JPH034455A - Solid electrolyte type fuel cell module - Google Patents

Solid electrolyte type fuel cell module

Info

Publication number
JPH034455A
JPH034455A JP1137704A JP13770489A JPH034455A JP H034455 A JPH034455 A JP H034455A JP 1137704 A JP1137704 A JP 1137704A JP 13770489 A JP13770489 A JP 13770489A JP H034455 A JPH034455 A JP H034455A
Authority
JP
Japan
Prior art keywords
fuel cell
solid oxide
oxide fuel
solid electrolyte
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1137704A
Other languages
Japanese (ja)
Other versions
JP2933227B2 (en
Inventor
Hiroshi Yamanouchi
山之内 宏
Ryuichi Okiayu
置鮎 隆一
Shotaro Yoshida
昭太郎 吉田
Shoichi Hasegawa
正一 長谷川
Masayuki Tan
丹 正之
Masakatsu Nagata
雅克 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1137704A priority Critical patent/JP2933227B2/en
Publication of JPH034455A publication Critical patent/JPH034455A/en
Application granted granted Critical
Publication of JP2933227B2 publication Critical patent/JP2933227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To equalize the temperature distribution inside a module and to improve power generating properties by covering the outsides of, at least, both ends of solid electrolyte type fuel cell stacks, being arranged in circular shape, with outer spacer tubes having rigidity. CONSTITUTION:The ends, where respective output terminal layers 28 are provided, of solid electrolyte type fuel cell stacks 20 in each of which plural fuel cell simples 25 are connected in series around a supporting pipe 21, are trued up on the same side, and the output terminal layers formed on one end side are connected with each other. And the fellow second electrode layers of fuel cell simples on the other side are connected with each other, and further when outer spacer tubes 30, having rigidity, are set around the outsides, the fellow solid electrolyte type fuel cell stacks 20 arranged in circular shape are connected in parallel, and the solid electrolyte type fuel cell stacks 20 small in mechanical strength are protected effectively. Hereby, the outer spacer tube 30 transmits heat between solid electrolyte type fuel cell stacks, and the heat on the entire solid electrolyte type battery module is equalized, and power generation property is improved.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、1本の円筒状支持管の外周に、複数の燃料
電池単体を、直列に接続した状態に形成した固体電解質
型燃料電池スタックを、複数本結束して並列または直列
に接続した固体電解質型燃料電池モジュールに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention provides a solid oxide fuel cell stack in which a plurality of individual fuel cells are connected in series around the outer periphery of a single cylindrical support tube. This invention relates to solid oxide fuel cell modules in which a plurality of solid oxide fuel cell modules are bundled and connected in parallel or series.

従来の技術 固体電解質型燃料電池を構成する各燃料電池単体から生
じる電圧は約1■と低く実用的でないため、複数の燃料
電池単体を組合ぜた燃料電池モジュールとして使用する
のが一般的である。
Conventional technology The voltage generated from each individual fuel cell that makes up a solid oxide fuel cell is as low as approximately 1 µm, which is impractical, so it is common to use a fuel cell module that is a combination of multiple individual fuel cells. .

第5図は従来の燃料電池モジュールの一例を示すもので
、この固体電解質型燃料電池モジュール1は、多孔質で
円筒状の支持管2の外周に、第1電極層3、固体電解質
層4、第2電極層5の順に積層するとともに、第2電極
層5と固体電解質層4とに、第1電極層3まで達する1
本のスリットを軸線方向に形成し、このスリット内にイ
ンターコネクタ6を形成した燃料電池単体7(第6図参
照)を、2枚の電極板8.8間に複数本挟持するととも
に、各燃料電池単体7の相互間および各燃料電池単体7
と雨雪極板8,9間を電気的に接続して、直並列接続状
態に構成されている。
FIG. 5 shows an example of a conventional fuel cell module, in which a first electrode layer 3, a solid electrolyte layer 4, a first electrode layer 3, a solid electrolyte layer 4, The second electrode layer 5 is laminated in this order, and the second electrode layer 5 and the solid electrolyte layer 4 are layered with a layer 1 that reaches up to the first electrode layer 3.
A plurality of single fuel cells 7 (see Fig. 6), in which slits are formed in the axial direction and interconnectors 6 are formed in the slits, are sandwiched between two electrode plates 8.8, and each fuel Between battery units 7 and each fuel cell unit 7
The rain and snow electrode plates 8 and 9 are electrically connected to form a series-parallel connection state.

また、第7図は従来の燃料電池モジュールの別の例を示
すもので、この固体電解質型燃料電池モジュール11は
、円筒形の固体電解質12の内側に第1電極層13を、
外側に第2電極層14をそれぞれ形成するとともに、第
2電極層14と固体電解質層12とに、第1電極層13
まで達する1本のスリットを軸線方向に形成し、このス
リット内にインターコネクタ15をそれぞれ形成した複
数本の燃料電池単体16(第8図参照)を、同心円筒状
に設けられた内部集電子管17と外部集電子管18との
間に、それぞれのインターコネクタ15の先端を内部集
電子管17の外周に接続するとともに、それぞれの第2
電極層14を外部集電子管18の内周に接続して、並列
接続状態に構成されている。
FIG. 7 shows another example of a conventional fuel cell module, and this solid electrolyte fuel cell module 11 has a first electrode layer 13 inside a cylindrical solid electrolyte 12.
A second electrode layer 14 is formed on the outside, and a first electrode layer 13 is formed on the second electrode layer 14 and the solid electrolyte layer 12.
A plurality of single fuel cells 16 (see FIG. 8) each having a single slit extending in the axial direction and an interconnector 15 formed in each slit are connected to an internal current collector tube 17 provided in a concentric cylindrical shape. and the external current collector tube 18, the tip of each interconnector 15 is connected to the outer periphery of the internal current collector tube 17, and each second
The electrode layer 14 is connected to the inner periphery of the external current collector tube 18 so as to be connected in parallel.

発明が解決しようとする課題 しかし、前述した従来の燃料電池モジュールののうち、
前者の固体電解質型燃料電池モジュール1は、多孔質の
支持管2の外周に積層形成しであるため機械的強度が小
さく、また2枚の電極板8゜9間に、二段あるいはそれ
以上に重ねた状態で保持されているため不安定で、振動
や衝撃等によって崩れたり破損ししたりし易いとともに
、多段に積み重ねられないため広いスペースを必要とし
、また、各燃料電池単体7間の熱伝達が行われにくく、
固体電解質型燃料電池モジュール1内の温度分布にバラ
ツキが生じ、その結釆、発電能力が低下するとともに、
各燃料電池単体7の寿命が短くなる等の問題があった。
Problems to be Solved by the Invention However, among the conventional fuel cell modules mentioned above,
The former solid oxide fuel cell module 1 has low mechanical strength because it is laminated around the outer periphery of a porous support tube 2, and has two or more layers between two electrode plates 8°9. Because they are held in a stacked state, they are unstable and easily collapse or break due to vibrations or shocks. They also require a large space because they cannot be stacked in multiple tiers, and the heat generated between each fuel cell unit 7 increases. Communication is difficult,
Variations occur in the temperature distribution within the solid oxide fuel cell module 1, and as a result, the power generation capacity decreases, and
There were problems such as a shortened lifespan of each fuel cell unit 7.

また後者の固体電解質型燃料電池モジュール11の場合
は、各燃料電池単体16が剛性を有する外部i電子管1
8の内側に収容されて、保護されているため衝撃等に強
いが、各燃料電池単体16を並列接続しているため、固
体電解質型燃料電池モジュール11全体の出力電圧は約
1■と低く、一方、出力電流は100〜300Aに達す
るため、内部集電子管17と外部集電子管16を流れる
際の電気抵抗による損失が大きくなるという問題があっ
た。
In the case of the latter solid oxide fuel cell module 11, each fuel cell unit 16 has a rigid external i-electron tube 1.
Since the solid oxide fuel cell module 11 is housed and protected inside the solid oxide fuel cell module 8, it is strong against shocks, etc. However, since each fuel cell unit 16 is connected in parallel, the output voltage of the solid oxide fuel cell module 11 as a whole is as low as about 1. On the other hand, since the output current reaches 100 to 300 A, there is a problem in that loss due to electrical resistance when flowing through the internal current collector tube 17 and the external current collector tube 16 increases.

この発明は上記事情に鑑みなされたもので、充分な機械
的強度を有し、かつモジュール内の温度分布を均一化し
て発電特性を向上させるとともに、高電圧・小電流型の
出力が得られる固体電解質型燃料電池モジュールの提供
することを目的としている。
This invention was made in view of the above circumstances, and is a solid state material that has sufficient mechanical strength, improves power generation characteristics by uniformizing temperature distribution within the module, and provides high voltage and small current output. The purpose is to provide an electrolyte fuel cell module.

課題を解決するための手段 この発明は、上記の目的を達成するために、円筒状の支
持管の外周に、内側から第1電極層、固体電解質層、第
2電極層の順に積層した燃料電池単体を、軸方向に所定
の長さでかつ隣接する燃料電池単体間に間隙を設けて複
数形成し、かつ各燃料電池単体間を直列に接続するとと
もに、支持管の少くとも一方の端部に、その端部に形成
された燃料電池単体の第1電極層に導通する出力端子を
それぞれ設けた複数本の固体電解質型燃料電池スタック
を、それぞれの出力端子を周側端で、かつ最外側に位置
させて環状に配列した状態で、これら固体電解質型燃料
電池スタックの少なくとも両端部の外側を、剛性を有す
る外部スペーサ管で覆った構造としたことを特徴として
いる。
Means for Solving the Problems In order to achieve the above object, the present invention provides a fuel cell in which a first electrode layer, a solid electrolyte layer, and a second electrode layer are laminated in this order from the inside on the outer periphery of a cylindrical support tube. A plurality of fuel cell units are formed with a predetermined length in the axial direction and a gap is provided between adjacent fuel cell units, and each fuel cell unit is connected in series, and at least one end of the support tube is connected. , a plurality of solid oxide fuel cell stacks each having an output terminal that is electrically connected to the first electrode layer of a single fuel cell formed at the end thereof, each of which is provided with an output terminal at the circumferential end and at the outermost side. These solid oxide fuel cell stacks are characterized by having a structure in which the outer sides of at least both ends of the solid oxide fuel cell stacks are covered with rigid external spacer tubes when the solid oxide fuel cell stacks are arranged in a ring shape.

作   用 上記のように、複数の燃料電池単体を、支持管の外周に
直列に接続した状態に形成した固体電解質型燃料電池ス
タックを、それぞれの出力端子層が設けられた端部を同
側に揃え、この各固体電解質型燃料電池スタックの一端
側に形成した出力端子層を相互に接続するとともに、各
固体電解質型燃料電池スタックの他端側の燃料電池単体
の第2電極層同士を接続し、さらに外側に剛性を有する
外部スペーサ管を被せれば、環状に配列した固体電解質
型燃料電池スタック同士を並列に接続され、かつ機械的
強度の小さい固体電解質型燃料電池スタックが効果的に
保護された固体電解質型燃料電池モジュールとなる。ま
た、各固体電解質型燃料電池スタックを、その出力端子
層が形成された端部側が交互に並ぶようにすれば、隣接
する固体電解質型燃料電池スタックの一方の出力端子層
が、他方固体電解質型燃料電池スタックの端部の燃料電
池単体の第2電極層に当接して、直列に接続した固体電
解質型燃料電池モジュールとなる。
Function As described above, a solid oxide fuel cell stack formed by connecting a plurality of individual fuel cells in series on the outer periphery of a support tube is placed so that the ends where the respective output terminal layers are provided are on the same side. The output terminal layers formed at one end of each solid oxide fuel cell stack are connected to each other, and the second electrode layers of the individual fuel cells at the other end of each solid oxide fuel cell stack are connected to each other. Furthermore, by covering the outside with a rigid external spacer tube, the solid oxide fuel cell stacks arranged in an annular manner are connected in parallel, and the solid oxide fuel cell stacks, which have low mechanical strength, can be effectively protected. This is a solid oxide fuel cell module. Furthermore, if the solid oxide fuel cell stacks are arranged so that the end sides on which the output terminal layers are formed are arranged alternately, the output terminal layer of one of the adjacent solid oxide fuel cell stacks is The solid oxide fuel cell modules are connected in series by contacting the second electrode layer of the single fuel cell at the end of the fuel cell stack.

さらに、並列に接続した固体電解質型燃料電池モジュー
ル同士の接続または直列に接続した固体電解質型燃料電
池モジュール同士の接続により、所望の高電圧および高
出力が容易に得られる。
Furthermore, desired high voltage and high output can be easily obtained by connecting solid oxide fuel cell modules connected in parallel or by connecting solid oxide fuel cell modules connected in series.

また、電気的に接続した固体電解質型燃料電池スタック
の外側に外部スペーサ管を被せたので、この外部スペー
サ管が固体電解質型燃料電池スタック間の熱伝達を行な
って、固体電解質型燃料電池モジュール全体の均熱化が
図れ、発電特性が向上する。
In addition, since an external spacer tube is placed on the outside of the electrically connected solid oxide fuel cell stack, this external spacer tube transfers heat between the solid oxide fuel cell stacks, and the entire solid oxide fuel cell module is This will improve the power generation characteristics.

実  施  例 以下、この発明の一実施例を第1図ないし第4図に基づ
いて説明する。
Embodiment Hereinafter, an embodiment of the present invention will be explained based on FIGS. 1 to 4.

固体電解質型燃料電池モジュール19は、6本の固体電
解質型燃料電池スタック20より構成されており、各固
体電解質型燃料電池スタック20は、1本の長尺な円筒
状の支持管21の外周に、内側から空気電極層22、固
体電解質層23、燃料電極層24の順に積層した燃料電
池単体25を、支持1!21の軸方向に所定の長さでか
つ隣接する燃R電池単体25.25間に所定の間隙を設
けて複数形成するとともに、軸方向に互いに隣接する各
燃料電池単体25のうちの一方の燃料電池単体25の空
気電極層22と、他方の燃料電池単体25の燃料電極層
24とを接続するようにインターコネクタ26が支持管
21の外周の各間隙内に形成されて、各燃料電池単体2
5を直列に接続して1本の棒状に形成されている。
The solid oxide fuel cell module 19 is composed of six solid oxide fuel cell stacks 20, and each solid oxide fuel cell stack 20 is attached to the outer periphery of one long cylindrical support tube 21. , a fuel cell unit 25 in which an air electrode layer 22, a solid electrolyte layer 23, and a fuel electrode layer 24 are stacked in this order from the inside is attached to an adjacent fuel cell unit 25.25 at a predetermined length in the axial direction of the support 1!21. The air electrode layer 22 of one fuel cell unit 25 and the fuel electrode layer of the other fuel cell unit 25 are formed in plurality with a predetermined gap therebetween, and are adjacent to each other in the axial direction. An interconnector 26 is formed in each gap on the outer periphery of the support tube 21 so as to connect each fuel cell unit 24.
5 are connected in series to form one rod shape.

また前記支持管21には、機械的強度が比較的大きく、
またガス透過性に優れるとともに軽量な、例えばアルミ
ナやカルシア安定化ジルコニア(C8z)等の多孔質管
が用いられており、この支持管21の外周に形成された
各燃料電池単体25の最内層の空気電極1122は、高
温酸化雰囲気中で化学的に安定するとともに、高い導電
性でかつガス透過性に優れた、例えばペロブスカイト型
ランタン系複合酸化物で形成されている。また前記固体
電解質層23には、酸素イオンの選択透過性を有し、ガ
スを透過させない緻密構造の、例えばイツトリア安定化
ジルコニア(YSZ)等が使用され、さらに、最外側の
燃料電極層24は、多孔質で電子導電性に優れた、例え
ばニッケルあるいはニッケルとジルコニアとのサーメッ
ト等から形成されている。また前記インターコネクタ2
6は、酸化還元雰囲気中で化学的に安定するとともに、
高い電子導電性を有する、ニッケル系合金やペロブスカ
イト型ランタン系複合酸化物(例えば1aCrOa>等
で形成されている。
Further, the support tube 21 has relatively high mechanical strength.
In addition, a porous tube made of alumina or calcia stabilized zirconia (C8z), which is lightweight and has excellent gas permeability, is used. The air electrode 1122 is made of, for example, a perovskite-type lanthanum-based composite oxide that is chemically stable in a high-temperature oxidizing atmosphere, has high conductivity, and has excellent gas permeability. Further, the solid electrolyte layer 23 is made of, for example, yttoria-stabilized zirconia (YSZ), which has a dense structure that has selective permeability for oxygen ions and does not allow gas to pass through. It is made of porous material with excellent electronic conductivity, such as cermet of nickel or nickel and zirconia. In addition, the interconnector 2
6 is chemically stable in a redox atmosphere, and
It is formed of a nickel-based alloy or perovskite-type lanthanum-based composite oxide (for example, 1aCrOa), which has high electronic conductivity.

この固体電解質型燃料電池スタック20の一端側(第1
図において左端側)に形成された燃料電池単体25には
、最外側の燃料電極層24と中間の固体電解質層26と
を削って、最内層の空気電極1122の表面に達する深
さで、かつ支持管21の軸線と平行な方向に一定の幅で
延びるスリット27が形成されており、このスリット2
7内の前記空気電極層22上には、前記インターコネク
タ26とほぼ同様の素材からなる出力端子層28が、燃
料電極層24と非接触状態でかつその電池外周側端部(
第2図において上端)が、最外層の燃料電極層24の外
周面と同じ高さか、またはこれより若干外側に突出する
高さに形成されている。
One end side (first side) of this solid oxide fuel cell stack 20
In the fuel cell unit 25 formed on the left side in the figure, the outermost fuel electrode layer 24 and the intermediate solid electrolyte layer 26 are cut to a depth that reaches the surface of the innermost layer air electrode 1122. A slit 27 extending with a constant width in a direction parallel to the axis of the support tube 21 is formed.
On the air electrode layer 22 in 7, an output terminal layer 28 made of substantially the same material as the interconnector 26 is disposed in a non-contact state with the fuel electrode layer 24 and at the outer circumferential end of the cell (
The upper end (in FIG. 2) is formed at the same height as the outer circumferential surface of the outermost fuel electrode layer 24, or at a height slightly protruding outward from this.

そして、このように形成された6本の固体電解質型燃料
電池スタック20を、それぞれ出力端子層28が形成さ
れた側を、同側端(第1図において左側端)に揃えると
ともに、はぼ同じ直径の内部スペーサ管29の絶縁コー
ティング29aされた外周面に沿わせて環状に配設し、
さらに、それぞれの出力端子1128が環状に配設され
た各固体電解質型燃料電池スタック20の最も外側、す
なわち固体電解質型燃料電池スタック20の中心を通る
線上で外側となるように位置決めされている。
Then, the six solid oxide fuel cell stacks 20 formed in this manner are aligned so that the side on which the output terminal layer 28 is formed is aligned with the same side end (the left end in FIG. Disposed in an annular manner along the outer peripheral surface of the insulating coating 29a of the internal spacer tube 29 having the same diameter,
Further, each output terminal 1128 is positioned at the outermost side of each annularly arranged solid oxide fuel cell stack 20, that is, at the outer side on a line passing through the center of the solid oxide fuel cell stack 20.

そして、環状に配設された6本の固体電解質型燃料電池
スタック20の前記出力端子128が形成されているf
!!J(第1図において左側)の端部外周には、導電性
および剛性を有し、かつ所定の幅に形成された陽極外部
スペーサ管30が1ill!装されて、これら6本の固
体電解質型燃料電池スタック20を結束しており、また
各固体電解質型燃料電池スタック20の出力端子層28
は、ニッケルフェルト製の緩衝材31を介してそれぞれ
陽極外部スペーサ管30の内周に電気的に接続されてい
る。
Then, the output terminals 128 of the six solid oxide fuel cell stacks 20 arranged in an annular manner are formed.
! ! On the outer periphery of the end of J (on the left side in FIG. 1), there is an anode external spacer tube 30 having conductivity and rigidity and formed to a predetermined width. The six solid oxide fuel cell stacks 20 are bound together, and the output terminal layer 28 of each solid oxide fuel cell stack 20 is
are electrically connected to the inner periphery of the anode outer spacer tube 30 via a buffer material 31 made of nickel felt.

また、6本の固体電解質型燃料電池スタック20の他方
の端部の外周には、導電性および剛性を有する陰極外部
スペーサ管32が嵌装されており、その端部に形成され
た各燃料電池単体25の燃料電極24が、ニッケルフェ
ルト製のa!衝材(図示せず)を介してそれぞれ陰極外
部スペーサ管32の内周に電気的に接続されて6本の固
体電解質型燃料電池スタック20を結束している。
Further, a cathode external spacer tube 32 having conductivity and rigidity is fitted around the outer periphery of the other end of the six solid oxide fuel cell stacks 20, and each fuel cell formed at the end thereof The fuel electrode 24 of the single unit 25 is made of nickel felt. Each of the six solid oxide fuel cell stacks 20 is electrically connected to the inner periphery of the cathode outer spacer tube 32 via a shock absorber (not shown) to bind the six solid oxide fuel cell stacks 20 together.

次に、上記のように構成されるこの実施例の作用を説明
する。
Next, the operation of this embodiment configured as described above will be explained.

6本の固体電解質型燃料電池スタック20を結束した固
体電解質型燃料電池モジュール19は、ケーシング(図
示せず)内に収納された、状態で使用され、各固体電解
質型燃料電池スタック20の円筒状の支持管21の内側
の空間にMIAあるいは空気が供給されるとともに、直
列に接続された各燃料電池単体25の周囲のケーシング
内の空間に水素(H2)等の燃料ガスが供給されると、
各燃料電池単体25毎に、それぞれ固体電解質23を挟
んだ両側の雰囲気の酸素濃度を平衡させるように、固体
電解質層23を介して酸化・還元反応が起きて電力が生
じる。そして各固体電解質型燃料電池スタック20のそ
れぞれの燃料電池単体26に生じた電力は、各インター
コネクタ26を介して直列に接続されているため、一端
の燃料電池単体25の空気電極層22に接続した出力端
子層28と、他端の燃料電池単体25の燃料電極層24
とが、各固体電解質型燃料電池スタック20の陽極と陰
極となり、直列に接続されて形成されている燃料電池単
体25の数だけ加算された電圧として出力され、さらに
、6本の固体電解質型燃料電池スタック20の出力は、
各固体電解質型燃料電池スタック20の一方の端部の出
力端子層28同士を接続している陽極外部スペーサ30
と、他方の端部の燃料電極層24同士を接続している陰
極外部スペーサ管32とにより並列接続され、この陽極
外部スペーサ管30と陰極外部スペーサ管32との間で
取出すことができる。また、所望の電圧および電流を得
るために必要な数だけ固体電解質型燃料電池モジュール
19を容易に直並列接続することができる。また、固体
電解質型燃料電池モジュール19の内部スペーサ管29
の一端(第1図において右端)の絶縁コーティング29
aを除去しておき、各固体電解質型燃料電池スタック2
0の対応する端部の燃料電極24と電気的に接続させれ
ば、前記陽極外部スペーサ管30と内部スペーサ管29
との間で71IA流を取出すこともできる。
A solid oxide fuel cell module 19 in which six solid oxide fuel cell stacks 20 are bundled is used housed in a casing (not shown), and each solid oxide fuel cell stack 20 has a cylindrical shape. When MIA or air is supplied to the space inside the support tube 21, and fuel gas such as hydrogen (H2) is supplied to the space inside the casing around each fuel cell unit 25 connected in series.
For each fuel cell unit 25, an oxidation/reduction reaction occurs through the solid electrolyte layer 23 to generate electric power so as to balance the oxygen concentration in the atmosphere on both sides of the solid electrolyte 23. Since the electric power generated in each fuel cell unit 26 of each solid oxide fuel cell stack 20 is connected in series via each interconnector 26, it is connected to the air electrode layer 22 of the fuel cell unit 25 at one end. the output terminal layer 28 and the fuel electrode layer 24 of the fuel cell unit 25 at the other end.
are the anode and cathode of each solid oxide fuel cell stack 20, and are output as a voltage that is added by the number of fuel cells 25 connected in series, and The output of the battery stack 20 is
Anode external spacer 30 connecting output terminal layers 28 at one end of each solid oxide fuel cell stack 20
and a cathode outer spacer tube 32 connecting the fuel electrode layers 24 at the other end, and can be taken out between the anode outer spacer tube 30 and the cathode outer spacer tube 32. Moreover, the solid oxide fuel cell modules 19 can be easily connected in series and parallel as many as necessary to obtain the desired voltage and current. In addition, the internal spacer pipe 29 of the solid oxide fuel cell module 19
Insulating coating 29 on one end (right end in Figure 1)
a, and each solid oxide fuel cell stack 2
0, the anode outer spacer tube 30 and the inner spacer tube 29 are electrically connected to the fuel electrode 24 at the corresponding end.
It is also possible to take out the 71IA flow between the two.

また、上記実施例においては、各固体74解賀型燃料電
池スタツク20の固体電解質23の内側に空気電極層2
2を、外側に燃料電極1124を形成した固体電解質型
燃料電池モジュール19の場合について説明したが、固
体電解質の内側に燃料電極を、外側に空気電極を形成し
た固体電解質型燃料電池スタックからなる固体電解質型
燃料電池モジュールの場合にも同様に実施することがで
きる。
Further, in the above embodiment, an air electrode layer 2 is provided inside the solid electrolyte 23 of each solid 74-type fuel cell stack 20.
2 was explained for the case of the solid oxide fuel cell module 19 in which the fuel electrode 1124 was formed on the outside. The same method can be applied to an electrolyte fuel cell module.

発明の詳細 な説明したようにこの発明は、円筒状の支持管の外周に
、内側から第1電極層、固体電解質層、第2電極層の順
に積層した燃料電池単体を、軸方向に所定の長さでかつ
隣接する燃料電池単体間に間隙を設けて複数形成し、か
つ各゛燃料電池単体間を直列に接続するとともに、支持
管の少くとも一方の端部に、その端部に形成された燃料
電池単体の第1電極層に導通する出力端子をそれぞれ設
けた複数本の固体電解質型燃料電池スタックを、それぞ
れの出力端子を同側端で、かつ最外側に位置させて環状
に配列した状態で、これら固体電解質型燃料電池スタッ
クの少なくとも両端部の外側を、剛性を有する外部スペ
ーサ管で覆った構造としたので、固体電解質型燃料電池
スタックを容易に組合せて、剛性の高い固体電解質型燃
料電池モジュールを構成することができるとともに、固
体電解質型燃料電池モジュール同士の接続も容易となり
、所望の電圧および電流を容易に得ることができる。
DETAILED DESCRIPTION OF THE INVENTION As described above, the present invention provides a single fuel cell in which a first electrode layer, a solid electrolyte layer, and a second electrode layer are stacked in this order from the inside on the outer periphery of a cylindrical support tube. A plurality of tubes are formed in length with gaps between adjacent fuel cell units, and each fuel cell unit is connected in series, and at least one end of the support tube is formed at the end thereof. A plurality of solid oxide fuel cell stacks each having an output terminal electrically connected to the first electrode layer of a single fuel cell were arranged in a ring with the output terminals located at the same end and outermost. Since the outside of at least both ends of these solid oxide fuel cell stacks is covered with rigid external spacer tubes, solid oxide fuel cell stacks can be easily combined to form highly rigid solid oxide fuel cell stacks. A fuel cell module can be constructed, solid oxide fuel cell modules can be easily connected to each other, and desired voltage and current can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図はこの発明の一実施例を示すもので
、第1図は固体電解質型燃料電池モジュールの斜視図、
第2図は同じく断面正面図、第3図は固体電解質型撚′
n電池モジュールを構成している固体電解質型燃料電池
スタックの斜視図、第4図は固体電解質型燃料電池スタ
ックの断面側面図、第5図ないし第8図は従来例を示し
、第5図は従来の固体電解質型燃料電池モジュールの一
例の断面正面図、第6図はそれに使用されている燃料電
池単体の斜視図、第7図は別の従来の固体電解質型燃料
電池モジュールの断面正面図、第8図はそれに使用され
ている燃料電池単体の斜視図である。 19・・・固体電解質型燃料電池モジュール、 20・
・・固体電解質型燃料電池スタック、 21・・・支持
管、 22・・・空気電極層、 23・・・固体電解質
層、24・・・燃料電極層、 25・・・燃料電池単体
、26・・・インターコネクタ、 28・・・出力端子
層、29・・・内部スペーサ管、 29a・・・絶縁コ
ーティング、 30・・・陽極外部スペーサ管、 32
・・・陰極外部スペーサ管。 第3図 第4図 フへ 第5図
1 to 4 show an embodiment of the present invention, in which FIG. 1 is a perspective view of a solid oxide fuel cell module;
Figure 2 is a cross-sectional front view, and Figure 3 is a solid electrolyte type twisted
FIG. 4 is a perspective view of a solid oxide fuel cell stack constituting an n-battery module, FIG. 4 is a cross-sectional side view of the solid oxide fuel cell stack, FIGS. 5 to 8 show conventional examples, and FIG. A sectional front view of an example of a conventional solid oxide fuel cell module, FIG. 6 is a perspective view of a single fuel cell used therein, and FIG. 7 is a sectional front view of another conventional solid oxide fuel cell module. FIG. 8 is a perspective view of a single fuel cell used therein. 19...Solid electrolyte fuel cell module, 20.
... Solid electrolyte fuel cell stack, 21... Support tube, 22... Air electrode layer, 23... Solid electrolyte layer, 24... Fuel electrode layer, 25... Fuel cell unit, 26... ...Interconnector, 28...Output terminal layer, 29...Inner spacer tube, 29a...Insulating coating, 30...Anode outer spacer tube, 32
...Cathode external spacer tube. Figure 3 Figure 4 Go to Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)円筒状の支持管の外周に、内側から第1電極層、
固体電解質層、第2電極層の順に積層した燃料電池単体
を、軸方向に所定の長さでかつ隣接する燃料電池単体間
に間隙を設けて複数形成し、かつ各燃料電池単体間を直
列に接続するとともに、支持管の少くとも一方の端部に
、その端部に形成された燃料電池単体の第1電極層に導
通する出力端子をそれぞれ設けた複数本の固体電解質型
燃料電池スタックを、それぞれの出力端子を同側端で、
かつ最外側に位置させて環状に配列した状態で、これら
固体電解質型燃料電池スタックの少なくとも両端部の外
側を、剛性を有する外部スペーサ管で覆った構造とした
ことを特徴とする固体電解質型燃料電池モジュール。
(1) On the outer periphery of the cylindrical support tube, from the inside, a first electrode layer,
A plurality of fuel cells each having a solid electrolyte layer and a second electrode layer stacked in this order are formed with a predetermined length in the axial direction with gaps between adjacent fuel cells, and the fuel cells are connected in series. A plurality of solid oxide fuel cell stacks each having an output terminal connected thereto and connected to at least one end of the support tube and connected to a first electrode layer of a single fuel cell formed at that end, Connect each output terminal at the same end,
A solid oxide fuel cell stack is arranged at the outermost side in a ring shape, and at least the outside of both ends of the solid oxide fuel cell stack is covered with a rigid external spacer tube. battery module.
(2)前記外部スペーサ管を導電性材料で形成するとと
もに長さ方向に二分し、この各外部スペーサ管で、環状
に配列した複数本の固体電解質型燃料電池スタックの両
端外側を別々に結束して並列に接続したことを特徴とす
る請求項1記載の固体電解質型燃料電池モジュール。
(2) The external spacer tube is made of a conductive material and divided into two in the length direction, and each external spacer tube is used to separately bind the outer ends of a plurality of solid oxide fuel cell stacks arranged in an annular shape. 2. The solid oxide fuel cell module according to claim 1, wherein the solid oxide fuel cell module is connected in parallel.
(3)前記固体電解質型燃料電池スタックは、支持管の
一方の端部に形成された燃料電池単体に、その表面から
第1電極層まで達する深さのスリットを設けてこのスリ
ット内の第1電極層上に出力端子層が形成されているこ
とを特徴とする請求項1または2記載の固体電解質型燃
料電池モジュール。
(3) In the solid oxide fuel cell stack, a slit with a depth reaching from the surface to the first electrode layer is provided in the fuel cell unit formed at one end of the support tube, and the first electrode layer in the slit is 3. The solid oxide fuel cell module according to claim 1, further comprising an output terminal layer formed on the electrode layer.
(4)前記複数本の固体電解質型燃料電池スタックが、
中空円筒状の内部スペーサ管の外周に環状に配設されて
いることを特徴とする請求項1ないし3のいずれかに記
載の固体電解質型燃料電池モジュール。
(4) The plurality of solid oxide fuel cell stacks include:
4. The solid oxide fuel cell module according to claim 1, wherein the solid oxide fuel cell module is arranged annularly around the outer periphery of a hollow cylindrical internal spacer tube.
JP1137704A 1989-05-31 1989-05-31 Solid oxide fuel cell module Expired - Fee Related JP2933227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1137704A JP2933227B2 (en) 1989-05-31 1989-05-31 Solid oxide fuel cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1137704A JP2933227B2 (en) 1989-05-31 1989-05-31 Solid oxide fuel cell module

Publications (2)

Publication Number Publication Date
JPH034455A true JPH034455A (en) 1991-01-10
JP2933227B2 JP2933227B2 (en) 1999-08-09

Family

ID=15204871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1137704A Expired - Fee Related JP2933227B2 (en) 1989-05-31 1989-05-31 Solid oxide fuel cell module

Country Status (1)

Country Link
JP (1) JP2933227B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289249A (en) * 2001-03-22 2002-10-04 National Institute Of Advanced Industrial & Technology Stack structural body for solid electrolytic fuel cell
SG131762A1 (en) * 2002-07-10 2007-05-28 Gen Electric Molten hydride fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289249A (en) * 2001-03-22 2002-10-04 National Institute Of Advanced Industrial & Technology Stack structural body for solid electrolytic fuel cell
SG131762A1 (en) * 2002-07-10 2007-05-28 Gen Electric Molten hydride fuel cell

Also Published As

Publication number Publication date
JP2933227B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
US4874678A (en) Elongated solid electrolyte cell configurations and flexible connections therefor
US4791035A (en) Cell and current collector felt arrangement for solid oxide electrochemical cell combinations
JPH0159705B2 (en)
US8628891B2 (en) Interconnection of bundled solid oxide fuel cells
WO2002021621A2 (en) Tubular screen electrical connection supports for solid oxide fuel cells
JPH0850914A (en) Cylindrical layer-built fuel cell
KR100286779B1 (en) Solid oxide fuel cell generator
JP2933228B2 (en) Solid oxide fuel cell module
JP4057822B2 (en) Fuel cell, cell stack and fuel cell
JPH034455A (en) Solid electrolyte type fuel cell module
JP2816477B2 (en) Solid electrolyte fuel cell
JP2927816B2 (en) Solid oxide fuel cell stack
JP3048689B2 (en) Structure of solid oxide fuel cell module
JP3934970B2 (en) Fuel cell, cell stack and fuel cell
JP2816474B2 (en) Solid oxide fuel cell module
JP2769629B2 (en) Cylindrical solid electrolyte fuel cell
JP2816471B2 (en) Solid oxide fuel cell module
JP2799877B2 (en) Cylindrical solid electrolyte fuel cell
JP2799878B2 (en) Structure of solid oxide fuel cell
JP2843995B2 (en) Structure of solid oxide fuel cell
JPH0613089A (en) Solid electrolytic fuel cell
JP2843994B2 (en) Structure of solid oxide fuel cell
JPH05174861A (en) Structure for solid electrolyte type fuel cell module
JP2816478B2 (en) Structure of solid oxide fuel cell
JPH07201351A (en) Structure for solid electrolyte fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees