JPH03261661A - Production of carbon fiber-reinforced carbon composite material - Google Patents

Production of carbon fiber-reinforced carbon composite material

Info

Publication number
JPH03261661A
JPH03261661A JP2056644A JP5664490A JPH03261661A JP H03261661 A JPH03261661 A JP H03261661A JP 2056644 A JP2056644 A JP 2056644A JP 5664490 A JP5664490 A JP 5664490A JP H03261661 A JPH03261661 A JP H03261661A
Authority
JP
Japan
Prior art keywords
carbon fiber
carbon
reinforced
composite material
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2056644A
Other languages
Japanese (ja)
Inventor
Masaharu Takehara
正治 竹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP2056644A priority Critical patent/JPH03261661A/en
Publication of JPH03261661A publication Critical patent/JPH03261661A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject carbon fiber-reinforced carbon composite material having a high strength and excellent in heat resistance by baking a molding of a carbon fiber-reinforced carbonizing raw material, subsequently impregnating the baked molding with a fluid polyimide resin and curing the impregnated molding. CONSTITUTION:A carbonizing raw material (e.g. phenol resin) is blended with a carbon fiber (e.g. polyacrylonitrile-based carbon fiber) for reinforcement and molded into a desired shape using a compression molding, etc. The resultant molding is baked in a nonoxidative atmosphere to obtain a carbonized intermediate. Processing composed of impregnation of the resultant carbonized intermediate with pitch or a fluid thermosetting resin (e.g. furan resin) as necessary and bake is further carried out one or more times to reduce pores followed by impregnation with the fluid polyimide resin. The fluid polyimide resin is then heat cured, thus obtaining the objective carbon fiber-reinforced carbon composite material suitable for a member of a rocket, an aircraft, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭素繊維強化炭素複合材料の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a carbon fiber reinforced carbon composite material.

〔従来の技術〕[Conventional technology]

炭素繊維強化炭素複合材料はC/Cコンポジットとも称
され、炭素繊維を補強材とし、炭素をマトリックスとし
た複合材料である。これは、炭素繊維で強化されている
ため、従来の炭素材料に比べて常温、高温での機械的特
性に優れるだけでなく、摩擦、制動特性、熱伝導性、耐
触性なども優れていることから、ロケットノズル、航空
機のブレーキディスクなどの宇宙、航空機部材として欠
かせない材料となっている。
A carbon fiber-reinforced carbon composite material is also called a C/C composite, and is a composite material that uses carbon fiber as a reinforcing material and carbon as a matrix. Because it is reinforced with carbon fiber, it not only has superior mechanical properties at room and high temperatures compared to conventional carbon materials, but also superior friction, braking properties, thermal conductivity, and contact resistance. For this reason, it is an indispensable material for space and aircraft components such as rocket nozzles and aircraft brake discs.

炭素繊維強化炭素複合材料の製造方法としては、大別し
て2つの系統がある。1つは炭素繊維のトウ、クロス、
フェルトなどを簡単に成形したのち、炉で1,000〜
1,500℃に加熱し、そこへ炭化水素ガスを導入して
分解炭化させて炭素を炭素繊維表面に沈着させて炭素繊
維強化炭素複合材料とする方法である。他の1つは炭素
繊維のトウ、クロス、フェルトなどにフェノール樹脂等
を含浸させたプリプレグを積層し、加熱加圧して成形体
としたのち、非酸化性雰囲気で炭化処理し、必要であれ
ば含浸処理、炭化処理を繰り返して炭素繊維強化炭素複
合材料とする方法である。
There are roughly two types of methods for producing carbon fiber-reinforced carbon composite materials. One is carbon fiber tow, cloth,
After easily forming felt etc., it is made in a furnace for 1,000 ~
This is a method in which carbon fibers are heated to 1,500° C. and hydrocarbon gas is introduced thereto to cause decomposition and carbonization, thereby depositing carbon on the surfaces of carbon fibers to produce a carbon fiber-reinforced carbon composite material. The other method is to laminate carbon fiber tow, cloth, felt, etc. with prepreg impregnated with phenolic resin, etc., heat and press it to form a molded body, and then carbonize it in a non-oxidizing atmosphere, if necessary. This method involves repeating impregnation treatment and carbonization treatment to obtain a carbon fiber-reinforced carbon composite material.

ところが、このようにして得られた炭素繊維強化炭素複
合材料は、脆性的な炭素質をマトリックスとしているた
め、繰り返し荷重がかかる箇所において使用された場合
、マトリックス炭素が粉化して炭素繊維から欠落し、十
分にその強度を発揮しえないという欠点がある。このよ
うな欠点を補うため、炭素繊維強化炭素複合材料にエポ
キシ樹脂を含浸し、硬化する方法が報告されている(C
arbon、 Vol、25. No、2. p163
.1987)。その他、不浸透性黒鉛の製法として、炭
素および黒鉛材の気孔中にフェノール系やフラン系の熱
硬化性樹脂を含浸し、硬化させる方法も知られている。
However, the carbon fiber-reinforced carbon composite material obtained in this way has a brittle carbonaceous matrix, so if it is used in a place where repeated loads are applied, the matrix carbon will powder and break off from the carbon fibers. However, it has the disadvantage of not being able to fully demonstrate its strength. To compensate for these drawbacks, a method has been reported in which carbon fiber-reinforced carbon composite materials are impregnated with epoxy resin and cured (C
arbon, Vol, 25. No, 2. p163
.. 1987). Other known methods for producing impermeable graphite include impregnating phenol-based or furan-based thermosetting resins into the pores of carbon and graphite materials and curing the resin.

しかし、このような樹脂を含浸させた複合材料では耐熱
性が乏しく、炭素繊維強化炭素複合材料の持つ強度を3
00℃以上の高温雰囲気まで補佐することが難しく、結
果的には高温雰囲気で荷重がかかる箇所では使用できな
いという欠点があった。
However, composite materials impregnated with such resins have poor heat resistance, and the strength of carbon fiber-reinforced carbon composite materials is
It is difficult to support high-temperature atmospheres of 00° C. or higher, and as a result, it has the disadvantage that it cannot be used in places where loads are applied in high-temperature atmospheres.

〔発明が解決しようとする課題〕 本発明は高強度を有し、耐熱性に優れた炭素繊維強化炭
素複合材料を製造することを目的とする。
[Problems to be Solved by the Invention] An object of the present invention is to produce a carbon fiber-reinforced carbon composite material that has high strength and excellent heat resistance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は炭素繊維で強化した炭素材原料の成形体を焼成
したのち、液状ポリイミド樹脂を含浸し硬化することを
特徴とする炭素繊維強化炭素複合材料の製造方法である
The present invention is a method for producing a carbon fiber-reinforced carbon composite material, which is characterized in that after firing a molded body of a carbon material material reinforced with carbon fibers, the molded body is impregnated with a liquid polyimide resin and cured.

本発明で使用する炭素繊維はポリアクリロニトリル系、
レーヨン系、ピッチ系等のいずれでもよく、また炭素質
、黒鉛質のいずれであってもよい。
The carbon fiber used in the present invention is polyacrylonitrile-based,
It may be rayon-based, pitch-based, etc., and may be carbonaceous or graphite.

炭素繊維の形態は長さ#く0.05mm程度の短繊維で
あっても、連続繊維であってもよい。そして、この炭素
繊維はマトリックス中に束ねられた状態であるいは解繊
された状態で不規則に存在してもよいし、特定の方向に
配列されて存在してもよい。
The carbon fibers may be in the form of short fibers with a length of approximately 0.05 mm or continuous fibers. The carbon fibers may be present irregularly in the matrix in a bundled state or in a disentangled state, or may be arranged in a specific direction.

マトリックスとなる炭素材原料としてはフェノール樹脂
、フラン樹脂等の熱硬化性樹脂、塩化ビニル樹脂等の熱
可塑性樹脂、含浸ピッチ、バインダーピッチ等のピッチ
類等を使用することができる。
As the carbon material raw material serving as the matrix, thermosetting resins such as phenol resin and furan resin, thermoplastic resins such as vinyl chloride resin, pitches such as impregnated pitch and binder pitch, etc. can be used.

かかる炭素繊維又は炭素繊維構造物と炭素材原料とを組
み合わせて成形材料としたのち、プレス成形等により成
形体となす。この成形体中には炭素繊維又は炭素繊維構
造物が10〜80体積%、好ましくは40〜60体積%
含まれることがよい。
Such carbon fibers or carbon fiber structures and carbon material raw materials are combined to form a molding material, and then a molded body is formed by press molding or the like. This molded body contains carbon fibers or carbon fiber structures in an amount of 10 to 80% by volume, preferably 40 to 60% by volume.
Good to include.

10体積%未満では炭素繊維強化炭素複合材料の強度が
上がらず、80体積%を越えると層間における剪断強度
が低下して炭素繊維の補強効果が十分に発揮されない。
If it is less than 10% by volume, the strength of the carbon fiber-reinforced carbon composite material will not increase, and if it exceeds 80% by volume, the shear strength between the layers will decrease and the reinforcing effect of the carbon fibers will not be fully exhibited.

成形体の成形方法は公知の繊維強化プラスチックの成形
法が広く適用でき、例えばプレス成形法、フィラメント
ワインディング法等がある。
A wide variety of known methods for molding fiber-reinforced plastics can be used to form the molded body, such as press molding, filament winding, and the like.

得られた成形体は窒素、アルゴン等の非酸化性雰囲気中
で800℃以上、好ましくは1,000〜1,500℃
で焼成して、炭化された中間体を得る。この場合、炭化
時の昇温速度が速すぎると樹脂等の炭素材原料の熱分解
による収縮とガス発生が激しくなり、大きな亀裂が生じ
やすくなるので、昇温速度は100℃/hr以下、好ま
しくは206C/hr以下とすることがよい。
The obtained molded body is heated at 800°C or higher, preferably 1,000 to 1,500°C in a non-oxidizing atmosphere such as nitrogen or argon.
to obtain a carbonized intermediate. In this case, if the temperature increase rate during carbonization is too fast, the shrinkage and gas generation due to thermal decomposition of the carbon material raw material such as resin will be intense, and large cracks will easily occur, so the temperature increase rate is preferably 100°C/hr or less. is preferably 206 C/hr or less.

得られた炭化された中間体は気孔を有しているため、必
要により最終製品の耐酸化性、熱伝導率、電気伝導率等
を改良する目的で、中間体にピッチや熱硬化性樹脂の液
を含浸させ、これを再度焼成して炭化ないし黒鉛化する
操作を1回ないし2回以上行ってもよい。ここで行う含
浸は上記中間体を密閉容器に入れ、容器内を数+mmH
g以下の減圧にして気孔内に残存しているガスを追い出
し、それからピッチや熱硬化性樹脂等の炭素材原料とな
る液を流し込み、更に容器内を5〜100kg/C♂・
Gに加圧して中間体に含浸させる方法等をとることがで
きる。ここで、用いる含浸材料としては、ピッチ、フェ
ノール樹脂、フラン樹脂等が挙げられ、粘度を調節する
目的でこれらを加熱しておいてもよい。また、焼成を黒
鉛化まで行う場合、アルゴン等の不活性雰囲気中で1,
600〜3゜000℃、好ましくは2,000〜3,0
00℃で焼成することがよい。この場合、得られる中間
体は上記の中間体より密度が高められているが、なお気
孔を有している。
Since the obtained carbonized intermediate has pores, if necessary, pitch or thermosetting resin may be added to the intermediate to improve the oxidation resistance, thermal conductivity, electrical conductivity, etc. of the final product. The operation of impregnating the material with a liquid and firing it again to carbonize or graphitize may be performed once or twice or more. The impregnation carried out here involves placing the above intermediate in a sealed container and keeping the inside of the container at several + mmH.
The gas remaining in the pores is expelled by reducing the pressure to below 1.5 g, then pouring in the liquid that will become the raw material for carbon materials such as pitch and thermosetting resin, and further pumping the inside of the container at 5 to 100 kg/C♂.
A method of impregnating the intermediate by applying pressure to G can be used. Here, examples of the impregnating material used include pitch, phenol resin, furan resin, etc., and these may be heated in advance for the purpose of adjusting the viscosity. In addition, when firing up to graphitization, 1,
600-3,000℃, preferably 2,000-3,000℃
It is preferable to bake at 00°C. In this case, the resulting intermediate is denser than the intermediate described above, but still has pores.

このようにして得られた中間体(成形体を焼成したもの
およびこれを更に含浸、焼成したもの両者を意味する)
に、液状ポリイミド樹脂を含浸させる。ポリイミド樹脂
としては、室温付近で低粘度の液状であり、かつ加熱硬
化時に揮発分が生じないものを選択することが好ましい
。揮発分が多量に発生すると炭素繊維強化炭素複合材料
中に気孔が残り、強度等の物性が低下する。このような
ポリイミド樹脂としては付加反応により架橋し、硬化す
る付加反応型ポリイミド樹脂がある。好ましいものとし
て末端マレイミド基などの炭素二重結合又は末端アセチ
レン基、末端シアノ基などの炭素三重結合を末端に有す
る付加反応ポリイミド樹脂が挙げられる。含浸させる液
状ポリイミド樹脂の粘度は3ポイズ以下が好ましく、高
い場合は加熱などして粘度を低下させておくことが好ま
しい。この含浸は、この中間体を密閉容器に入れ、容器
内を数十mmHg以下の減圧にして気孔内に残存してい
るガスを追い出し、それから液状ポリイミド樹脂を流し
込んで含浸させる方法等をとることができる。更に、こ
のとき容器内を5〜100kg/crl−Gに加圧して
中間体への含浸を促進させることもできる。
Intermediates obtained in this way (meaning both those obtained by firing the compact and those obtained by further impregnating and firing)
is impregnated with liquid polyimide resin. As the polyimide resin, it is preferable to select one that is liquid with low viscosity at around room temperature and does not generate volatile matter during heat curing. When a large amount of volatile matter is generated, pores remain in the carbon fiber-reinforced carbon composite material, which deteriorates physical properties such as strength. Such polyimide resins include addition reaction type polyimide resins that are crosslinked and cured by addition reaction. Preferred examples include addition reaction polyimide resins having a carbon double bond such as a terminal maleimide group, or a carbon triple bond such as a terminal acetylene group or a terminal cyano group. The viscosity of the liquid polyimide resin to be impregnated is preferably 3 poise or less, and if it is high, it is preferable to lower the viscosity by heating or the like. This impregnation can be carried out by placing the intermediate in a sealed container, reducing the pressure inside the container to several tens of mmHg or less to expel any gas remaining in the pores, and then pouring the liquid polyimide resin to impregnate it. can. Furthermore, at this time, the inside of the container can be pressurized to 5 to 100 kg/crl-G to promote impregnation into the intermediate.

ポリイミド樹脂を含浸したのち、硬化させて炭素繊維強
化炭素複合材料とする。硬化は硬化炉等を用いて100
〜150℃程度で数時間加熱することにより行うことが
できる。更に、この硬化終了後、200℃前後で数十時
間加熱して後硬化を行うと、耐熱性がより向上する。
After being impregnated with polyimide resin, it is cured to form a carbon fiber-reinforced carbon composite material. Curing is done using a hardening furnace etc.
This can be done by heating at about ~150°C for several hours. Further, after this curing is completed, heat resistance is further improved by performing post-curing by heating at around 200° C. for several tens of hours.

〔実施例〕〔Example〕

以下、実施例及び比較例に基づいて、本発明を具体的に
説明する。
The present invention will be specifically described below based on Examples and Comparative Examples.

実施例1 ポリアクリロニトリル系炭素繊維束(12,000フイ
ラメントHニア x /  /L/樹脂(AV5イトR
M−3000A) (7) 30重量%水溶液を含浸、
乾燥し、これを30+amに切断してプリプレグとした
Example 1 Polyacrylonitrile carbon fiber bundle (12,000 filament H near x / /L / resin (AV5ite R
M-3000A) (7) Impregnated with 30% by weight aqueous solution,
After drying, this was cut into 30+ am pieces to obtain a prepreg.

このプリプレグを金型中にランダムに積層し、温度15
0℃、圧力50kg/crl−Gの条件でプレス成形し
て成形体を得た。得られた成形体の炭素繊維含有率は4
5体積%であった。
This prepreg was laminated randomly in a mold, and the temperature was 15.
A molded article was obtained by press molding at 0° C. and a pressure of 50 kg/crl-G. The carbon fiber content of the obtained molded body was 4
It was 5% by volume.

次に、この成形体を窒素雰囲気中にて10°C/hrの
昇温速度で1,000°Cまで昇温させた後、徐冷して
中間体を得た。
Next, this molded body was heated to 1,000°C at a temperature increase rate of 10°C/hr in a nitrogen atmosphere, and then slowly cooled to obtain an intermediate.

続いて、この中間体をアルゴン雰囲気中にて2゜000
℃まで昇温させ、この温度で1時間保持して黒鉛化させ
た。この黒鉛化した中間体に、予め70℃で予熱し、粘
度が1ポイズとなった末端マレイミド基を含む液状ポリ
イミド樹脂(東芝ケミカル(即製商品名:イミダロイ)
を減圧下に含浸させたのち、150℃で硬化させ、更に
200℃で20時間加熱し硬化させて最終製品の炭素繊
維強化炭素複合材料を得た。
Subsequently, this intermediate was heated to 2°000 in an argon atmosphere.
The temperature was raised to .degree. C. and maintained at this temperature for 1 hour to graphitize. To this graphitized intermediate, a liquid polyimide resin containing terminal maleimide groups (produced by Toshiba Chemical (immediate product name: Imidalloy), which has been preheated at 70°C and has a viscosity of 1 poise, is added to the graphitized intermediate.
After being impregnated under reduced pressure, it was cured at 150°C, and further heated and cured at 200°C for 20 hours to obtain a final product, a carbon fiber-reinforced carbon composite material.

この最終製品について、嵩密度を測定すると共に、常温
にて三点曲げ試験を行った。また、この最終製品につい
て、300℃で5時間加熱し冷却した後、常温で三点曲
げ試験を行った。結果を第1表に示す。
Regarding this final product, the bulk density was measured and a three-point bending test was conducted at room temperature. Further, this final product was heated at 300° C. for 5 hours, cooled, and then subjected to a three-point bending test at room temperature. The results are shown in Table 1.

比較例1 実施例1と同じ条件で成形体を製造し、これを炭化させ
て得られた中間体を、実施例1と同じ条件で黒鉛化し、
黒鉛化した中間体とした。
Comparative Example 1 A molded body was produced under the same conditions as in Example 1, and an intermediate obtained by carbonizing it was graphitized under the same conditions as in Example 1.
A graphitized intermediate was obtained.

次に、この黒鉛化した中間体に、液状フラン樹脂(AV
ライ) RM−1000F)を減圧下に含浸させた後、
120で硬化させ、更に130℃で20時間加熱し硬化
させて最終製品の炭素繊維強化炭素複合材料を得た。
Next, liquid furan resin (AV
After impregnating RM-1000F) under reduced pressure,
The mixture was cured at 120° C. and further heated at 130° C. for 20 hours to obtain a final carbon fiber-reinforced carbon composite material.

この最終製品について、実施例1と同様に嵩密度の測定
、常温三点曲げ試験及び300’C5時間加熱後の常温
三点曲げ試験を行った。結果を第1表に示す。
This final product was subjected to bulk density measurement, three-point bending test at room temperature, and three-point bending test at room temperature after heating at 300'C for 5 hours in the same manner as in Example 1. The results are shown in Table 1.

比較例2 実施例1と同じ条件で成形体を製造し、これを炭化させ
て中間体を得た。
Comparative Example 2 A molded body was produced under the same conditions as in Example 1, and this was carbonized to obtain an intermediate body.

次に、この中間体に、温度200 ’C1圧力10kg
/crl−Gの条件で含浸ピッチを含浸させた。続いて
、この中間体を窒素気流中にて1,000’Cまで昇温
させた後、徐冷して第2の中間体とした。
This intermediate was then subjected to a temperature of 200' C1 a pressure of 10 kg.
The impregnated pitch was impregnated under the conditions of /crl-G. Subsequently, this intermediate was heated to 1,000'C in a nitrogen stream, and then slowly cooled to obtain a second intermediate.

更に、上記と同様のピッチ含浸、炭化処理をそれぞれ3
回繰り返し、続いて実施例1と同じ条件で黒鉛化し、こ
れを最終製品の炭素繊維強化炭素複合材料とした。
Furthermore, the same pitch impregnation and carbonization treatments as above were performed for 3 times each.
The mixture was repeated several times, and then graphitized under the same conditions as in Example 1 to obtain a carbon fiber-reinforced carbon composite material as a final product.

この最終製品について、実施例1と同様に嵩密度の測定
、常温三点曲げ試験及び300°C5時間加熱後の常温
三点曲げ試験を行った。結果を第1表に示す。
This final product was subjected to bulk density measurement, three-point bending test at room temperature, and three-point bending test at room temperature after heating at 300° C. for 5 hours in the same manner as in Example 1. The results are shown in Table 1.

第  1  表 せることにより、高強度でかつ耐熱性に優れた炭素繊維
強化炭素複合材料を得ることができる。
By being able to express the following, a carbon fiber-reinforced carbon composite material having high strength and excellent heat resistance can be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)炭素繊維で強化した炭素材原料の成形体を焼成し
たのち、液状ポリイミド樹脂を含浸し硬化することを特
徴とする炭素繊維強化炭素複合材料の製造方法。
(1) A method for producing a carbon fiber-reinforced carbon composite material, which comprises firing a molded body of a carbon material material reinforced with carbon fibers, and then impregnating and curing it with a liquid polyimide resin.
(2)炭素繊維で強化した炭素材原料の成形体を焼成し
たのち、ピッチ又は液状の熱硬化性樹脂を含浸して再焼
成する操作を1ないし2回以上行い、次いで液状ポリイ
ミド樹脂を含浸し硬化することを特徴とする炭素繊維強
化炭素複合材料の製造方法。
(2) After firing a molded body of carbon material reinforced with carbon fiber, impregnating it with pitch or liquid thermosetting resin and re-firing it one or more times, and then impregnating it with liquid polyimide resin. A method for producing a carbon fiber-reinforced carbon composite material characterized by curing.
JP2056644A 1990-03-09 1990-03-09 Production of carbon fiber-reinforced carbon composite material Pending JPH03261661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2056644A JPH03261661A (en) 1990-03-09 1990-03-09 Production of carbon fiber-reinforced carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2056644A JPH03261661A (en) 1990-03-09 1990-03-09 Production of carbon fiber-reinforced carbon composite material

Publications (1)

Publication Number Publication Date
JPH03261661A true JPH03261661A (en) 1991-11-21

Family

ID=13033053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2056644A Pending JPH03261661A (en) 1990-03-09 1990-03-09 Production of carbon fiber-reinforced carbon composite material

Country Status (1)

Country Link
JP (1) JPH03261661A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277086A (en) * 2006-04-11 2007-10-25 Sgl Carbon Ag Process for impregnation of carbon fiber bundle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277086A (en) * 2006-04-11 2007-10-25 Sgl Carbon Ag Process for impregnation of carbon fiber bundle

Similar Documents

Publication Publication Date Title
US6699427B2 (en) Manufacture of carbon/carbon composites by hot pressing
EP0335736B1 (en) Process for producing carbon/carbon composites
JPH03150266A (en) Production of carbon/carbon composite material
JP2571251B2 (en) Carbon fiber reinforced carbon composite material for friction material
JPH03261661A (en) Production of carbon fiber-reinforced carbon composite material
JP2002255664A (en) C/c composite material and production method therefor
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JPS62212262A (en) Manufacture of carbon fiber reinforced carbon material
JPS63112464A (en) Manufacture of carbon fiber reinforced carbon material
JPH0551257A (en) Production of carbon fiber reinforced carbon material
KR970007019B1 (en) Process for the preparation of carbon fiber reinforced carbon composite using pitch
JP2762461B2 (en) Method for producing carbon fiber reinforced carbon composite
JP2566555B2 (en) Method for producing carbon fiber reinforced carbon composite material
JPH0426547A (en) Production of carbon reinforced carbon composite material
JPH01145375A (en) Production of carbon fiber-reinforced carbonaceous composite
JP3220983B2 (en) Method for producing carbon fiber reinforced carbon material
JPH0352426B2 (en)
JP2529148B2 (en) Method for manufacturing carbon / carbon composite material
JPH04243970A (en) Production of carbon/carbon composite material
JP2000169250A (en) Production of carbon fiber reinforced carbon composite material
JPH03197361A (en) Production of carbon fiber-reinforced carbon composite material
JP2003012374A (en) Method of manufacturing carbon fiber reinforcing carbon material
JPS63274664A (en) Disk brake made by using carbon fiber reinforced carbon material
JPH04182355A (en) Carbon fiber reinforced carbon composite material and its production
JPH06157138A (en) Production of carbon fiber reinforced carbon composite material