた場合には
非接触型の面積抵抗測定器11で断続的に第4図
の測定を行うことにより図5の曲線がbからcへ
と移り薄膜形成直後に検知されるためその異常を
いち早く検知することができる。もちろん、この
時には形成された薄膜の膜厚が基板表面で一様で
あること及び工程中金属薄膜の固有抵抗に変化を
生じないことが前提条件であるがこれは多くの場
合容易に満足される。
Now, even if sputtering is performed with various conditions set so as to follow curve b in Fig. 5, that is, to form a good film as shown in Fig. 2, the conditions for forming the metal thin film gradually change during the process. If the change occurs and a defective film as shown in FIG. 3 is produced, the curve in FIG. Since the process moves to step c and is detected immediately after the thin film is formed, the abnormality can be detected quickly. Of course, at this time, the prerequisites are that the thickness of the thin film formed be uniform on the substrate surface and that the specific resistance of the metal thin film does not change during the process, but this is easily satisfied in many cases. .

このように本発明を用いれば金属薄膜形成直後
にその段差被膜形状を測定し、もし異常があれ
ば、例えば図4の中に示されているフイードバツ
ク回路12を通して試料の加熱条件を制御すると
か、あるいは装置を止めて原因を調査する等の制
御を行うことができる。この結果、不良な段差被
膜形状の膜を多量に生産してしまうことを防ぐこ
とができる。
In this way, by using the present invention, the shape of the step film can be measured immediately after the metal thin film is formed, and if there is an abnormality, the heating conditions of the sample can be controlled through the feedback circuit 12 shown in FIG. 4, for example. Alternatively, control such as stopping the device and investigating the cause can be performed. As a result, it is possible to prevent a large amount of films having a defective step film shape from being produced.

以上はスパツタリング装置を例にとつて、本発
明の効果を述べたものであるが他の薄膜形成装置
でも本発明が有効であることは明らかであり、工
業上有益な発明ということができる。
Although the effects of the present invention have been described above using a sputtering apparatus as an example, it is clear that the present invention is also effective in other thin film forming apparatuses, and can be said to be an industrially useful invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のスパツタリング装置を示す図。
第2図は段差を持つた試料表面に被膜された金属
薄膜の正常な被膜状態を示し、第3図はその異常
な例を示す。第4図は本発明の実施例のスパツタ
リング装置を示す図である。第5図は形成された
金属薄膜の膜厚と、面積抵抗測定器で測定された
測定値を膜厚に換算した値の関係を示すグラフで
ある。 1……試料のロード室、2……薄膜形成室、3
……アンロード室、4……スパツタリングカソー
ド、5,7,8,10……試料、11……非接触
型の表面抵抗測定器。
FIG. 1 is a diagram showing a conventional sputtering device.
FIG. 2 shows a normal coating state of a metal thin film coated on a sample surface having steps, and FIG. 3 shows an abnormal example thereof. FIG. 4 is a diagram showing a sputtering apparatus according to an embodiment of the present invention. FIG. 5 is a graph showing the relationship between the thickness of the formed metal thin film and the value obtained by converting the measurement value measured by a sheet resistance measuring device into film thickness. 1...Sample loading chamber, 2...Thin film formation chamber, 3
... Unloading chamber, 4... Sputtering cathode, 5, 7, 8, 10... Sample, 11... Non-contact surface resistance measuring device.

Claims (1)

【特許請求の範囲】[Claims] 1 段差を持つ基板の表面に金属薄膜を形成する
連続型の薄膜形成装置において、該金属薄膜を形
成した後に該基板上の段差への被膜度を測定する
手段と、その測定結果に基づいて該金属薄膜形成
の成膜条件を制御する制御手段とを備えたことを
特徴とする薄膜形成装置。
1. In a continuous type thin film forming apparatus that forms a metal thin film on the surface of a substrate having a step, a means for measuring the degree of coverage of the step on the substrate after forming the metal thin film, and a means for measuring the coverage of the step on the substrate based on the measurement results. 1. A thin film forming apparatus comprising: a control means for controlling film forming conditions for forming a metal thin film.
JP5049884A 1984-03-16 1984-03-16 Apparatus for forming thin film Granted JPS60194074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5049884A JPS60194074A (en) 1984-03-16 1984-03-16 Apparatus for forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5049884A JPS60194074A (en) 1984-03-16 1984-03-16 Apparatus for forming thin film

Publications (2)

Publication Number Publication Date
JPS60194074A JPS60194074A (en) 1985-10-02
JPH0354190B2 true JPH0354190B2 (en) 1991-08-19

Family

ID=12860602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5049884A Granted JPS60194074A (en) 1984-03-16 1984-03-16 Apparatus for forming thin film

Country Status (1)

Country Link
JP (1) JPS60194074A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5193115B2 (en) 2009-04-01 2013-05-08 株式会社ニフコ Operating mechanism of movable body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4431220Y1 (en) * 1966-06-08 1969-12-23
JPS58141381A (en) * 1982-02-15 1983-08-22 Hitachi Ltd Thin film forming device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4431220Y1 (en) * 1966-06-08 1969-12-23
JPS58141381A (en) * 1982-02-15 1983-08-22 Hitachi Ltd Thin film forming device

Also Published As

Publication number Publication date
JPS60194074A (en) 1985-10-02

Similar Documents

Publication Publication Date Title
US20090078197A1 (en) Substrate processing system, control method for substrate processing apparatus and program
US5893050A (en) Method for correcting thin-film formation program of semiconductor device and thickness measuring apparatus therefor
US7232506B2 (en) System and method for feedforward control in thin film coating processes
JPH0772307A (en) Method and device for forming thin film
JPH0354190B2 (en)
CN111719130B (en) Temperature adjusting method in semiconductor coating equipment and semiconductor coating equipment
JP3111857B2 (en) Shape control method for hot-dip coated steel sheet
US20220064783A1 (en) Sputtering system and deposition method
US7751908B2 (en) Method and system for thermal process control
DE102010009795A1 (en) Uniformly coating substrates with metallic back contacts by depositing vaporized evaporation products in process chamber of continuous coating system and annealing process, comprises carrying out annealing process during coating process
US6204199B1 (en) Method for producing a semiconductor device
CN113252195A (en) Method for determining substrate temperature in molecular beam epitaxy equipment
JPH03267372A (en) Continuous film forming method
US6139698A (en) Method and apparatus for reducing the first wafer effect
KR20220070517A (en) Regulated foil heat treatment
US3700485A (en) Vacuum vapor deposited zinc coatings
Abdin et al. The production of tantalum nitride film resistors using a continuous sputtering machine
JPS6217528B2 (en)
JPH02234417A (en) Spin coating method
JPH04297054A (en) Method and apparatus for processing semiconductor wafer
JPH03201012A (en) Heating device
JPH08255757A (en) Manufacture of semiconductor device
JP2824733B2 (en) Nozzle gap control method in plating equipment
JPS61147870A (en) Formation of al film by sputtering
JPH08296052A (en) Production of coated chromate steel sheet having excellent appearance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term