JP2935126B2 - Ferromagnetic material - Google Patents

Ferromagnetic material

Info

Publication number
JP2935126B2
JP2935126B2 JP2095199A JP9519990A JP2935126B2 JP 2935126 B2 JP2935126 B2 JP 2935126B2 JP 2095199 A JP2095199 A JP 2095199A JP 9519990 A JP9519990 A JP 9519990A JP 2935126 B2 JP2935126 B2 JP 2935126B2
Authority
JP
Japan
Prior art keywords
ferromagnetic material
rare earth
transition metal
saturation magnetization
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2095199A
Other languages
Japanese (ja)
Other versions
JPH03294443A (en
Inventor
和光 遠藤
章雄 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOOKIN KK
Original Assignee
TOOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOOKIN KK filed Critical TOOKIN KK
Priority to JP2095199A priority Critical patent/JP2935126B2/en
Publication of JPH03294443A publication Critical patent/JPH03294443A/en
Application granted granted Critical
Publication of JP2935126B2 publication Critical patent/JP2935126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は,強磁性材料に関し,特にR2T17(RはYを
含む希土類元素,TはCoを必ず含む遷移金属元素)で表さ
れる金属間化合物の磁気特性の改善に関する。
The present invention relates to a ferromagnetic material, and more particularly to a ferromagnetic material represented by R 2 T 17 (R is a rare earth element containing Y and T is a transition metal element always containing Co). To improve the magnetic properties of intermetallic compounds.

[従来の技術] 従来,SmCo5,Sm2Co17,及びNd2Fe14B等金属間化合物を
有し,良好な磁石特性を示し,Sm−Co系,Nb−Fe−B系永
久磁石材料がスピーカーモーター等に使用されている。
[Prior art] Conventionally, it has an intermetallic compound such as SmCo 5 , Sm 2 Co 17 , and Nd 2 Fe 14 B, shows good magnet properties, and is a Sm-Co-based, Nb-Fe-B-based permanent magnet material. Are used for speaker motors and the like.

ところが,Sm−Co系磁石材料は,Smの価格が高価でか
つ,供給が不安定であるため,比較的安価なNdを用い
た,Nd−Fe−B系磁石材料に対し,用途が限定されてい
る。
However, the Sm-Co magnet material is expensive and the supply is unstable, so its application is limited to the Nd-Fe-B magnet material using relatively inexpensive Nd. ing.

また,Nb−Fe−B系永久磁石材料も,磁石特性の熱的
安定性と耐食性に劣る欠点を有するため,広範な用途に
供するものに至っていない。
In addition, Nb-Fe-B permanent magnet materials have not been used in a wide range of applications because of their inferior thermal stability and corrosion resistance of magnet properties.

しかし,一般に,磁性材料は,電気・電子部品とし
て,その需要は大量であり,また,用途拡大を考えた場
合,供する磁性材料は安価であることも必要な条件であ
ることから,希土類金属と遷移金属の金属間化合物にお
いて,資源が豊富で安価である軽希土類金属原料として
用いる手法が要請されている。
However, in general, there is a large demand for magnetic materials as electric and electronic parts, and in consideration of expanding applications, the magnetic materials to be provided must be inexpensive. There is a demand for a method of using transition metal intermetallic compounds as light rare earth metal raw materials that are rich in resources and inexpensive.

このため,軽希土類金属の中でも資源の豊富なLaが着
目される。
For this reason, La, which has abundant resources among light rare earth metals, attracts attention.

特に希土類金属と遷移金属との金属間化合物では,そ
の磁性は遷移金属によるところが大きいため,遷移金属
の組成比の大きい金属間化合物ほど優れた磁気特性を有
する材料として適当であることが知られている。
In particular, in the case of an intermetallic compound of a rare earth metal and a transition metal, the magnetism is largely dependent on the transition metal. Therefore, it is known that an intermetallic compound having a higher composition ratio of the transition metal is more suitable as a material having excellent magnetic properties. I have.

そこで,上記条件に一致する希土類金属と遷移金属と
の金属間化合物として,RCo5及びR2Co17が考えられる。
Therefore, RCo 5 and R 2 Co 17 are considered as intermetallic compounds of rare earth metals and transition metals that meet the above conditions.

第5図(a),(b)び示すように,RCo5及びR2Co17
が,優れた飽和磁化4πIs(KG)及びキュリー温度を有
することが分かる。
As shown in FIGS. 5 (a) and (b), RCo 5 and R 2 Co 17
It has excellent saturation magnetization 4πIs (KG) and Curie temperature.

また,R2Co17は,RCo5に比べて,より優れた飽和磁化4
πIs(KG)及びキュリー温度を有することも知られてい
る。
R 2 Co 17 has a higher saturation magnetization than RCo 5.
It is also known to have πIs (KG) and Curie temperature.

ところが,第5図(a),(b)に示すように,Laに
おいてはLaCo5は存在するが,La2Co17は存在せず,La−Fe
二元系においては,まったく金属間化合物は存在しない
ことが知られている(IEEE Trans.Magn.MAG−8.,p.p.51
1−515(1972),J.STRNAT)。
However, as shown in FIGS. 5 (a) and 5 (b), LaCo 5 exists but La 2 Co 17 does not exist and La-Fe
It is known that there are no intermetallic compounds in binary systems (IEEE Trans. Magn. MAG-8., Pp51
1-515 (1972), J. STRNAT).

しかし,第5図(a),(b)のRCo5とR2Co17との比
較から,La2Co17が存在すると仮定すれば,その飽和磁化
4πIs(KG)及びキュリー温度は,Ce2Co17より優れてい
ると推察でき,十分有用な磁性材料となる可能性が大き
いことが予見された。
However, from the comparison between RCo 5 and R 2 Co 17 in FIGS. 5 (a) and 5 (b), assuming that La 2 Co 17 is present, the saturation magnetization 4πIs (KG) and the Curie temperature are Ce 2 It can be inferred that it is superior to Co 17, and it was predicted that there is a great possibility that it will be a sufficiently useful magnetic material.

ところで,安価なLaを原料としたLaとCo,Fe,Niの遷移
金属との二元系では存在し得ないLa2T17金属間化合物
を,他の金属元素を添加して安定的に存在せしめること
により,磁気特性に優れコストパフォーマンスにも優え
た強磁性材料が提案されている(特開平3−84935号公
報(特願平2−84935号),参照) [発明が解決しようとする課題] この強磁性材料は,磁化容易軸が結晶c軸方向に存在
する一軸結晶磁気異方性を有し,かつ高い異方性エネル
ギーを有している。
By the way, La 2 T 17 intermetallic compound, which cannot exist in the binary system of La and Co, Fe, Ni transition metal using inexpensive La as a raw material, stably exists by adding other metal elements. Therefore, a ferromagnetic material having excellent magnetic properties and excellent cost performance has been proposed (see Japanese Patent Application Laid-Open No. 3-84935 (Japanese Patent Application No. 2-84935)). This ferromagnetic material has uniaxial crystal magnetic anisotropy in which the axis of easy magnetization exists in the crystal c-axis direction, and has high anisotropic energy.

そこで,本発明の技術的課題は,異方性エネルギーを
更に向上せしめた強磁性材料を提供することにある。
Therefore, a technical object of the present invention is to provide a ferromagnetic material with further improved anisotropic energy.

[課題を解決するための手段] 本発明によれば,RはYを含む希土類元素の内のLaを必
須成分とする少なくとも一種を表すものとし,Tは,Co,F
e,Niの内のCoを必須成分とする少なくとも1種を表すも
のとし,MはTi,V,Cr,Mn,Zr,Nb,Mo,Hf,Ta,Wの内の少なく
とも1種を表すものとしたときに,化学式R2{(T,M)
1-xSix17(但し,xは0<x≦0.15の範囲の数)で表さ
れることを特徴とする強磁性材料が得られる。
[Means for Solving the Problems] According to the present invention, R represents at least one of the rare earth elements containing Y, which has La as an essential component, and T represents Co, F
e shall represent at least one of Ni and Co as an essential component, and M shall represent at least one of Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta and W. And the chemical formula R 2 {(T, M)
1-x Si x17 (where x is a number in the range of 0 <x ≦ 0.15), whereby a ferromagnetic material is obtained.

本発明においては,このR2{(T,M)1-xSix17は菱
面体結晶構造(Th2Zn17型)を有する金属間化合物であ
り,結晶磁気異方性及び,結晶c軸方向に磁化容易軸を
有し,高い飽和磁化4πIs(KG)と400℃以上の高いキ
ュリー温度とが得られ,磁気特性に優れた強磁性材料で
ある。
In the present invention, R 2 {(T, M) 1-x Si x17 is an intermetallic compound having a rhombohedral crystal structure (Th 2 Zn 17 type), It has an easy axis of magnetization in the axial direction, has a high saturation magnetization of 4πIs (KG) and a high Curie temperature of 400 ° C or higher, and is a ferromagnetic material with excellent magnetic properties.

本発明において,強磁性材料R2{(T,M)1-xSix17
中の(T,M)は,前記遷移金属元素Tの一部を前記金属
元素Mで置換したものであり,その割合は,式(T
1-yMy)で表すと,yが0.01〜0.2の範囲内が好ましく,こ
の範囲以外であると,金属間化合物にR2{(T,M)1-xSi
x17が有効に得られない。
In the present invention, the ferromagnetic material R 2 {(T, M) 1-x Si x17
(T, M) in the above is a part of the transition metal element T substituted by the metal element M, and the ratio is expressed by the formula (T
1-y M y ), y is preferably in the range of 0.01 to 0.2, and when y is out of this range, R 2 {(T, M) 1-x Si
x17 cannot be obtained effectively.

また,本発明において,Si添加量xは,0<x≦0.15の
範囲の数であると限定したのは,Si添加量の増加に伴い
異方性エネルギーは増加するもののxが0.1を境にして
減少しはじめ,そしてxがおおよそ0.15より大きくなる
とSiを添加したものの異方性エネルギーはSi無添加時よ
りも低下するためである。
Further, in the present invention, the Si addition amount x is limited to a number in the range of 0 <x ≦ 0.15 because the anisotropy energy increases with the increase of the Si addition amount, but x is at the boundary of 0.1. This is because when x exceeds about 0.15, the anisotropic energy of Si added is lower than that of the case without Si added.

[実施例] 本発明の実施例について図面を参照して説明する。Example An example of the present invention will be described with reference to the drawings.

(実施例1) 出発原料として,純度99.9%のLa,99.99%のCo,Ti,Si
を用いた。
(Example 1) As starting materials, La with a purity of 99.9%, Co, Ti, Si with a purity of 99.99%
Was used.

次に,高周波溶解にてLa2(Co0.95−xSixTi0.0517
(x=0〜0.2)の組成に溶解した。得られたインゴッ
トの均質化のため,1000℃で20時間熱処理を行った。
Then, La 2 (Co 0.95-x Si x Ti 0.05) at a high-frequency melting 17
(X = 0 to 0.2). In order to homogenize the obtained ingot, heat treatment was performed at 1000 ℃ for 20 hours.

次に,インゴットを粉砕し,磁場中成形体を作製し
た。次に,インゴット及び磁場中成形体の磁化測定を行
い,飽和磁化4πIs,異方性磁場HAを求めた。異方性エ
ネルギーは(1)式より求めた。
Next, the ingot was pulverized to produce a compact in a magnetic field. Next, the magnetization of the ingot and the molded body in a magnetic field were measured, and the saturation magnetization 4πIs and the anisotropic magnetic field HA were obtained. The anisotropic energy was determined from equation (1).

Ku=HA・Is/2 …(1) 4πIs,HAの測定結果を第1図に示す。次に,(1)
式から求めたKuを第2図に示す。
Ku = H A · Is / 2 (1) FIG. 1 shows the measurement results of 4πIs, H A. Next, (1)
Fig. 2 shows Ku obtained from the equation.

第2図に示すように,Si添加量xの増加に伴い,Kuの向
上が見られる。
As shown in FIG. 2, Ku increases with an increase in the amount x of Si added.

(実施例2) 出発原料として,純度99.9%のLa,99.99%のCo,Mn,Si
を用いた。次に,高周波溶解にてLa2(Co0.95−xSixMn
0.0517(x=0〜0.2)の組成に溶解した。
(Example 2) As starting materials, La having a purity of 99.9%, Co, Mn, and Si having a purity of 99.99% were used.
Was used. Next, La 2 (Co 0.95-x Si x Mn
0.05 ) 17 (x = 0 to 0.2).

次に,実施例1と同様に熱処理,粉砕を行い磁場中成
形体を作製した。
Next, heat treatment and pulverization were performed in the same manner as in Example 1 to produce a compact in a magnetic field.

次に,4πIs,HAを実施例1と同様に測定し,(1)式
よりKuを求めた。
Next, 4PaiIs, the H A were measured as in Example 1 to obtain Ku equation (1).

その結果を第2図に示す。 The result is shown in FIG.

第3図に示すように,Si添加量xの増加に伴い,Kuの向
上が見られる。
As shown in FIG. 3, Ku is improved with an increase in the amount x of Si added.

(実施例3) 出発原料として,純度99.9%のLa,99.99%のCo,Fe,T
i,Siを用いた。
(Example 3) As starting materials, La with a purity of 99.9%, Co, Fe, T with a purity of 99.99%
i, Si was used.

次に,高周波溶解にてLa2{(Co0.85Fe0.01Ti0.05
1-xSix17(x=0〜0.2)の組成に溶解した。
Next, La 2 {(Co 0.85 Fe 0.01 Ti 0.05 ) by high frequency melting
1-x Si x17 (x = 0 to 0.2).

次に,実施例1と同様に熱処理,粉砕を行い磁場中成
形体を作製した。
Next, heat treatment and pulverization were performed in the same manner as in Example 1 to produce a compact in a magnetic field.

次に,4πIs,HAを実施例1と同様に測定し,(1)式
よりKuを求めた。その結果を第4図に示す。第4図に示
すように,Si添加量xの増加に伴い,Kuの向上が見られ
る。
Next, 4PaiIs, the H A were measured as in Example 1 to obtain Ku equation (1). The result is shown in FIG. As shown in FIG. 4, Ku is improved with an increase in the Si addition amount x.

尚,実施例1,2,3において,MはFe,Co,TはTi,Mnについ
てのべたが,その他の元素についても同様の効果が得ら
れることは容易にみ推察できるものである。
In Examples 1, 2, and 3, M is for Fe, Co, and T is for Ti and Mn. However, it can be easily inferred that the same effect can be obtained for other elements.

[発明の効果] 以上述べたように,本発明によれば,希土類元素とし
てLaを必須成分とし,遷移金属TとしてCoを必須成分と
するR2(T,M)17にSiを添加することにより,異方性エ
ネルギーを向上せしめた強磁性材料を提供することがで
きる。
[Effects of the Invention] As described above, according to the present invention, Si is added to R 2 (T, M) 17 having La as an essential component as a rare earth element and Co as a transition metal T as an essential component. Thereby, a ferromagnetic material with improved anisotropic energy can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図はLa2(Co0.95−xSixTiO・0517(0≦x≦0.
2)の飽和磁化と異方性磁場を示した図,第2図は第1
図の飽和磁化と異方性磁場字から求めた異方性エネルギ
ーを示した図,第3図はLa2(Co0.95−xSixMnO・05
17(0≦x≦0.2)の異方性エネルギーを示した図,第
4図はLa2{(Co0.85Fe0.10TiO・051-xSix17(0
≦x≦0.2)の異方性エネルギーを示した図,第5図
(a)及び(b)は従来例に係るRCo5,R2Co17の飽和磁
化とキューリー温度とを夫々示す図である。
FIG. 1 shows La 2 (Co 0.95-x Si x Ti O · 05 ) 17 (0 ≦ x ≦ 0.
Fig. 2) shows the saturation magnetization and anisotropic magnetic field in Fig. 2;
Shows anisotropic energy obtained from the saturation magnetization and the anisotropic magnetic field shape of Figure, Figure 3 is La 2 (Co 0.95-x Si x Mn O · 05)
17 shows the anisotropy energy of (0 ≦ x ≦ 0.2), Fig. 4 La 2 {(Co 0.85 Fe 0.10 Ti O · 05) 1-x Si x} 17 (0
≦ x ≦ 0.2), and FIGS. 5 (a) and (b) are diagrams respectively showing the saturation magnetization and Curie temperature of RCo 5 and R 2 Co 17 according to the conventional example. .

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】RはYを含む希土類元素の内のLaを必須成
分とする少なくとも一種を表すものとし,Tは,Co,Fe,Ni
のうちで,Coを必須成分とする少なくとも1種を表すも
のとし,MはTi,V,Cr,Mn,Zr,Nb,Mo,Hf,Ta,Wの内の少なく
とも1種を表すものとしたときに、化学式R2{(T,M)
1-xSix17(但し,xは0<x≦0.15の範囲の数)で表さ
れることを特徴とする強磁性材料。
(1) R represents at least one of the rare earth elements containing Y and having La as an essential component, and T represents Co, Fe, Ni
Among them, at least one of which has Co as an essential component shall be represented, and M shall represent at least one of Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta and W. Sometimes the chemical formula R 2 {(T, M)
1-x Si x17 (where x is a number in the range of 0 <x ≦ 0.15).
JP2095199A 1990-04-12 1990-04-12 Ferromagnetic material Expired - Fee Related JP2935126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2095199A JP2935126B2 (en) 1990-04-12 1990-04-12 Ferromagnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2095199A JP2935126B2 (en) 1990-04-12 1990-04-12 Ferromagnetic material

Publications (2)

Publication Number Publication Date
JPH03294443A JPH03294443A (en) 1991-12-25
JP2935126B2 true JP2935126B2 (en) 1999-08-16

Family

ID=14131085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2095199A Expired - Fee Related JP2935126B2 (en) 1990-04-12 1990-04-12 Ferromagnetic material

Country Status (1)

Country Link
JP (1) JP2935126B2 (en)

Also Published As

Publication number Publication date
JPH03294443A (en) 1991-12-25

Similar Documents

Publication Publication Date Title
JPH01298704A (en) Rare earth permanent magnet
JPH0316761B2 (en)
JPH08124730A (en) Rare-earth resin magnet having low coercive force
JP2935126B2 (en) Ferromagnetic material
JPS6219041B2 (en)
Panchanathan Studies on low rare earth Nd-Fe-B compositions
Higuchi et al. Sintered Nd-Fe-B permanent magnets
JP3519443B2 (en) Permanent magnet alloy powder and method for producing the same
Lee The future of rare earth‐transition metal magnets of type RE2TM17
JPH04322406A (en) Rare earth permanent magnet
JPH0851007A (en) Permanent magnet and production thereof
JPH04322405A (en) Rare earth permanent magnet
JP2966169B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
Schultz et al. High coercivities in Sm-Fe-TM magnets
JP3023512B2 (en) Ferromagnetic material
JPH116038A (en) Rare earth permanent magnet material
JP3199506B2 (en) Rare earth permanent magnet
JP2929217B2 (en) Ferromagnetic material
Hadjipanayis A search for new phases and processing techniques for permanent magnet development
JP2929219B2 (en) Permanent magnet alloy
JPH04308062A (en) Magnet alloy containing rare earth element and permanent magnet containing rare earth element
JPS62257703A (en) Resin-bonded magnetic material
JP2746111B2 (en) Alloy for permanent magnet
JPH1088295A (en) Alloy for rare earth-iron-boron type bond magnet
JPH07126816A (en) Rare earth element-containing permanent magnet material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees