JPH033924B2 - - Google Patents

Info

Publication number
JPH033924B2
JPH033924B2 JP18573983A JP18573983A JPH033924B2 JP H033924 B2 JPH033924 B2 JP H033924B2 JP 18573983 A JP18573983 A JP 18573983A JP 18573983 A JP18573983 A JP 18573983A JP H033924 B2 JPH033924 B2 JP H033924B2
Authority
JP
Japan
Prior art keywords
atomic
permanent magnet
magnetic circuit
magnetic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18573983A
Other languages
Japanese (ja)
Other versions
JPS6076111A (en
Inventor
Hideya Sakurai
Yoshitaka Anho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP18573983A priority Critical patent/JPS6076111A/en
Publication of JPS6076111A publication Critical patent/JPS6076111A/en
Publication of JPH033924B2 publication Critical patent/JPH033924B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、磁気回路の着磁組立方法に係り、
特に新規なFe−B−R系永久磁石を配設した磁
気回路を効率よく着磁組立する方法を提供し、磁
気回路の小型化とともに、永久磁石の磁気特性を
最も有効に使用する磁気回路の着磁組立方法に関
する。 一般に、磁気回路の組立方法としては、永久磁
石単体を着磁する以前に磁気回路を組立て、その
後、回路ごと着磁する方法(組立着磁)と、永久
磁石単体のみをあらかじめ着磁したのち、磁気回
路を組立てる方法(着磁組立)とが知られてい
る。 着磁組立は前者の組立着磁と比較して、着磁は
容易に行なえるが、磁気回路の構成による磁石動
作点の関係から必ずしも永久磁石の磁気特性を有
効に使用可能とは言い難く、特に永久磁石の減磁
特性曲線に大きなクニツクのある場合には、組立
に際して十分な配慮が必要であつた。 この発明は、上述の問題点に鑑み、先に本出願
人が提案した新規なFe−B−R系(RはYを含
む希土類元素のうち少くとも1種)永久磁石(特
願昭57−145072号)を配設してなる磁気回路を、
効率よく着磁組立する方法を提供することによ
り、磁気回路の小型化のみならず、永久磁石の磁
気特性を最も有効に使用可能とすることを目的と
するものである。 すなわち、この発明は、R(但しRはYを含む
希土類元素のうち少なくとも1種)8原子%〜30
原子%、B2原子%〜28原子%、Fe42原子%〜90
原子%を主成分とし、主相が正方晶相からなる永
久磁石を、0℃以下にて着磁し、磁気回路組立時
の前記永久磁石の温度を0℃以下に保持して組立
てることを要旨とする磁気回路の着磁組立方法で
ある。 この発明の磁気回路を構成するFe−B−R系
永久磁石は、8原子%〜30原子%、B2原子%〜
28原子%、Fe42原子%〜90原子%を主成分とし
て主相が正方晶相からなる永久磁石であり、Rと
しては、高価なSmを用いらず、NdやPrを中心
とする資源的に豊富な軽希土類を用いることで、
25MGOe以上の極めて高いエネルギー積を示す
ものである。 R(Yを含む希土類元素のうち少なくとも1種)
は、新規な上記系永久磁石における、必須元素で
あつて、8原子%末満では、結晶構造がα−鉄と
同一構造の立方晶組織が多量に形成されるため、
高磁気特性、特に高保磁力が得られず、30原子%
を越えると、Rリツチな非磁性相が多くなり、残
留磁束密度Brが低下して、すぐれた特性の永久
磁石が得られない。よつて、希土類元素は、8原
子%〜30原子%の範囲とする。 Bは、新規な上記系永久磁石における、必須元
素であつて、2原子%末満では、菱面体組織とな
り、高い保磁力(iHc)は得られず、28原子%を
越えると、Bリツチな非磁性相が多くなり、残留
磁束密度(Br)が低下するため、すぐれた永久
磁石が得られない。よつて、Bは、2原子%〜28
原子%の範囲とする。 Feは、新規な上記系永久磁石において、必須
元素であり、42原子%末満では残留磁束密度
(Br)が低下し、90原子%を越えると、高い保磁
力が得られないので、Feは42原子%〜90原子%
の含有とする。 Fe、B、Rの主成分のほか、工業的製造上不
可避な不純物の存在を許容できるが、さらに、
Feの一部をCoで置換することによりキユーリー
点を上昇させることができる。又、Bの一部を
C、P、S、Cu等により置換することも可能で
あり、製造性改善、低価格化が可能となる。 さらに、三元系基本相成Fe−B−Rに、Al、
Ti、V、Cr、Ni、Mn、Zr、Nb、Mo、Ta、W、
Sn、Bi、Sb、Ge、fの一種以上を添加すること
により高保磁力化が可能となる。 また、結晶相は主相が正方晶であることが、微
細で均一な合金粉末よりすぐれた磁気特性を有す
る為には不可欠である。 該永久磁石は、保磁力iHc≧1KOe、残留磁束
密度Br>4KG、を示し、最大エネルギー積
(BH)maxはハードフエライトと同等以上とな
り、最も好ましい組成範囲では、(BH)max≧
10MGOeを示し、最大値は35MGOe以上に達す
る。 また、保磁力(iHc)も高く、磁石単体として
のパーミアンス係数が0.3程度以下の偏平形状で
も優れた磁気特性を有し、磁気回路の小型偏平化
を達成することが可能であるが、パーミアンス係
数が小さくなるに従つて、永久磁石減磁特性曲線
(以下減磁曲線)上のクニツクあるいは4πの減
少が徐々に発生し、その影響は磁石の効率的利用
からは望ましくなく、必ずしも永久磁石の磁気特
性を有効に使用可能とは言い難く、着磁組立方法
の欠点である。 そこで、上記組成の永久磁石を冷却することに
より、前記減磁曲線におけるクニツク及び4π
の徐々なる減少を解消することが可能であり、特
に該永久磁石を0℃以下にて着磁することとも
に、磁気回路組立時の前記永久磁石の温度を0℃
以下に保持することで、永久磁石の磁気特性を有
効に使用することが可能となる。 この発明は、上記の緒特性を最も効果的に利用
した磁気回路の着磁組立方法であり、以下図面に
基づいて詳細に説明する。 第1図A,Bは、従来の着磁組立方法を示す説
明図で、永久磁石1を着磁器の磁極2,2間に挾
持したのち、該着磁器に通電して前記永久磁石1
を着磁し、さらにヨーク3,3に固着組立するこ
とで磁気回路を構成し、該磁気回路空隙部4に所
望の磁界を発生させるものである。 第2図は、本発明の着磁組立方法の一実施例を
示すもので、Fe−B−R系永久磁石(以下、Fe
−B−R磁石という)1を容器6内の冷却媒体5
により冷却した後、着磁器の磁極2,2間に挾持
し、さらに着磁器に通電して、Fe−B−R磁石
1の着磁を完了する。その後、第1図Bと同様に
磁気回路を組立構成する。 第3図は、本発明の他の実施例を示す説明図
で、着磁器の磁極2,2と冷却媒体5を収納する
非磁性体容器6とを一体に構成し、Fe−B−R
磁石1を冷却しながら着磁を完了する方法を示す
ものである。 上記の冷却媒体5としてはアルコールがベンジ
ンをドライアイスで冷したものの他液体窒素等の
使用が望ましく、冷却手段も第2,3図に示す手
段に限定することなく該冷却媒体との関連におい
て適宜選択することが好ましい、 又、本発明の対象とする磁気回路は、第1図B
の構成に限定されるものでなく、Fe−B−R磁
石を配設してなるすべての磁気回路に適用可能で
ある。 この発明において、Fe−B−R磁石は、0℃
以上の着磁においては常温時の磁気特性とあまり
差違がなく0℃以下にて着磁することが必要であ
り、又磁気回路組立時の永久磁石の温度も着磁時
の温度とできる限り同温度であることが望まし
く、0℃以下になると本発明の目的とする効果は
得られない。また必要以上の冷却は、着磁に要す
る磁界強度を大きくすることとなり、冷却媒体、
冷却手段等に関しても不経済となり、Fe−B−
R磁石の大きさ、組立の作業性等を考慮して決定
することが好ましい。ちなみに、常温にて、 保磁力iHc=12.5(KOe)、 最大エネルギー積(BH)mas=35(MGOe)、
で形状50mmφ×6mmtのFe−B−R磁石を用い、
上述した第1図Aに示す従来方法、並びに第1表
の温度条件で第2図に示す本発明方法により、完
全に着磁したのち、常温雰囲気中ですみやかに第
1図Bの磁気回路を組立てた。 その後、該磁気回路空隙部4内の磁気特性を測
定し、従来の第1図Aに示す方法による空隙部4
内の磁気特性を100として、第1表に示す。
The present invention relates to a method for magnetizing and assembling a magnetic circuit,
In particular, we provide a method for efficiently magnetizing and assembling magnetic circuits equipped with new Fe-B-R permanent magnets. This invention relates to a magnetized assembly method. In general, there are two methods for assembling a magnetic circuit: one is to assemble the magnetic circuit before magnetizing a single permanent magnet, and then magnetize the entire circuit (assembly magnetization), and the other is to magnetize only the permanent magnet in advance and then magnetize the entire circuit. A method of assembling a magnetic circuit (magnetized assembly) is known. Compared to the former type of assembled magnetization, magnetization can be easily performed in magnetized assembly, but it is difficult to say that the magnetic properties of permanent magnets can be used effectively due to the relationship of the magnet operating point due to the configuration of the magnetic circuit. Particularly when the permanent magnet has a large quirk in its demagnetization characteristic curve, sufficient consideration must be taken during assembly. In view of the above-mentioned problems, the present invention is based on a new Fe-B-R system (R is at least one rare earth element including Y) permanent magnet (Japanese Patent Application No. 145072)),
By providing a method for efficiently magnetizing and assembling the magnetic circuit, the present invention aims not only to miniaturize the magnetic circuit but also to make the most effective use of the magnetic properties of the permanent magnet. That is, the present invention provides R (where R is at least one kind of rare earth elements including Y) from 8 atomic % to 30
atomic%, B2 atomic% ~ 28 atomic%, Fe42 atomic% ~ 90
The main point is to magnetize a permanent magnet whose main component is atomic% and whose main phase is a tetragonal phase at 0°C or lower, and to assemble the permanent magnet by maintaining the temperature of the permanent magnet at 0°C or lower during magnetic circuit assembly. This is a method for magnetizing and assembling a magnetic circuit. The Fe-B-R permanent magnet constituting the magnetic circuit of this invention is 8 atomic% to 30 atomic%, B2 atomic% to
It is a permanent magnet whose main components are 28 at% Fe, 42 at% to 90 at% Fe, and the main phase is a tetragonal phase. By using abundant light rare earths,
This shows an extremely high energy product of over 25MGOe. R (at least one rare earth element including Y)
is an essential element in the new above-mentioned permanent magnet, and at less than 8 atomic %, a large amount of cubic crystal structure with the same crystal structure as α-iron is formed.
High magnetic properties, especially high coercive force, cannot be obtained, 30 atomic%
If it exceeds this value, the R-rich nonmagnetic phase increases, the residual magnetic flux density Br decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, the rare earth element is in the range of 8 atomic % to 30 atomic %. B is an essential element in the new above-mentioned permanent magnets, and when it is less than 2 atomic %, it forms a rhombohedral structure and a high coercive force (iHc) cannot be obtained, and when it exceeds 28 atomic %, B-rich Since the non-magnetic phase increases and the residual magnetic flux density (Br) decreases, an excellent permanent magnet cannot be obtained. Therefore, B is 2 atomic % to 28
The range is atomic percent. Fe is an essential element in the new above-mentioned permanent magnets. At less than 42 atomic percent, the residual magnetic flux density (Br) decreases, and when it exceeds 90 atomic percent, high coercive force cannot be obtained. 42 atomic% to 90 atomic%
Contains. In addition to the main components of Fe, B, and R, the presence of unavoidable impurities in industrial production can be tolerated, but in addition,
The Curie point can be increased by replacing a portion of Fe with Co. Further, it is also possible to partially replace B with C, P, S, Cu, etc., thereby making it possible to improve manufacturability and reduce costs. Furthermore, Al,
Ti, V, Cr, Ni, Mn, Zr, Nb, Mo, Ta, W,
By adding one or more of Sn, Bi, Sb, Ge, and f, it is possible to increase the coercive force. Furthermore, it is essential that the main crystal phase be tetragonal in order to have magnetic properties superior to those of fine and uniform alloy powder. The permanent magnet exhibits coercive force iHc≧1KOe, residual magnetic flux density Br>4KG, maximum energy product (BH)max is equal to or higher than hard ferrite, and in the most preferable composition range, (BH)max≧
It shows 10MGOe, and the maximum value reaches 35MGOe or more. In addition, it has a high coercive force (iHc) and has excellent magnetic properties even in a flat shape with a permeance coefficient of about 0.3 or less as a single magnet, making it possible to achieve a compact and flat magnetic circuit. As becomes smaller, a knick or a decrease in 4π on the permanent magnet demagnetization characteristic curve (hereinafter referred to as demagnetization curve) gradually occurs, and this effect is not desirable for efficient use of the magnet, and does not necessarily affect the magnetism of the permanent magnet. It is difficult to say that the characteristics can be used effectively, which is a drawback of the magnetized assembly method. Therefore, by cooling the permanent magnet with the above composition, the knick and 4π in the demagnetization curve can be reduced.
It is possible to eliminate the gradual decrease in temperature, and in particular, by magnetizing the permanent magnet at a temperature below 0°C, the temperature of the permanent magnet at the time of assembling the magnetic circuit can be reduced to 0°C.
By maintaining the following, it becomes possible to effectively use the magnetic properties of the permanent magnet. The present invention is a method of magnetizing and assembling a magnetic circuit that most effectively utilizes the above-mentioned characteristics, and will be described in detail below with reference to the drawings. FIGS. 1A and 1B are explanatory diagrams showing a conventional magnetization assembly method, in which a permanent magnet 1 is sandwiched between magnetic poles 2 and 2 of a magnetizer, and then the magnetizer is energized to attach the permanent magnet 1.
is magnetized and further fixed and assembled to the yokes 3, 3 to form a magnetic circuit, and a desired magnetic field is generated in the magnetic circuit gap 4. FIG. 2 shows an embodiment of the magnetized assembly method of the present invention, in which Fe-BR permanent magnets (hereinafter referred to as Fe
-B-R magnet) 1 is the cooling medium 5 in the container 6.
After being cooled, the Fe-B-R magnet 1 is sandwiched between the magnetic poles 2 and 2 of the magnetizer, and the magnetizer is further energized to complete the magnetization of the Fe-B-R magnet 1. Thereafter, the magnetic circuit is assembled and configured in the same manner as in FIG. 1B. FIG. 3 is an explanatory diagram showing another embodiment of the present invention, in which the magnetic poles 2, 2 of the magnetizer and a non-magnetic container 6 for storing the cooling medium 5 are integrally constructed, and Fe-B-R
This shows a method of completing magnetization while cooling the magnet 1. As the cooling medium 5, it is preferable to use liquid nitrogen, etc., as well as benzine cooled with dry ice, and the cooling means is not limited to the means shown in FIGS. The magnetic circuit which is preferably selected and which is the object of the present invention is shown in FIG.
The present invention is not limited to this configuration, and is applicable to all magnetic circuits in which Fe-B-R magnets are arranged. In this invention, the Fe-B-R magnet is
In the above magnetization, it is necessary to magnetize at a temperature below 0℃, as there is not much difference in magnetic properties from the magnetic properties at room temperature, and the temperature of the permanent magnet when assembling the magnetic circuit should be as similar as possible to the temperature at the time of magnetization. It is desirable that the temperature is 0° C. or lower, and the desired effect of the present invention cannot be obtained. In addition, excessive cooling will increase the magnetic field strength required for magnetization, and the cooling medium
It becomes uneconomical in terms of cooling means, etc., and Fe-B-
It is preferable to determine this by considering the size of the R magnet, ease of assembly, etc. By the way, at room temperature, coercive force iHc = 12.5 (KOe), maximum energy product (BH) mas = 35 (MGOe),
Using a Fe-BR magnet with a shape of 50mmφ x 6mmt,
After being completely magnetized by the conventional method shown in FIG. 1A and the method of the present invention shown in FIG. 2 under the temperature conditions shown in Table 1, the magnetic circuit shown in FIG. Assembled. After that, the magnetic characteristics in the magnetic circuit gap 4 are measured, and the gap 4 is measured by the conventional method shown in FIG. 1A.
Table 1 shows the magnetic properties in 100.

【表】 以上に示すごとく、本発明によれば、従来の方
法と比較して10%以上の高い磁気特性を得ること
が可能である。又、上記と同様の構成からなる希
土類コバルト磁石を用いた磁気回路において、同
様の測定を行つたが、冷却着磁による効果は3%
程度と少なく、以上のことからも本発明の工業的
価値は極めて高いものと言える。
[Table] As shown above, according to the present invention, it is possible to obtain higher magnetic properties by 10% or more compared to conventional methods. In addition, similar measurements were performed on a magnetic circuit using rare earth cobalt magnets with the same configuration as above, but the effect of cooling magnetization was only 3%.
From the above, it can be said that the industrial value of the present invention is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の着磁組立方法を示す説明図、第
2図及び第3図はこの発明による着磁組立方法を
示す説明図である。 1……永久磁石、2……磁極、3……ヨーク、
4……空隙部、5……冷却媒体、6……容器。
FIG. 1 is an explanatory diagram showing a conventional magnetized assembly method, and FIGS. 2 and 3 are explanatory diagrams showing a magnetized assembly method according to the present invention. 1...Permanent magnet, 2...Magnetic pole, 3...Yoke,
4...Void portion, 5...Cooling medium, 6...Container.

Claims (1)

【特許請求の範囲】[Claims] 1 R(但しRはYを含む希土類元素のうち少な
くとも1種)8原子%〜30原子%、B2原子%〜
28原子%、Fe42原子%〜90原子%を主成分とし、
主相が正方晶相からなる永久磁石を、0℃以下に
て着磁し、磁気回路組立時の前記永久磁石の温度
を0℃以下に保持して組立てることを特徴とする
磁気回路の着磁組立方法。
1 R (where R is at least one rare earth element including Y) 8 atomic% to 30 atomic%, B2 atomic% to
The main components are 28 at%, Fe42 at% to 90 at%,
Magnetization of a magnetic circuit characterized in that a permanent magnet whose main phase is a tetragonal phase is magnetized at a temperature of 0° C. or lower, and the magnetic circuit is assembled by maintaining the temperature of the permanent magnet at a temperature of 0° C. or lower when assembling the magnetic circuit. Assembly method.
JP18573983A 1983-10-03 1983-10-03 Magnetizing and assembling method for magnetic circuit Granted JPS6076111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18573983A JPS6076111A (en) 1983-10-03 1983-10-03 Magnetizing and assembling method for magnetic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18573983A JPS6076111A (en) 1983-10-03 1983-10-03 Magnetizing and assembling method for magnetic circuit

Publications (2)

Publication Number Publication Date
JPS6076111A JPS6076111A (en) 1985-04-30
JPH033924B2 true JPH033924B2 (en) 1991-01-21

Family

ID=16176010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18573983A Granted JPS6076111A (en) 1983-10-03 1983-10-03 Magnetizing and assembling method for magnetic circuit

Country Status (1)

Country Link
JP (1) JPS6076111A (en)

Also Published As

Publication number Publication date
JPS6076111A (en) 1985-04-30

Similar Documents

Publication Publication Date Title
DE69318147D1 (en) R-Fe-B permanent magnet materials and their manufacturing processes
JPH0510806B2 (en)
JPH0316761B2 (en)
JPS6219041B2 (en)
JPH08124730A (en) Rare-earth resin magnet having low coercive force
JPS61159708A (en) Permanent magnet
JPS6223959A (en) High-efficiency permanent magnet material
JPH033924B2 (en)
Kim High coercivity Nd‐Fe‐B magnets with lower dysprosium content
JPS6076108A (en) Magnetic circuit
JPS61295355A (en) Permanent magnet alloy
Yoshizawa et al. Injection molded Sm/sub 2/Fe/sub 17/N/sub 3/anisotropic magnet using reduction and diffusion method
Yoneyama et al. High performance RFeCoZrB bonded magnets having low Nd content
JPH0422009B2 (en)
JPH0320045B2 (en)
JPS62257703A (en) Resin-bonded magnetic material
JPS6365742B2 (en)
JPH0536494B2 (en)
Rao et al. Effects of Cerium on Magnetic Properties of Sintered R-Fe-B Permanent Magnets
JP2983902B2 (en) Ultra low temperature permanent magnet material
JP2935126B2 (en) Ferromagnetic material
JP2720027B2 (en) Ultra low temperature permanent magnet material
JPS62170455A (en) Permanent magnet alloy
JPH0869907A (en) Material for permanent magnet and material for bonded magnet using the same
JPH1088295A (en) Alloy for rare earth-iron-boron type bond magnet