JPH0850914A - Cylindrical layer-built fuel cell - Google Patents

Cylindrical layer-built fuel cell

Info

Publication number
JPH0850914A
JPH0850914A JP6206052A JP20605294A JPH0850914A JP H0850914 A JPH0850914 A JP H0850914A JP 6206052 A JP6206052 A JP 6206052A JP 20605294 A JP20605294 A JP 20605294A JP H0850914 A JPH0850914 A JP H0850914A
Authority
JP
Japan
Prior art keywords
cell
cylindrical
fuel
cells
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6206052A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwazawa
力 岩澤
Mikiyuki Ono
幹幸 小野
Masakatsu Nagata
雅克 永田
Takenori Nakajima
武憲 中島
Satoru Yamaoka
悟 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP6206052A priority Critical patent/JPH0850914A/en
Publication of JPH0850914A publication Critical patent/JPH0850914A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements

Abstract

PURPOSE:To coaxially dispose a plurality of cylindrical cells. CONSTITUTION:Let an inner cell 21 where an fuel cell 21c is formed in either one of the inner circumferential surface or the outer circumferential surface of a cylindrical electrolyte 21a, and an air electrode 21b is formed in either of the other sides, and an outer cell 22 be coaxially disposed at a specified interval, and concurrently a space between both the cells 21 and 22 is electrically connected with each other via an elastical conductive member 25. Each cylindrical cell is planned to be increased in output and stiffness, concurrently it is made easy to manufacture, and the occurrence of damages and faulty contact because of the difference in thermal expansion is also prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、固体電解質型燃料電
池で、円筒形の単セルを、同心状に複数重ねて配設した
円筒積層型燃料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell, and a cylindrical laminated fuel cell in which a plurality of cylindrical single cells are concentrically stacked.

【0002】[0002]

【従来の技術】固体電解質型燃料電池は、例えば、酸素
イオン透過性のあるイットリア安定化ジルコニア(YS
Z)やカルシア安定化ジルコニア(CSZ)などの固体
電解質を挟んで、ペロブスカイト型ランタン系酸化物か
らなる空気電極とニッケルなどを主体とする燃料電極と
を設け、この各電極に臨ませて流される空気と燃料ガス
とを固体電解質を介して電気化学的に反応させることに
より起電力を得るものである。
2. Description of the Related Art Solid oxide fuel cells are manufactured, for example, from yttria-stabilized zirconia (YS) having oxygen ion permeability.
Z) or calcia-stabilized zirconia (CSZ), sandwiching a solid electrolyte between them, an air electrode made of a perovskite-type lanthanum-based oxide and a fuel electrode mainly made of nickel are provided, and they are made to flow facing each of these electrodes. Electromotive force is obtained by electrochemically reacting air and fuel gas via a solid electrolyte.

【0003】例えば図5は、従来の平板型燃料電池1を
示すもので、平板状の固体電解質2の一側面(図5にお
いて下面)に空気電極3を、他側面に燃料電極4をそれ
ぞれ形成した2枚の平板状単セル5,5を、両面にガス
流路となる溝を備えたガスセパレータ6を介して気密に
重ねるとともに、下側の平板状単セル5の下面と、上側
の平板状単セル5の上面とには、片面にガス流路となる
溝を備えたガスセパレータ7,7を、固体電解質2の表
面の電極3,4と気密に接するように配設して、各単セ
ル5の空気電極3に面したガスセパレータ6,7の溝は
空気が流通する酸化ガス流路8となり、また燃料電極4
に面したガスセパレータ6,7の溝は燃料ガスが流通す
る燃料ガス流路9となる。このように、ガスセパレータ
6,7によって空気電極3に接して流れる空気と、燃料
電極4に接して流れる燃料ガスとが、直接接触しないよ
うに分離されるとともに、前記単セル5の固体電解質2
を介して電気化学的に反応させることにより起電力を得
ている。そして、このように多数の平板状単セル5をガ
スセパレータ6を挟んで積層してモジュールを大型化す
ることによって、高電圧にして取り出すことができる。
For example, FIG. 5 shows a conventional flat plate type fuel cell 1, in which an air electrode 3 is formed on one side surface (a lower surface in FIG. 5) of a plate-shaped solid electrolyte 2 and a fuel electrode 4 is formed on the other side surface thereof. The two flat plate-shaped single cells 5 and 5 are airtightly stacked via a gas separator 6 having grooves on both sides to serve as gas passages, and the lower surface of the flat plate-shaped single cell 5 on the lower side and the flat plate on the upper side. Gas separators 7, 7 each having a groove serving as a gas flow path on one surface are arranged on the upper surface of the unit cell 5 so as to be in airtight contact with the electrodes 3, 4 on the surface of the solid electrolyte 2. The grooves of the gas separators 6 and 7 facing the air electrode 3 of the unit cell 5 serve as an oxidizing gas flow passage 8 through which air flows, and the fuel electrode 4
Grooves of the gas separators 6 and 7 facing to each other serve as a fuel gas passage 9 through which the fuel gas flows. Thus, the gas separators 6 and 7 separate the air flowing in contact with the air electrode 3 and the fuel gas flowing in contact with the fuel electrode 4 so as not to come into direct contact with each other, and the solid electrolyte 2 of the single cell 5 is separated.
Electromotive force is obtained by electrochemically reacting via. Then, by stacking a large number of flat plate-shaped single cells 5 with the gas separator 6 interposed therebetween to increase the size of the module, a high voltage can be taken out.

【0004】また図6は、複数の円筒型単セル15を直
・並列に接続してモジュール化した従来の円筒型燃料電
池10を示すもので、円筒型単セル15は、多孔質の支
持管11の外周に、空気電極12と固体電解質13と燃
料電極14とが内側から外側へ順に重ねて形成されてお
り、そのうちの固体電解質13と燃料電極14の一部を
削除して空気電極12の上に、耐熱性に優れたニッケル
等の金属からなるインターコネクタ16が形成されてい
る。そして、各円筒型単セル15は、母線17,17間
に、熱膨張による寸法変化を吸収可能に導通するニッケ
ルフェルト18を介して直列に接続されるとともに、隣
接する円筒型単セル15,15の外側の燃料電極14,
14の相互間をニッケルフェルト18によって導通して
並列にも接続されており、円筒型単セル15の中空部に
空気を流通させるとともに、各単セル15の燃料電極1
4が形成された外周部に燃料ガスを流通させ、固体電解
質13を介して電気化学的に反応させることにより起電
力を得ている。
FIG. 6 shows a conventional cylindrical fuel cell 10 in which a plurality of cylindrical single cells 15 are connected in series and in parallel to form a module. The cylindrical single cells 15 are porous support tubes. An air electrode 12, a solid electrolyte 13, and a fuel electrode 14 are formed on the outer periphery of the layer 11 in this order from the inner side to the outer side. Of these, a part of the solid electrolyte 13 and the fuel electrode 14 is removed to remove the air electrode 12 from the air electrode 12. An interconnector 16 made of a metal such as nickel having excellent heat resistance is formed thereon. The cylindrical unit cells 15 are connected in series between the bus bars 17 and 17 via the nickel felt 18 that conducts so as to absorb the dimensional change due to thermal expansion, and the adjacent cylindrical unit cells 15 and 15 are connected to each other. Outer fuel electrode 14,
14 are electrically connected to each other by a nickel felt 18 and are connected in parallel. Air is circulated in the hollow portion of the cylindrical single cell 15, and the fuel electrode 1 of each single cell 15 is connected.
Fuel gas is circulated in the outer peripheral portion where 4 is formed, and electromotive force is obtained by causing electrochemical reaction through the solid electrolyte 13.

【0005】[0005]

【発明が解決しようとする課題】前述した前者の従来の
平板型燃料電池1の場合は、多数の平板状単セル5を集
合させてモジュールを大型化することによって、効率良
く高電圧を得ることができるが、大型化した際の各構成
要素の強度が余り強くないため、破損し易いという問題
点があった。
In the case of the former conventional flat plate type fuel cell 1 described above, a large voltage can be efficiently obtained by assembling a large number of flat plate type single cells 5 to increase the size of the module. However, since the strength of each constituent element when the size is increased is not so strong, there is a problem that it is easily damaged.

【0006】また、後者の従来の円筒型燃料電池10の
場合は、剛性が高いためモジュール化が容易であるが、
各円筒型単セル15が独立しているため、セル抵抗が高
くなるという問題があった。
Further, in the case of the latter conventional cylindrical fuel cell 10, since the rigidity is high, modularization is easy,
Since each cylindrical single cell 15 is independent, there is a problem that the cell resistance becomes high.

【0007】この発明は上記の事情に鑑みてなされたも
ので、効率良く高電圧が得られるとともに、剛性が高
く、モジュール化等の大型化が容易な円筒積式の固体電
解質型燃料電池を提供することを目的としている。
The present invention has been made in view of the above circumstances, and provides a solid electrolyte fuel cell of a cylindrical stack type, which can efficiently obtain a high voltage, has high rigidity, and can be easily made large in size, such as modularization. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
この発明においては、円筒形に形成された固体電解質の
内周面と外周面とのいずれか一方に燃料電極を、いずれ
か他方に空気電極をそれぞれ備えるとともに、燃料ガス
を前記燃料電極に接触可能に流通させる燃料ガス流路
と、酸化ガスを前記空気電極に接触可能に流通させる酸
化ガス流路とを備えた円筒形セルの外側に、この円筒形
セルと同様にして、内側の円筒形セルに遊嵌可能に順次
大径に形成した円筒形セルを複数重ね、さらに内側の円
筒形セルとそれぞれ外側に隣接する円筒形セルとを、弾
性を有する導電性部材を介して電気的に接続したことを
特徴としている。
In order to solve the above problems, according to the present invention, a fuel electrode is provided on one of the inner peripheral surface and the outer peripheral surface of a solid electrolyte formed in a cylindrical shape, and air is provided on the other. Outside of a cylindrical cell provided with a fuel gas flow path for allowing a fuel gas to flow in contact with the fuel electrode and an oxidizing gas flow path for allowing an oxidizing gas to flow in contact with the air electrode, respectively, each having an electrode. , In the same manner as this cylindrical cell, a plurality of cylindrical cells sequentially formed with a large diameter so that they can be loosely fitted to the inner cylindrical cell are stacked, and the inner cylindrical cell and the outer cylindrical cells are adjacent to each other. It is characterized by being electrically connected via a conductive member having elasticity.

【0009】[0009]

【作用】上記のように構成することによって、円筒形に
形成された固体電解質の内周面と外周面とのいずれか一
方に空気電極を、いずれか他方に燃料電極を形成した円
筒形セルの外側に、順次外側へ遊嵌する内径となるよう
に同様にして形成された1または2以上の円筒形セルを
同心状に配設するとともに、同心状に配設された各円筒
形セルの間を、弾性を有する導電性部材を介して電気的
に接続することによって、円筒形セルを同心状に遊嵌し
た後、弾性を有する導電性部材によって電気的に接続す
るため、多重構造を容易に形成できるとともに、各円筒
形セル間に弾性を有する導電性部材が介1装されている
ため、各円筒形セル間の熱膨張差が吸収されて破損が防
止される。また1本の円筒形セルから高電圧で取り出す
ことができる。更に、複数の円筒形セルを同心状に重ね
て設けることにより剛性が高くなり、モジュール化が容
易となるとともに、設備の小型化が可能となる。
With the above structure, a cylindrical cell having a cylindrical solid electrolyte having an air electrode on one of the inner and outer peripheral surfaces and a fuel electrode on the other is formed. On the outside, one or more cylindrical cells, which are similarly formed so as to have an inner diameter that is loosely fitted to the outside in sequence, are concentrically arranged, and between the cylindrical cells arranged concentrically. Are electrically connected through a conductive member having elasticity, the cylindrical cells are loosely fitted concentrically, and then electrically connected by the conductive member having elasticity, thereby facilitating the multiple structure. Since a conductive member having elasticity can be formed between the cylindrical cells, the difference in thermal expansion between the cylindrical cells is absorbed and damage is prevented. Moreover, it is possible to take out at high voltage from one cylindrical cell. Furthermore, by providing a plurality of cylindrical cells concentrically, the rigidity is increased, the modularization is facilitated, and the equipment can be downsized.

【0010】[0010]

【実施例】以下にこの発明の実施例を図1ないし図4に
基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS.

【0011】図1はこの発明の円筒積型燃料電池の第1
実施例を示すもので、この燃料電池20は、酸素イオン
透過性のあるイットリア安定化ジルコニア(YSZ)を
所定寸法の円筒形に形成した固体電解質21aの内周面
にペロブスカイト型ランタン系酸化物からなる多孔質の
空気電極21bを形成するとともに、その外周面にはニ
ッケルなどを主体とする燃料電極21cを形成した円筒
形の内側セル21が形成されている。そして、この内側
セル21の外側には、耐熱性に優れたニッケル等の金属
からなり、ガスセパレータを兼ねる円筒形のインターコ
ネクタ23が、内側セル21の外周面に形成された空気
電極21bとの間に所定の間隙を存して同心状に配設さ
れている。
FIG. 1 shows a first cylindrical fuel cell of the present invention.
This embodiment shows a fuel cell 20 in which a perovskite-type lanthanum-based oxide is formed on the inner peripheral surface of a solid electrolyte 21a in which yttria-stabilized zirconia (YSZ) having oxygen ion permeability is formed into a cylindrical shape having a predetermined size. A porous inner air electrode 21b is formed, and a cylindrical inner cell 21 is formed on the outer peripheral surface thereof, on which a fuel electrode 21c mainly made of nickel or the like is formed. On the outside of the inner cell 21, a cylindrical interconnector 23 made of a metal such as nickel having excellent heat resistance and also serving as a gas separator is connected to the air electrode 21b formed on the outer peripheral surface of the inner cell 21. They are concentrically arranged with a predetermined gap therebetween.

【0012】さらに、インターコネクタ23の外周側に
は、このインターコネクタ23より大径の円筒形に形成
された固体電解質22aの外周に、前記内側セル21と
同様に多孔質の空気電極22bを形成するとともに、そ
の内周面には燃料電極22cを形成した円筒形の外側セ
ル22が、前記インターコネクタ23との間に所定の間
隙を存して同心状に遊嵌されている。
Further, on the outer peripheral side of the interconnector 23, a porous air electrode 22b similar to the inner cell 21 is formed on the outer periphery of a solid electrolyte 22a formed in a cylindrical shape having a diameter larger than that of the interconnector 23. In addition, a cylindrical outer cell 22 having a fuel electrode 22c formed on the inner peripheral surface thereof is loosely fitted concentrically with the interconnector 23 with a predetermined gap.

【0013】また内側セル21の外周の空気電極21b
と、インターコネクタ23の内周面との間は、ニッケル
等の導電性の高い金属製の接続部材24によって電気的
に接続されるとともに、インターコネクタ23の外周面
と外側セル22の内周の燃料電極22cとの間は、弾性
を有するニッケルフェルト25を介装することによっ
て、熱膨張差を吸収可能な状態に電気的に接続されてい
る。
Further, the air electrode 21b on the outer periphery of the inner cell 21
And the inner peripheral surface of the interconnector 23 are electrically connected by a connecting member 24 made of a metal having high conductivity such as nickel, and the outer peripheral surface of the interconnector 23 and the inner peripheral surface of the outer cell 22 are connected. A nickel felt 25 having elasticity is interposed between the fuel electrode 22c and the fuel electrode 22c so that the nickel electrode 25 is electrically connected to the fuel electrode 22c in a state capable of absorbing the difference in thermal expansion.

【0014】そして、内側セル21の中空部と、インタ
ーコネクタ23と外側セル22との間の間隙とは、各燃
料電極21c,22cに接触するように燃料ガスを流通
させる燃料ガス流路26となり、内側セル21とインタ
ーコネクタ23との間の間隙と、外側セル22の外周の
空間とは、各空気電極21b,22bに接触するように
空気を流通させて酸化ガス流路27となる。
The hollow portion of the inner cell 21 and the gap between the interconnector 23 and the outer cell 22 serve as a fuel gas flow passage 26 through which the fuel gas flows so as to come into contact with the fuel electrodes 21c and 22c. The gap between the inner cell 21 and the interconnector 23 and the space on the outer periphery of the outer cell 22 serve as an oxidizing gas flow path 27 by circulating air so as to contact the air electrodes 21b and 22b.

【0015】次に、上記のように構成されるこの実施例
の作用を説明する。
Next, the operation of this embodiment configured as described above will be described.

【0016】内側セル21と外側セル22とからなる円
筒積層型燃料電池20は、その燃料ガス流路26,26
にそれぞれ燃料ガスを供給するとともに、酸化ガス流路
27および外側セル22の外側の空間に空気を流通させ
ると、多孔質な空気電極21b,22bを通過した空気
中の酸素ガスがイオンとなって固体電解質21a,22
aを通過して、燃料電極21c,22c側に達する。そ
して、この酸素イオンは、多孔質なこの燃料電極21
c,22cに接触して流れる燃料ガス中の水素ガスとそ
れぞれ電気化学的に反応して、内側セル21と外側セル
22とにそれぞれ起電力を発生させる。そして、内側セ
ル21と外側セル22とで発生した電力は、接続部材2
4とインターコネクタ23およびニッケルフェルト24
を介して外側セル22と直列に接続されて、高電圧で取
り出されるようになっている。
The cylindrical laminated fuel cell 20 comprising the inner cell 21 and the outer cell 22 has a fuel gas flow path 26, 26.
When the fuel gas is supplied to each of the fuel cells and the air is circulated in the space outside the oxidizing gas passage 27 and the outer cell 22, the oxygen gas in the air passing through the porous air electrodes 21b and 22b becomes ions. Solid electrolytes 21a, 22
It passes through a and reaches the fuel electrodes 21c and 22c side. Then, the oxygen ions are generated by the porous fuel electrode 21.
Electrochemically reacts with hydrogen gas in the fuel gas flowing in contact with c and 22c to generate electromotive force in the inner cell 21 and the outer cell 22, respectively. Then, the electric power generated in the inner cell 21 and the outer cell 22 is applied to the connecting member 2
4 and interconnector 23 and nickel felt 24
It is connected in series with the outer cell 22 via the and is taken out at a high voltage.

【0017】したがって、この円筒積層型燃料電池20
は、内側セル21と外側セル22とが1本の円筒形に形
成されているため、発生した電力を高電圧にして取り出
すことができるとともに、複数の単セルを同心状に積層
するため剛性が高く、したがって、この円筒積層型燃料
電池20を多数集合させて一体化するモジュール化が容
易となり、また小型高出力化が可能となる等の利点を有
している。
Therefore, this cylindrical laminated fuel cell 20
The inner cell 21 and the outer cell 22 are formed into a single cylindrical shape, so that the generated electric power can be taken out at a high voltage, and a plurality of single cells are concentrically stacked to have rigidity. Therefore, it is easy to form a module in which a large number of the stacked cylindrical fuel cells 20 are assembled and integrated, and it is possible to reduce the size and increase the output.

【0018】また、内側セル21の外側に所定の間隙を
持たせて外側セル22を遊嵌し、前記間隙にインターコ
ネクタ23を設けるとともに、インターコネクタ23と
内側セル21の空気電極21bとの間を接続部材24で
接続するとともに、外側セル22の燃料電極22cとの
間に、弾性を有するニッケルフェルト25を介装して電
気的に接続する構造としたので、この円筒積層型燃料電
池20を容易に製造することができるとともに、内側セ
ル21と外側セル22との間に、弾性を有するニッケル
フェルト25が介装されているため、両セル21,22
間の熱膨張差がニッケルフェルト25に吸収されて、破
損や接触不良等による故障の発生を防止することができ
る。
Further, the outer cell 22 is loosely fitted to the outside of the inner cell 21 with a predetermined gap, an interconnector 23 is provided in the gap, and the interconnector 23 and the air electrode 21b of the inner cell 21 are provided. And the fuel electrode 22c of the outer cell 22 are electrically connected to each other through the nickel felt 25 having elasticity. Both the cells 21 and 22 can be manufactured easily, and the elastic nickel felt 25 is interposed between the inner cell 21 and the outer cell 22.
The difference in thermal expansion between the two is absorbed by the nickel felt 25, and it is possible to prevent the occurrence of failure due to breakage, poor contact, or the like.

【0019】また図2は、この発明の第2実施例を示す
もので、前記第1実施例においては、円筒形に形成され
た固体電解質の内周に空気電極を、また外周に燃料電極
をそれぞれ形成した2つのセルを同心状に遊嵌した場合
について説明したが、本実施例においては、円筒形に形
成された各固体電解質の内側に空気電極を、外側に燃料
電極をそれぞれ形成した内側セル、中央セルおよび外側
セルの3つの円筒形セルを同心状に積層形成したもの
で、以下図面に基づいて説明する。
FIG. 2 shows a second embodiment of the present invention. In the first embodiment, an air electrode is provided on the inner periphery of the cylindrical solid electrolyte and a fuel electrode is provided on the outer periphery thereof. The case where two cells formed respectively are concentrically loosely described has been described, but in the present embodiment, an air electrode is formed inside each solid electrolyte formed in a cylindrical shape and an inside is formed in which a fuel electrode is formed outside. Three cylindrical cells, that is, a cell, a central cell, and an outer cell, are concentrically stacked, and will be described below with reference to the drawings.

【0020】内側セル31と中央セル32と外側セル3
3との内径寸法の異なる3つの円筒形セルを同心状に配
設したこの燃料電池30は、各円筒形セル31,32,
33のそれぞれ内周側の空気電極31b,32b,33
bを残して固体電解質31a,32a,33aおよび燃
料電極31c,32c,33cの一部を溝状に切欠い
て、各空気電極31b,32b,33bの外周側に、コ
ネクタ36がそれぞれ燃料電極31c,32c,33c
と非接触状態に形成されている。そして、内側、中央お
よび外側の3つの円筒形セル31,32,33を、セル
相互間に所定の間隙を持たせて同心状に配設されるとと
もに、各間隙には、ニッケルとジルコニアのサーメット
からなるガスセパレータを兼ねた円筒形のインターコネ
クタ34,34が、それぞれ内方の円筒形セル31,3
2の燃料電極31c,32cとの間に弾性を有するニッ
ケルフェルト35を介して電気的に接続されている。更
に、インターコネクタ34,34のそれぞれ外方の円筒
形セル32,33の空気電極32b,33bとの間を、
耐熱性の金属からなる接続部材37を介して電気的に接
続されている。
Inner cell 31, central cell 32 and outer cell 3
The fuel cell 30 in which three cylindrical cells having different inner diameters from those of No. 3 are concentrically arranged,
Air electrodes 31b, 32b, 33 on the inner peripheral side of 33, respectively
b, the solid electrolytes 31a, 32a, 33a and the fuel electrodes 31c, 32c, 33c are partially cut out in a groove shape, and the connector 36 is provided on the outer peripheral side of each of the air electrodes 31b, 32b, 33b. 32c, 33c
Is formed in a non-contact state. Then, three cylindrical cells 31, 32, 33 on the inner side, the center, and the outer side are concentrically arranged with a predetermined gap between the cells, and a cermet of nickel and zirconia is provided in each gap. The cylindrical interconnectors 34 and 34 also serving as gas separators are composed of inner cylindrical cells 31 and 3, respectively.
The two fuel electrodes 31c, 32c are electrically connected via a nickel felt 35 having elasticity. Furthermore, between the air electrodes 32b and 33b of the outer cylindrical cells 32 and 33 of the interconnectors 34 and 34, respectively,
It is electrically connected via a connecting member 37 made of a heat-resistant metal.

【0021】そして、内側セル31の外周の燃料電極3
1cとインターコネクタ34との間と、中央セル32の
外周の燃料電極32cとその外側のインターコネクタ3
4との間には燃料ガス流路38がそれぞれ形成されると
ともに、インターコネクタ34,34の各外周面と中央
セル32および外側セル33のそれぞれ内周の空気電極
32b,33bとの間は、空気を流通させる酸化ガス流
路39,39がそれぞれ形成されている。
The fuel electrode 3 on the outer periphery of the inner cell 31
1c and the interconnector 34, the fuel electrode 32c on the outer periphery of the central cell 32, and the interconnector 3 on the outside thereof.
4, fuel gas flow paths 38 are formed respectively, and between the outer peripheral surfaces of the interconnectors 34, 34 and the air electrodes 32b, 33b of the inner circumferences of the central cell 32 and the outer cell 33, respectively, Oxidizing gas flow paths 39, 39 for circulating air are formed respectively.

【0022】そして、上記のように構成される円筒積層
型燃料電池30は、外側セル33の外周の燃料電極33
cを切欠いた部分から露出するコネクタ36を、同様に
構成された他の円筒積層型燃料電池30の外側セル33
の燃料電極33cに、ニッケルフェルト35を介するこ
とによって直列に接続され、かつ熱膨張差を吸収可能な
状態に配設されるとともに、隣接する別の円筒積層型燃
料電池30とは、それぞれの外側セル33,33の外周
の燃料電極33c,33c同士が、ニッケルフェルト3
5を介して並列に接続されている。
The cylindrical laminated fuel cell 30 having the above-described structure has the fuel electrode 33 on the outer periphery of the outer cell 33.
The connector 36 exposed from the notched portion c is used as an outer cell 33 of another cylindrical laminated fuel cell 30 having the same structure.
Is connected in series to the fuel electrode 33c of the fuel cell through the nickel felt 35 and is arranged so as to be able to absorb the difference in thermal expansion. The fuel electrodes 33c, 33c on the outer periphery of the cells 33, 33 are connected to each other by the nickel felt 3
5 are connected in parallel.

【0023】次に、上記のように構成されるこの実施例
の作用を説明する。
Next, the operation of this embodiment configured as described above will be described.

【0024】内側セル31と中央セル32と外側セル3
3の3つの円筒形セルからなる複数の円筒積層型燃料電
池30を、ニッケルフェルト35を介して直並列に接続
したモジュールは、内側セル31の中空部を含む各酸化
ガス流路39に空気を流通させるとともに、各燃料ガス
流路38と外側セル33の外側の空間に燃料ガスを流通
させると、多孔質な空気電極31b,32b,33bを
通過した空気中の酸素ガスがイオンとなって固体電解質
31a,32a,33aを通過して、それぞれ燃料電極
31c,32c,33c側に達する。そして、この酸素
イオンは、多孔質なこの燃料電極31c,32c,33
cに接触して流れる燃料ガス中の水素ガスとそれぞれ電
気化学的に反応して、内側セル31と中央セル32と外
側セル33とにそれぞれ起電力を発生させる。そして、
内側セル31、中央セル32および外側セル33でそれ
ぞれ発生した電流は、インターコネクタ35とコネクタ
36と接続部材37によって直列に接続されて、高電圧
で取り出されるようになっている。
Inner cell 31, central cell 32 and outer cell 3
A module in which a plurality of cylindrical stacked fuel cells 30 each composed of three cylindrical cells No. 3 and No. 3 are connected in series in parallel via a nickel felt 35 is used to supply air to each oxidizing gas passage 39 including the hollow portion of the inner cell 31. When the fuel gas is circulated, and the fuel gas is circulated in the space outside each fuel gas flow path 38 and the outer cell 33, the oxygen gas in the air that has passed through the porous air electrodes 31b, 32b, 33b becomes ions and becomes solid. After passing through the electrolytes 31a, 32a, 33a, they reach the fuel electrode 31c, 32c, 33c side, respectively. Then, the oxygen ions are generated by the porous fuel electrodes 31c, 32c, 33.
The hydrogen gas in the fuel gas flowing in contact with c electrochemically reacts with each other to generate electromotive force in the inner cell 31, the central cell 32, and the outer cell 33, respectively. And
The electric currents respectively generated in the inner cell 31, the central cell 32, and the outer cell 33 are connected in series by the interconnector 35, the connector 36, and the connecting member 37 so as to be extracted at a high voltage.

【0025】したがって、この実施例の円筒積層型の燃
料電池30は、内側セル31と中央セル32と外側セル
33との3つの円筒形セルを、同心状に重ねて1本に形
成したので剛性が高く、したがって、この燃料電池30
を多数集合させるモジュール化が容易となるとともに、
発生した電力を高電圧にして取り出すことができる。
Therefore, in the cylindrical laminated fuel cell 30 of this embodiment, the three cylindrical cells of the inner cell 31, the central cell 32, and the outer cell 33 are concentrically stacked and formed into a single cylinder. And therefore this fuel cell 30
It becomes easy to modularize a large number of
The generated power can be taken out as a high voltage.

【0026】さらに、図3はこの発明の第3実施例を示
すもので、燃料電池40は、内側セル41と外側セル4
2とからなり、イットリア安定化ジルコニア(YSZ)
を円筒形に形成した固体電解質41aの内周面に、ペロ
ブスカイト型ランタン系酸化物からなる多孔質の空気電
極41bを形成するとともに、この空気電極41bの更
に内側に、集電用の多孔質の円筒状またはリング状のイ
ンターコネクタ43が形成されている。また前記固体電
解質41aの外周面には、ニッケルなどを主体とする燃
料電極41cが形成されている。そして、この内側セル
41の外側には、耐熱性に優れたニッケル等の金属から
なり、ガスセパレータを兼ねる円筒形のインターコネク
タ44が、内側セル21の外周面に形成された燃料電極
41cとの間に所定の間隙を存して同心状に配設されて
いる。
Further, FIG. 3 shows a third embodiment of the present invention. The fuel cell 40 comprises an inner cell 41 and an outer cell 4.
2 and composed of yttria-stabilized zirconia (YSZ)
A porous air electrode 41b made of a perovskite-type lanthanum-based oxide is formed on the inner peripheral surface of the solid electrolyte 41a formed in a cylindrical shape, and a porous electrode for collecting current is further provided inside the air electrode 41b. A cylindrical or ring-shaped interconnector 43 is formed. A fuel electrode 41c mainly made of nickel or the like is formed on the outer peripheral surface of the solid electrolyte 41a. On the outside of the inner cell 41, a cylindrical interconnector 44 made of a metal such as nickel having excellent heat resistance and also serving as a gas separator is connected to the fuel electrode 41c formed on the outer peripheral surface of the inner cell 21. They are concentrically arranged with a predetermined gap therebetween.

【0027】さらに、インターコネクタ44の外周側に
は、このインターコネクタ44より大径の円筒形に形成
された外側セル42が、その固体電解質42aの内周
に、前記内側セル41と同様に多孔質の空気電極42b
を形成するとともに、その外周面には燃料電極42cを
形成した円筒形の外側セル42が、前記インターコネク
タ44との間に所定の間隙を存して同心状に配設されて
いる。
Further, on the outer peripheral side of the interconnector 44, an outer cell 42 formed in a cylindrical shape having a diameter larger than that of the interconnector 44 is formed on the inner periphery of the solid electrolyte 42a like the inner cell 41. Quality air electrode 42b
And a cylindrical outer cell 42 having a fuel electrode 42c formed on the outer peripheral surface thereof is arranged concentrically with the interconnector 44 with a predetermined gap.

【0028】また内側セル41の外周の燃料電極41c
と、インターコネクタ44の内周面との間には、ニッケ
ルフェルト45を介装することによって、熱膨張差を吸
収可能な状態に電気的に接続されるとともに、前記イン
ターコネクタ44の外周面と外側セル42の内周面に形
成された空気電極42bとの間は、ニッケル等の導電性
の高い金属製の接続部材46によって電気的に接続され
ている。
Further, the fuel electrode 41c on the outer periphery of the inner cell 41
, And an inner peripheral surface of the interconnector 44, a nickel felt 45 is interposed between the inner peripheral surface of the interconnector 44 and the inner peripheral surface of the interconnector 44 so as to be electrically connected to the inner peripheral surface of the interconnector 44 so as to be able to absorb the difference in thermal expansion. The air electrode 42b formed on the inner peripheral surface of the outer cell 42 is electrically connected by a connecting member 46 made of a highly conductive metal such as nickel.

【0029】そして、内側セル41の中空部と、インタ
ーコネクタ44と外側セル42との間の間隙とは、各空
気電極41b,42bに接触するように空気を流通させ
る酸化ガス流路47となり、内側セル41とインターコ
ネクタ44との間の間隙と、外側セル42の外周の空間
とは、各燃料電極41c,42cに接触するように空気
を流通させて燃料ガス流路46となる。
The hollow portion of the inner cell 41 and the gap between the interconnector 44 and the outer cell 42 serve as an oxidizing gas flow passage 47 for circulating air so as to contact the air electrodes 41b, 42b. The gap between the inner cell 41 and the interconnector 44 and the space on the outer periphery of the outer cell 42 serve as a fuel gas flow path 46 by circulating air so as to contact the fuel electrodes 41c, 42c.

【0030】そして、前記第1実施例の場合と同様に、
燃料電池40の酸化ガス流路47,47に空気を流通さ
せるとともに、外側セル42の外側の空間および内側セ
ル41とインターコネクタ44との間の燃料ガス流路4
6,46に空気を流通させると、空気中の酸素ガスがイ
オンとなって固体電解質41a,42aを通過し、多孔
質な燃料電極41c,42cにおいて、燃料ガス中の水
素ガスと電気化学的に反応して、内側セル41と外側セ
ル42とにそれぞれ起電力を発生させる。そして、内側
セル41と外側セル42とで発生した電流は、内側セル
41と外側セル42のとを、インターコネクタ44とニ
ッケルフェルト45と、接続部材46とを介して直列に
接続して、第1実施例の場合と同様に高電圧で取り出さ
れるようになっている。
Then, as in the case of the first embodiment,
Air is circulated through the oxidizing gas passages 47, 47 of the fuel cell 40, and the fuel gas passage 4 between the outer space of the outer cell 42 and the inner cell 41 and the interconnector 44 is provided.
When air is circulated through 6, 46, oxygen gas in the air becomes ions and passes through the solid electrolytes 41a, 42a, and electrochemically reacts with hydrogen gas in the fuel gas at the porous fuel electrodes 41c, 42c. By reacting, electromotive force is generated in each of the inner cell 41 and the outer cell 42. The current generated in the inner cell 41 and the outer cell 42 connects the inner cell 41 and the outer cell 42 in series via the interconnector 44, the nickel felt 45, and the connecting member 46, and As in the case of the first embodiment, the high voltage is taken out.

【0031】また、図4はこの発明の第4実施例を示す
もので、前記各実施例においては、燃料電池を構成する
燃料電極と固体電解質と空気電極との配置を、例えば円
筒形に形成された固体電解質の内周面に燃料電極が、ま
た外周面に空気電極がそれぞれ形成された太さの異なる
複数の円筒形セルを同心状に重ねて配設したのに対し
て、この実施例においては、同心状に配設した際に内側
セルと外側セルとのそれぞれの燃料電極同士、または空
気電極同士が互いに対向するように配設したもので、以
下図面に基づいて説明する。
FIG. 4 shows a fourth embodiment of the present invention. In each of the above embodiments, the fuel electrode, the solid electrolyte and the air electrode constituting the fuel cell are arranged, for example, in a cylindrical shape. In this embodiment, a plurality of cylindrical cells having different thicknesses, each having a fuel electrode formed on the inner peripheral surface of the solid electrolyte and an air electrode formed on the outer peripheral surface thereof, were concentrically stacked. In the above, the fuel cells of the inner cells and the outer cells are arranged so as to face each other when they are arranged concentrically, or the air electrodes are arranged to face each other, which will be described below with reference to the drawings.

【0032】この燃料電池50は、内側セル51と外側
セル52とで構成されている。内側セル51は、円筒形
に形成された固体電解質51aの内周面に空気電極51
bを、外周面に燃料電極51cがそれぞれ形成されてい
る。また外側セル52の場合は逆に、円筒形に形成され
た固体電解質52aの内周面に燃料電極52cが、外周
面に空気電極51bがそれぞれ形成され、内側セル51
の内周の空気電極51bの更に内側には集電用のインナ
ーコネクタ53が形成されている。
The fuel cell 50 is composed of an inner cell 51 and an outer cell 52. The inner cell 51 has an air electrode 51 on the inner peripheral surface of a solid electrolyte 51a formed in a cylindrical shape.
b, the fuel electrode 51c is formed on the outer peripheral surface. On the contrary, in the case of the outer cell 52, the fuel electrode 52c is formed on the inner peripheral surface of the solid electrolyte 52a formed in a cylindrical shape, and the air electrode 51b is formed on the outer peripheral surface thereof.
An inner connector 53 for current collection is formed further inside the air electrode 51b on the inner periphery of the.

【0033】また、内側セル51の空気電極51bの外
周側には、固体電解質51aおよび燃料電極51cの一
部を切欠き、この切欠き部分にコネクタ54が、燃料電
極51cと非接触状態に形成されている。また、外側セ
ル52の空気電極52bの内周側には、固体電解質52
aおよび燃料電極52cの一部を溝状に切欠き、この切
欠き部分にコネクタ54が、燃料電極51cと非接触状
態に形成されている。
Further, a part of the solid electrolyte 51a and the fuel electrode 51c is cut out on the outer peripheral side of the air electrode 51b of the inner cell 51, and a connector 54 is formed in this cutout portion in a non-contact state with the fuel electrode 51c. Has been done. The solid electrolyte 52 is formed on the inner peripheral side of the air electrode 52b of the outer cell 52.
a and a part of the fuel electrode 52c are notched in a groove shape, and a connector 54 is formed in this notch in a non-contact state with the fuel electrode 51c.

【0034】そして、内側セル51の外側に外側セル5
2が配設されて、内側セル51の外周の燃料電極51c
と、外側セル52の内周の燃料電極52cとが、所定の
間隔で対向配置されるとともに、内側セル51のコネク
タ54と、外側セル52のコネクタ54とが、ニッケル
フェルト55を介して並列に接続される。そして内側セ
ル51と外側セル52との間の間隙は、対向配置された
燃料電極51c,52cにそれぞれ接触して流れるよう
に燃料ガスが供給される燃料ガス流路56となり、また
内側セル51の中空部および外側セル52の外周の空間
は、空気電極51b,52bにそれぞれ接触して流通す
るように空気が流通する酸化ガス流路57となってい
る。
The outer cell 5 is provided outside the inner cell 51.
2 is disposed, and the fuel electrode 51c on the outer periphery of the inner cell 51 is provided.
And the fuel electrode 52c on the inner periphery of the outer cell 52 are arranged to face each other at a predetermined interval, and the connector 54 of the inner cell 51 and the connector 54 of the outer cell 52 are arranged in parallel via the nickel felt 55. Connected. The gap between the inner cell 51 and the outer cell 52 serves as a fuel gas flow path 56 to which the fuel gas is supplied so as to flow in contact with the fuel electrodes 51c and 52c arranged opposite to each other. The outer space of the hollow portion and the outer cell 52 serves as an oxidizing gas flow path 57 through which air flows so as to contact and flow with the air electrodes 51b and 52b, respectively.

【0035】そして、燃料電池50の燃料ガス流路56
に燃料ガスが供給されるとともに、酸化ガス流路57,
57に空気を流通させると、空気中の酸素ガスがイオン
となって固体電解質51a,52aを通過し、多孔質な
燃料電極51c,52cにおいて、燃料ガス中の水素ガ
スと電気化学的に反応して、内側セル51と外側セル5
2とにそれぞれ起電力を発生させる。そして、内側セル
51と外側セル52とで発生した電流は、内側セル51
と外側セル52との各コネクタ54,54間に配設され
たニッケルフェルト55によって並列に接続されて、高
アンペアの電流として取り出されるようになっている。
Then, the fuel gas flow path 56 of the fuel cell 50.
Fuel gas is supplied to the oxidant gas flow path 57,
When air is circulated through 57, oxygen gas in the air becomes ions and passes through the solid electrolytes 51a, 52a, and electrochemically reacts with hydrogen gas in the fuel gas at the porous fuel electrodes 51c, 52c. Inside cell 51 and outside cell 5
An electromotive force is generated in each of 2 and 3. Then, the current generated in the inner cell 51 and the outer cell 52 is
Are connected in parallel by a nickel felt 55 arranged between the respective connectors 54 of the outer cell 52 and the outer cell 52, and are taken out as a high amperage current.

【0036】また、この実施例においては、内側セル5
1と外側セル52の燃料電極51c,52cが互いに対
向するように配置したので、両セル51,52間の間隙
に一種類のガスを流通させれば良いため、前記第1,
2,3の各実施例において必要とされたガスセパレータ
を不要とすることができる。
Also, in this embodiment, the inner cell 5
Since the fuel electrodes 51c and 52c of the outer cell 52 and the outer cell 52 are arranged to face each other, one kind of gas may be passed through the gap between the cells 51 and 52.
The gas separator required in each of the second and third embodiments can be eliminated.

【0037】なお、この実施例においては同心状に隣接
する2つのセルの燃料電極同士を対向配置した場合につ
いて説明したが、空気電極同士を対向配置させてもよ
く、例えば、本実施例の燃料電池50の外側セル52の
更に外側に円筒形セルを配設して三重構造とした場合に
も、その空気電極同士を対向配置させて同様に実施する
ことができる。
In this embodiment, the case where the fuel electrodes of two cells concentrically adjacent to each other are arranged to face each other has been described. However, the air electrodes may be arranged to face each other. Even when a cylindrical cell is arranged further outside the outer cell 52 of the battery 50 to form a triple structure, the air electrodes can be arranged to face each other and the same operation can be performed.

【0038】ここで、この発明における好ましい態様の
例を列記する。
Here, examples of preferred embodiments of the present invention will be listed.

【0039】内側の円筒形セルと、その外側に隣接する
円筒形セルとが、一方の円筒形セルの燃料電極と他方の
円筒形セルの空気電極がガスセパレータを介して対向す
るように同心状に配設されるとともに、弾性を有する導
電性部材を介して電気的に接続されていることを特徴と
する円筒積層型燃料電池。
The inner cylindrical cell and the outer cylindrical cell adjacent thereto are concentric so that the fuel electrode of one cylindrical cell and the air electrode of the other cylindrical cell face each other through the gas separator. And a cylindrical stacked fuel cell, which is electrically connected via a conductive member having elasticity.

【0040】内側の円筒形セルと、その外側に隣接する
円筒形セルとが、両方の円筒形セルの燃料電極同士、あ
るいは空気電極同士が対向するように同心状に配設され
ていることを特徴とする円筒積層型燃料電池。
The inner cylindrical cell and the outer cylindrical cell adjacent thereto are concentrically arranged so that the fuel electrodes of both cylindrical cells or the air electrodes of both cylindrical cells face each other. Characteristic cylindrical stacked fuel cell.

【0041】内側の円筒形セルと、その外側に隣接する
円筒形セルとが、両方の円筒形セルの燃料電極同士、あ
るいは空気電極同士が対向するように同心状に配設する
とともに、弾性を有する導電性部材を介して電気的に接
続されていることを特徴とする円筒積層型燃料電池。
The inner cylindrical cell and the outer cylindrical cell adjacent to the outer cylindrical cell are concentrically arranged so that the fuel electrodes or the air electrodes of both cylindrical cells face each other, and elasticity is provided. A cylindrical stacked fuel cell, which is electrically connected via a conductive member of the fuel cell.

【0042】[0042]

【発明の効果】以上、説明したように、この発明の円筒
積層型燃料電池は、複数の円筒形セルを、所定の間隙を
存して同心状に配設するとともに、燃料ガスを前記円筒
形セルの燃料電極に接触可能に流通させる燃料ガス流路
と、酸化ガスを前記円筒形セルの空気電極に接触可能に
流通させる酸化ガス流路とを設け、さらに内側の円筒形
セルとそれぞれ外側に隣接する円筒形セルとを、弾性を
有する導電性部材を介して電気的に接続する構造とした
ので、この円筒積層型燃料電池を容易に製造することが
できるとともに、内外セル間の熱膨張差が吸収されて、
熱膨脹時の破損や収縮時の接触不良等による故障の発生
を防止することができる。また、円筒形セルの剛性を向
上でき、円筒形セルを集合させるモジュール化が容易と
なるとともに、各円筒形セルの出力を高くできるので、
固体電解質型燃料電池による発電設備の小型化および高
出力化が可能となる。
As described above, in the cylindrical laminated fuel cell of the present invention, a plurality of cylindrical cells are concentrically arranged with a predetermined gap and the fuel gas is in the cylindrical shape. A fuel gas flow passage that allows contact with the fuel electrode of the cell and an oxidizing gas flow passage that allows contact of the oxidizing gas with the air electrode of the cylindrical cell are provided. Since the structure is such that adjacent cylindrical cells are electrically connected to each other through a conductive member having elasticity, this cylindrical stacked fuel cell can be easily manufactured, and the thermal expansion difference between the inner and outer cells is also increased. Is absorbed,
It is possible to prevent damage due to thermal expansion and failure due to contact failure during contraction. Also, the rigidity of the cylindrical cells can be improved, the modularization of the cylindrical cells can be facilitated, and the output of each cylindrical cell can be increased,
It is possible to reduce the size and increase the output of power generation equipment using the solid oxide fuel cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の円筒積層型燃料電池の第1実施例の
円筒形セルを示す断面正面図である。
FIG. 1 is a sectional front view showing a cylindrical cell of a first embodiment of a cylindrical laminated fuel cell according to the present invention.

【図2】同じく第2実施例の円筒形セルを示す断面正面
図である。
FIG. 2 is a sectional front view showing a cylindrical cell of the second embodiment.

【図3】同じく第3実施例の円筒形セルを示す断面正面
図である。
FIG. 3 is a sectional front view showing a cylindrical cell of the third embodiment as well.

【図4】同じく第4実施例の円筒形セルを示す断面正面
図である。
FIG. 4 is a sectional front view showing a cylindrical cell of the fourth embodiment.

【図5】従来の平板型燃料電池の一例を示すスタックの
断面正面図である。
FIG. 5 is a sectional front view of a stack showing an example of a conventional flat plate fuel cell.

【図6】従来の円筒型燃料電池の一例を示すモジュール
の断面側面図である。
FIG. 6 is a sectional side view of a module showing an example of a conventional cylindrical fuel cell.

【符号の説明】[Explanation of symbols]

21…内側セル、 21a…固体電解質、 21b…空
気電極、 21c…燃料電極、 22…外側セル、 2
2a…固体電解質、 22b…空気電極、 22c…燃
料電極、 23…インターコネクタ、 25…ニッケル
フェルト、 26…燃料ガス流路、 27…酸化ガス流
路。
21 ... inner cell, 21a ... solid electrolyte, 21b ... air electrode, 21c ... fuel electrode, 22 ... outer cell, 2
2a ... Solid electrolyte, 22b ... Air electrode, 22c ... Fuel electrode, 23 ... Interconnector, 25 ... Nickel felt, 26 ... Fuel gas channel, 27 ... Oxidizing gas channel.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 武憲 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 山岡 悟 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Takenori Nakajima 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Ltd. (72) Inventor Satoru Yamaoka 1-1-5 Kiba, Koto-ku, Tokyo Shareholders Inside Fujikura

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円筒形に形成された固体電解質の内周面
と外周面とのいずれか一方に燃料電極を、いずれか他方
に空気電極をそれぞれ備えるとともに、燃料ガスを前記
燃料電極に接触可能に流通させる燃料ガス流路と、酸化
ガスを前記空気電極に接触可能に流通させる酸化ガス流
路とを備えた円筒形セルの外側に、この円筒形セルと同
様にして、内側の円筒形セルに遊嵌可能に順次大径に形
成した円筒形セルを複数重ね、さらに内側の円筒形セル
とそれぞれ外側に隣接する円筒形セルとを、弾性を有す
る導電性部材を介して電気的に接続したことを特徴とす
る円筒積層型燃料電池。
1. A fuel electrode is provided on one of an inner peripheral surface and an outer peripheral surface of a solid electrolyte formed in a cylindrical shape, and an air electrode is provided on the other, respectively, and a fuel gas can contact the fuel electrode. On the outside of a cylindrical cell provided with a fuel gas flow passage for circulating the fuel gas flow passage and an oxidizing gas flow passage for allowing the oxidizing gas to flow in contact with the air electrode, in the same manner as this cylindrical cell, the inner cylindrical cell A plurality of cylindrical cells that are sequentially formed to have a large diameter so that they can be loosely fitted to each other, and the inner cylindrical cells and the outer cylindrical cells are electrically connected to each other through a conductive member having elasticity. A cylindrical laminated fuel cell characterized by the above.
JP6206052A 1994-08-08 1994-08-08 Cylindrical layer-built fuel cell Pending JPH0850914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6206052A JPH0850914A (en) 1994-08-08 1994-08-08 Cylindrical layer-built fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6206052A JPH0850914A (en) 1994-08-08 1994-08-08 Cylindrical layer-built fuel cell

Publications (1)

Publication Number Publication Date
JPH0850914A true JPH0850914A (en) 1996-02-20

Family

ID=16517083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6206052A Pending JPH0850914A (en) 1994-08-08 1994-08-08 Cylindrical layer-built fuel cell

Country Status (1)

Country Link
JP (1) JPH0850914A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100881A2 (en) * 2002-05-23 2003-12-04 Alberta Research Council Inc. Solid oxide fuel cell system
JP2004507054A (en) * 2000-08-14 2004-03-04 シュテファン ブルーム Micro reactor
FR2877496A1 (en) * 2004-11-02 2006-05-05 Commissariat Energie Atomique FUEL CELL MODULE WITH FLEXIBLE INTERCONNECTORS.
EP1837943A1 (en) * 2006-03-24 2007-09-26 Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan Solid oxide fuel cell of multiple tabular electrodes
WO2007134209A3 (en) * 2006-05-11 2008-07-03 Alan Devoe Solid oxide fuel cell device comprising an elongated substrate with a hot and a cold portion
WO2008141171A3 (en) * 2007-05-10 2009-06-25 Alan Devoe Fuel cell device and system
JP2010503167A (en) * 2006-09-11 2010-01-28 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Fuel cell assembly
US7674543B2 (en) 2005-11-08 2010-03-09 Institute Of Nuclear Energy Research Atomic Energy Council Solid oxide fuel cell of multiple tubular electrodes
US7736772B2 (en) 2002-02-14 2010-06-15 Alberta Research Council, Inc. Tubular solid oxide fuel cell stack
US7838137B2 (en) 2005-11-08 2010-11-23 Alan Devoe Solid oxide fuel cell device and system
US8153318B2 (en) 2006-11-08 2012-04-10 Alan Devoe Method of making a fuel cell device
US8227128B2 (en) 2007-11-08 2012-07-24 Alan Devoe Fuel cell device and system
US8241771B2 (en) 2002-12-17 2012-08-14 Alberta Innovates-Technology Futures Compact solid oxide fuel cell stack
US8343684B2 (en) 2008-03-07 2013-01-01 Alan Devoe Fuel cell device and system
US8470493B2 (en) 2008-10-28 2013-06-25 Alan Devoe Fuel cell device and system
US8709674B2 (en) 2005-04-29 2014-04-29 Alberta Research Council Inc. Fuel cell support structure
US9023555B2 (en) 2012-02-24 2015-05-05 Alan Devoe Method of making a fuel cell device
US9209474B2 (en) 2009-03-06 2015-12-08 Alan Devoe Fuel cell device
US9437894B2 (en) 2012-02-24 2016-09-06 Alan Devoe Method of making a fuel cell device

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004507054A (en) * 2000-08-14 2004-03-04 シュテファン ブルーム Micro reactor
US6936367B2 (en) 2002-01-16 2005-08-30 Alberta Research Council Inc. Solid oxide fuel cell system
US7736772B2 (en) 2002-02-14 2010-06-15 Alberta Research Council, Inc. Tubular solid oxide fuel cell stack
WO2003100881A2 (en) * 2002-05-23 2003-12-04 Alberta Research Council Inc. Solid oxide fuel cell system
WO2003100881A3 (en) * 2002-05-23 2005-05-19 Alberta Res Council Solid oxide fuel cell system
CN1293662C (en) * 2002-05-23 2007-01-03 阿尔伯达研究理事会股份公司 Solid oxide fuel cell system
US7235321B2 (en) 2002-05-23 2007-06-26 Alberta Research Council, Inc. Solid oxide fuel cell system
US8241771B2 (en) 2002-12-17 2012-08-14 Alberta Innovates-Technology Futures Compact solid oxide fuel cell stack
WO2006048573A1 (en) * 2004-11-02 2006-05-11 Commissariat A L'energie Atomique Fuel cell module provided with flexible interconnectors
JP2008519391A (en) * 2004-11-02 2008-06-05 コミツサリア タ レネルジー アトミーク Fuel cell module with flexible interconnect
FR2877496A1 (en) * 2004-11-02 2006-05-05 Commissariat Energie Atomique FUEL CELL MODULE WITH FLEXIBLE INTERCONNECTORS.
US8709674B2 (en) 2005-04-29 2014-04-29 Alberta Research Council Inc. Fuel cell support structure
US10673081B2 (en) 2005-11-08 2020-06-02 Alan Devoe Solid oxide fuel cell device
US9673459B2 (en) 2005-11-08 2017-06-06 Alan Devoe Solid oxide fuel cell device
US7674543B2 (en) 2005-11-08 2010-03-09 Institute Of Nuclear Energy Research Atomic Energy Council Solid oxide fuel cell of multiple tubular electrodes
US7838137B2 (en) 2005-11-08 2010-11-23 Alan Devoe Solid oxide fuel cell device and system
US7842429B2 (en) 2005-11-08 2010-11-30 Alan Devoe Solid oxide fuel cell device and system
US7883816B2 (en) 2005-11-08 2011-02-08 Alan Devoe Solid oxide fuel cell device and system, method of using and method of making
US7981565B2 (en) 2005-11-08 2011-07-19 Alan Devoe Solid oxide fuel cell device and system
US10096846B2 (en) 2005-11-08 2018-10-09 Alan Devoe Solid oxide fuel cell device
EP1837943A1 (en) * 2006-03-24 2007-09-26 Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan Solid oxide fuel cell of multiple tabular electrodes
US10559839B2 (en) 2006-05-11 2020-02-11 Alan Devoe Solid oxide fuel cell device and system
US8029937B2 (en) 2006-05-11 2011-10-04 Alan Devoe Solid oxide fuel cell device and system
US9859582B2 (en) 2006-05-11 2018-01-02 Alan Devoe Solid oxide fuel cell device and system
US8293415B2 (en) 2006-05-11 2012-10-23 Alan Devoe Solid oxide fuel cell device and system
WO2007134209A3 (en) * 2006-05-11 2008-07-03 Alan Devoe Solid oxide fuel cell device comprising an elongated substrate with a hot and a cold portion
US8932776B2 (en) 2006-05-11 2015-01-13 Alan Devoe Solid oxide fuel cell device and system
JP2010503167A (en) * 2006-09-11 2010-01-28 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Fuel cell assembly
US8153318B2 (en) 2006-11-08 2012-04-10 Alan Devoe Method of making a fuel cell device
US8293417B2 (en) 2006-11-08 2012-10-23 Alan Devoe Solid oxide fuel cell device
US9397346B2 (en) 2006-11-08 2016-07-19 Alan Devoe Solid oxide fuel cell device
US9123937B2 (en) 2006-11-08 2015-09-01 Alan Devoe Solid oxide fuel cell device
US8609290B2 (en) 2006-11-08 2013-12-17 Alan Devoe Solid oxide fuel cell device
US8309266B2 (en) 2007-05-10 2012-11-13 Alan Devoe Fuel cell device and system
US10312530B2 (en) 2007-05-10 2019-06-04 Alan Devoe Fuel cell device and system
WO2008141171A3 (en) * 2007-05-10 2009-06-25 Alan Devoe Fuel cell device and system
US8257884B2 (en) 2007-05-10 2012-09-04 Alan Devoe Method of making a fuel cell device
US8278013B2 (en) 2007-05-10 2012-10-02 Alan Devoe Fuel cell device and system
US8293429B2 (en) 2007-05-10 2012-10-23 Alan Devoe Method of making a fuel cell device
US8409764B2 (en) 2007-05-10 2013-04-02 Alan Devoe Fuel cell device and system
US9362572B2 (en) 2007-05-10 2016-06-07 Alan Devoe Fuel cell device and system
US8614026B2 (en) 2007-11-08 2013-12-24 Alan Devoe Fuel cell device and system
US8227128B2 (en) 2007-11-08 2012-07-24 Alan Devoe Fuel cell device and system
US10153496B2 (en) 2007-11-08 2018-12-11 Alan Devoe Fuel cell device and system
US8343684B2 (en) 2008-03-07 2013-01-01 Alan Devoe Fuel cell device and system
US9343753B2 (en) 2008-03-07 2016-05-17 Alan Devoe Fuel cell device and system
US8962209B2 (en) 2008-03-07 2015-02-24 Alan Devoe Fuel cell device and system
US10734659B2 (en) 2008-10-28 2020-08-04 Alan Devoe Fuel cell device and system
US8470493B2 (en) 2008-10-28 2013-06-25 Alan Devoe Fuel cell device and system
US9059450B2 (en) 2008-10-28 2015-06-16 Alan Devoe Fuel cell device and system
US10062911B2 (en) 2008-10-28 2018-08-28 Alan Devoe Fuel cell device and system
US9209474B2 (en) 2009-03-06 2015-12-08 Alan Devoe Fuel cell device
US10320012B2 (en) 2011-11-30 2019-06-11 Alan Devoe Fuel cell device
US9023555B2 (en) 2012-02-24 2015-05-05 Alan Devoe Method of making a fuel cell device
US10355300B2 (en) 2012-02-24 2019-07-16 Alan Devoe Method of making a fuel cell device
US9716286B2 (en) 2012-02-24 2017-07-25 Alan Devoe Method of making a fuel cell device
US9577281B1 (en) 2012-02-24 2017-02-21 Alan Devoe Method of making a fuel cell device
US9437894B2 (en) 2012-02-24 2016-09-06 Alan Devoe Method of making a fuel cell device

Similar Documents

Publication Publication Date Title
JPH0850914A (en) Cylindrical layer-built fuel cell
CA2679036C (en) Fuel cell system comprising fuel cell stacks each formed by plural unit cells in horizontal direction
JP5330532B2 (en) Solid oxide fuel cell
JP4828841B2 (en) Fuel cell
JP4200088B2 (en) Fuel cell and fuel cell stack
JPH08273696A (en) Fuel cell stack structure
JP2005183087A (en) Fuel cell and fuel cell stack
JP4773055B2 (en) FUEL CELL STACK, SEPARATOR INTERMEDIATE AND SEPARATOR MANUFACTURING METHOD
JP2005317241A (en) Supporting film type solid oxide fuel cell stack, and manufacturing method of the same
JPH0945356A (en) Stack structure of plate type solid electrolyte fuel cell
JP5249177B2 (en) Fuel cell system
JP3048689B2 (en) Structure of solid oxide fuel cell module
JP6917193B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP3200176B2 (en) Solid oxide fuel cell
JPH0722057A (en) Solid electrolytic fuel cell module
JPH0722060A (en) Connection structure of solid electrolyte fuel cell
JP4141555B2 (en) Solid oxide fuel cell assembly and solid oxide fuel cell module
JP2013257973A (en) Solid oxide fuel cell stack
JP2769629B2 (en) Cylindrical solid electrolyte fuel cell
JP2799880B2 (en) Fuel cell connector and fuel cell structure
JPH0945355A (en) Plate type solid electrolyte fuel cell
JP2816475B2 (en) Structure of solid oxide fuel cell
JP2799879B2 (en) Structure of solid oxide fuel cell
JP2018181405A (en) Fuel cell power generation module
JP2927816B2 (en) Solid oxide fuel cell stack