JPH033910A - Transfer control method for valve operating characteristics - Google Patents

Transfer control method for valve operating characteristics

Info

Publication number
JPH033910A
JPH033910A JP13967189A JP13967189A JPH033910A JP H033910 A JPH033910 A JP H033910A JP 13967189 A JP13967189 A JP 13967189A JP 13967189 A JP13967189 A JP 13967189A JP H033910 A JPH033910 A JP H033910A
Authority
JP
Japan
Prior art keywords
valve operating
fuel injection
valve
operating characteristics
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13967189A
Other languages
Japanese (ja)
Other versions
JPH0676768B2 (en
Inventor
Kazuo Inoue
和雄 井上
Noriyuki Kishi
岸 則行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP1139671A priority Critical patent/JPH0676768B2/en
Publication of JPH033910A publication Critical patent/JPH033910A/en
Publication of JPH0676768B2 publication Critical patent/JPH0676768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To eliminate torque fluctuation and prevent a shock at the time of a transfer by learning and correcting a fuel injection quantity map set in response to valve operating characteristics so that the preset air-fuel ratio is obtained. CONSTITUTION:The fuel injection quantity in response to the rotating speed and load of an engine is retrieved from a fuel injection quantity map set in response to valve operating characteristics in an electronic control circuit 48, and the actual air-fuel ratio when injection is performed from an injector 46 based on it is detected by an A/F sensor 55. The correction quantity of the fuel injection quantity to obtain the preset air-fuel ratio is calculated by the comparision with the actual air-fuel ratio, and the whole fuel injection quantity map is corrected based on it. When the fuel injection quantity by the corrected map for the valve operating characteristics in use nearly coincides with that for the valve operating characteristics to be transferred, the valve operating characteristics are transferred by a variable-valve timing lift mechanism VT. The engine output torque can be invariably matched before and after the trans fer.

Description

【発明の詳細な説明】 イ00発明目的 (産業上の利用分野) 本発明は、バルブ作動特性を切換自在としたエンジンに
おけるバルブ作動特性の切換制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECT OF THE INVENTION (INDUSTRIAL APPLICATION FIELD) The present invention relates to a method for controlling switching of valve operating characteristics in an engine in which valve operating characteristics can be freely switched.

なお、バルブ作動特性の切換とは、吸気ノ旬しブもしく
は排気バルブの開閉時期、開放期間およびバルブリフト
量の少なくとも一つを切換えることを言い、1気筒内の
複数の吸気ノ旬しブまたは排気バルブの少なくとも1つ
のバルブの開放期間を実質的に零にして、これを閉弁状
態に切換えることも含む。
Note that switching the valve operating characteristics refers to switching at least one of the opening/closing timing, opening period, and valve lift amount of the intake valve or exhaust valve, and refers to switching at least one of the opening/closing timing, opening period, and valve lift amount of the intake valve or exhaust valve. The method also includes reducing the open period of at least one of the exhaust valves to substantially zero and switching the valve to a closed state.

(従来の技術) 吸気バルブと排気バルブの両方またはどちらか一方のバ
ルブ作動特性を低回転領域に適した低速バルブ作動特性
と、高回転領域に適した高速ノくルブ作動特性とに切換
自在としたエンジンが、特公昭49−33289号公報
に開示されているが、このものでは、エンジンの回転数
が所定値以下で、且つ吸気負圧が所定値以下(真空側)
の領域で低速バルブ作動特性に切換わり、その他の領域
では高速バルブ作動特性に切換わる。
(Prior technology) The valve operating characteristics of both the intake valve and the exhaust valve, or either one, can be freely switched between a low-speed valve operating characteristic suitable for a low-speed range and a high-speed knob operating characteristic suitable for a high-speed range. An engine is disclosed in Japanese Patent Publication No. 49-33289, but in this engine, the rotation speed of the engine is below a predetermined value, and the intake negative pressure is below a predetermined value (vacuum side).
In the region, the valve operating characteristic switches to a low speed valve operating characteristic, and in other regions, it switches to a high speed valve operating characteristic.

また、このバルブ作動特性切換時のトルク変動に伴うシ
1ツクを低減するためのバルブ作動特性の切換制御方法
が特願昭63−192239号において提案されている
Furthermore, a method for controlling switching of valve operating characteristics to reduce the stress caused by torque fluctuations when switching valve operating characteristics is proposed in Japanese Patent Application No. 192239/1983.

このバルブ作動特性の切換制御方法は、使用バルブ作動
特性でのエンジン出力トルクと、切換対象のバルブ作動
特性でのエンジン出力トルクとが略一致した時点で切換
を行うものである。その手法として、エンジン出力トル
クは吸入空気量に対応し、その吸入空気量に基づいて、
所定空燃比達成のための燃料噴射量が決まるので、あら
かじめエンジン回転数と吸気圧に応じた°シリンダへの
吸入空気量を実験的に求めておき、その吸入空気量に基
づいて、所定空燃比になるように燃料噴射量を決める。
This valve operating characteristic switching control method performs switching when the engine output torque under the used valve operating characteristic substantially matches the engine output torque under the valve operating characteristic to be switched. As a method, the engine output torque corresponds to the intake air amount, and based on the intake air amount,
Since the amount of fuel to be injected to achieve the specified air-fuel ratio is determined, the amount of air intake into the cylinder is determined experimentally in advance according to the engine speed and intake pressure, and based on that amount of intake air, the amount of fuel injection is determined to achieve the specified air-fuel ratio. Decide the fuel injection amount so that

このようにして、各バルブ作動特性用の燃料噴射量マツ
プを設定し、両マツプ上のエンジン回転数と吸気圧に応
じた燃料噴射量がほぼ一致した時点で切換を行うように
した方法がとられている。
In this way, the fuel injection amount map for each valve operating characteristic is set, and the switching is performed when the fuel injection amount according to the engine speed and intake pressure on both maps almost match. It is being

(発明が解決しようとする課題) このような制御方法における上記燃料噴射量マツプ上の
エンジン回転数と吸気圧で求められる吸入空気量に応じ
た燃料噴射量は、あくまで設計段階での理論値あるいは
実験から求めた代表的な値に過ぎず、エンジンの量産時
に見られる吸気系の各部品やセンサ等のバラツキや、長
時間運転に伴う経年変化および感度劣化等による誤差に
対する補正が全く考慮されていない。このため設計値ど
うりの吸入空気量がシリンダ内に吸入されなかったり、
正確な回転数や吸入圧が検出されなかったりして、上記
の燃料噴射量マツプから吸入空気量に対応する正しい燃
料噴射量が検索されない。
(Problem to be Solved by the Invention) In such a control method, the fuel injection amount according to the intake air amount determined from the engine speed and intake pressure on the above fuel injection amount map is only a theoretical value or a theoretical value at the design stage. These are only representative values obtained from experiments, and do not take into account any corrections for errors caused by variations in intake system parts and sensors that occur during engine mass production, as well as aging and sensitivity deterioration due to long-term operation. do not have. As a result, the amount of intake air as designed may not be drawn into the cylinder, or
The correct rotational speed and intake pressure may not be detected, and the correct fuel injection amount corresponding to the intake air amount cannot be retrieved from the above fuel injection amount map.

そして、このように誤って検索された燃料噴射量に基づ
く燃料噴射を行っても、所定空燃比を達成できなくなる
ばかりか、切換前後のバルブ作動特性での燃料噴射量が
一致してもエンジン出力トルクが一致しないという問題
がある。さらに、このまま上記のような燃料噴射量の一
致点でバルブ作動特性の切換をすれば、エンジン出力ト
ルクが一致していないときに切換えることになりトルク
変動に伴うジーツクが発生するという問題がある。
Even if fuel injection is performed based on the fuel injection amount incorrectly searched in this way, not only will the specified air-fuel ratio not be achieved, but even if the fuel injection amount matches the valve operating characteristics before and after switching, the engine output will be reduced. The problem is that the torques do not match. Furthermore, if the valve operating characteristics are switched at a point where the fuel injection amounts match as described above, the switching will occur when the engine output torques do not match, resulting in the problem of jerks occurring due to torque fluctuations.

本発明では、以上のような問題に鑑み、常にバルブ作動
特性切換前後の燃料噴射量が一致すればエンジン出力ト
ルクも一致するようにしたバルブ作動特性の切換制御方
法を提供することを目的とする。
In view of the above-mentioned problems, it is an object of the present invention to provide a control method for switching valve operating characteristics such that if the fuel injection amounts before and after switching the valve operating characteristics are always the same, then the engine output torque is also the same. .

口0発明の構成 (課題を解決するための手段) 以上のような問題を解決するために、本発明では、バル
ブ作動特性に応じて設定された燃料噴射量マツプからエ
ンジンの回転数と負荷とに応じた燃料噴射量を検索し、
この燃料噴射量に基づく噴射を行った場合のエンジンの
実空燃比を検出し、この実空燃比と所定空燃比とを比較
して、この所定空燃比を得るための燃料噴射量の補正量
を算出し、この補正量に基づいて、バルブ作動特性用の
燃料噴射量マツプの全体を修正して、これを修正マツプ
とし、バルブ作動特性の切換を行うときには、現在使用
しているバルブ作動特性用の修正された燃料噴射量マツ
プと切換対象のバルブ作動特性用の修正された燃料噴射
量マツプとから、エンジンの回転数と負荷とに応じた燃
料噴射量をそれぞれ検索し、これら両燃料噴射量がほぼ
一致した時点で、使用バルブ作動特性から前記切換対象
のバルブ作動特性への切換を行うようにしている。
Configuration of the Invention (Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention calculates engine speed and load from a fuel injection amount map set according to valve operating characteristics. Search for the fuel injection amount according to
The actual air-fuel ratio of the engine when injection is performed based on this fuel injection amount is detected, this actual air-fuel ratio is compared with a predetermined air-fuel ratio, and the amount of correction of the fuel injection amount to obtain this predetermined air-fuel ratio is determined. Based on this correction amount, the entire fuel injection amount map for the valve operating characteristics is corrected, and this is used as the correction map. When switching the valve operating characteristics, the map for the currently used valve operating characteristics is used. The fuel injection amount corresponding to the engine speed and load is searched from the corrected fuel injection amount map and the corrected fuel injection amount map for the valve operation characteristic to be switched, and both fuel injection amounts are determined. When the valve operating characteristics are substantially equal to each other, switching is performed from the used valve operating characteristic to the valve operating characteristic to be switched.

(作用) このようなバルブ作動特性の切換制御方法を用いれば、
エンジン量産時の吸気系の各部品やセンサのバラツキや
、長時間運転に伴う経年変化等があっても、切換前後の
バルブ作動特性における燃料噴射量が一致すれば常にエ
ンジン出力トルクも一致するように燃料噴射量マツプが
学習修正されるので、切換時の両バルブ作動特性におい
て、そのときのエンジン回転数と負荷に応じたそれぞれ
の燃料噴射量が等しければ、エンジン出力トルクも一致
していることになり、切換時のトルク変動はなく、シロ
ツクの防止に繋がる。
(Function) If such a valve operating characteristic switching control method is used,
Even if there are variations in intake system parts and sensors during engine mass production, or aging due to long-term operation, if the fuel injection amount in the valve operating characteristics before and after switching is the same, the engine output torque will always be the same. Since the fuel injection amount map is learned and corrected at the time of switching, if the respective fuel injection amounts are equal according to the engine speed and load at that time in the operating characteristics of both valves at the time of switching, the engine output torque will also be the same. , there is no torque fluctuation during switching, which helps prevent blockage.

(実施例) 以下、図面を用いて本発明の好ましい実施例について説
明する。
(Example) Preferred examples of the present invention will be described below with reference to the drawings.

第1図は、本発明に係るバルブ作動特性切換の学習制御
方法に用いるエンジンの構成を示したものである。
FIG. 1 shows the configuration of an engine used in the learning control method for switching valve operating characteristics according to the present invention.

エンジン本体41の上部にはシリンダ41aが設けられ
、それに繋がるように吸入通路42と、その吸入通路4
2の開閉を行う可変バルブタイミング・リフト機構VT
とが設けられている。この機構内の油路31(第3.4
図参照)には、切換バルブ60により制御された油圧が
油路61を介して供給される。吸入通路42の吸入口に
はエアクリーナ44が取り付けられ、またその途中には
スロットルバルブ45と、エンジン近くにインジェクタ
46とが配設されている。
A cylinder 41a is provided at the top of the engine body 41, and an intake passage 42 is connected to the cylinder 41a.
Variable valve timing/lift mechanism VT that opens and closes 2
and is provided. Oil passage 31 (No. 3.4) in this mechanism
(see figure), hydraulic pressure controlled by a switching valve 60 is supplied through an oil passage 61. An air cleaner 44 is attached to the intake port of the intake passage 42, and a throttle valve 45 and an injector 46 are provided in the middle of the air cleaner 44 and near the engine.

また、シリンダ41aには排気通路43が取り付けられ
、その途中にエンジンの実空燃比A/Fを検出するA/
Fセンサ55が配設されている。
In addition, an exhaust passage 43 is attached to the cylinder 41a, and an A/F for detecting the actual air-fuel ratio of the engine is installed in the middle of the exhaust passage 43.
An F sensor 55 is provided.

このA/Fセンサは、実空燃比A/Fに応じて出力信号
電圧が直線的に変化するものである。
This A/F sensor has an output signal voltage that changes linearly in accordance with the actual air-fuel ratio A/F.

さらに、シリンダ41aの上部には、点火プラグ47が
取り付けられている。
Furthermore, a spark plug 47 is attached to the upper part of the cylinder 41a.

スロットルバルブ45付近には、スロットル開度θth
を検知するスロットル・ポジション・センサ56と、吸
気負圧Paを検知する圧力センサ53とが繋がり、それ
らセンサは電子制御回路48に吸気の状態を表す信号を
送る。
The throttle opening θth is located near the throttle valve 45.
A throttle position sensor 56 that detects the intake air pressure Pa and a pressure sensor 53 that detects the intake negative pressure Pa are connected, and these sensors send signals representing the intake state to the electronic control circuit 48.

また、電子制御回路48には、回転センサ52からエン
ジン回転数N e s車速Vおよび水温センサ55から
冷却水温Twを表す信号が送られる。
Further, the electronic control circuit 48 is sent signals representing the engine rotation speed N e s vehicle speed V from the rotation sensor 52 and the cooling water temperature Tw from the water temperature sensor 55 .

それら各信号をもとに、電子制御回路48が走行状態を
把握し、切換条件が成立すると、切換信号VTSを切換
バルブ60内のソレノイド60aに送り、当該切換バル
ブ60を作動させる。切換バルブ60が作動せず油路3
1内に圧油が供給されないときは低速バルブ作動特性で
あるが、切換バルブ60が作動し油路31内に圧油が供
給されると高速バルブ作動特性に切換わるとともに、油
圧スイッチ50がオン状態になり、バルブ作動特性が切
換わっだことが確認される。
Based on these signals, the electronic control circuit 48 grasps the running state, and when the switching conditions are satisfied, a switching signal VTS is sent to the solenoid 60a in the switching valve 60, and the switching valve 60 is actuated. The switching valve 60 does not operate and the oil passage 3
When pressure oil is not supplied to the oil passage 31, the valve operates at a low speed, but when the switching valve 60 operates and pressure oil is supplied to the oil passage 31, the valve operates at a high speed, and the oil pressure switch 50 turns on. This confirms that the valve operating characteristics have been switched.

さらに、電子制御回路48から、インジェクタ46の燃
料噴射量および点火プラグ47の点火時期を制御する信
号が、それぞれに送られる。
Further, the electronic control circuit 48 sends signals for controlling the fuel injection amount of the injector 46 and the ignition timing of the spark plug 47, respectively.

ここで可変バルブタイミング・リフト機ell V T
について第2図を参照しながら説明する。エンジンEの
各機構毎に一対の吸気バルブla、lbが配設され、こ
れら一対の吸気バルブ1a+1bは、エンジンの回転に
同期して1/2の回転比で駆動されるカムシャフト2に
一体的に設けられた第1低速用カム3.第2低速用カム
3′および高速用カム5と、カムシャフト2と平行なロ
ッカシャフト6に枢支される第1.第2および第30ツ
カアーム7.8.9との働きによって開閉作動される。
Here is the variable valve timing/lift machine ell V T
This will be explained with reference to FIG. A pair of intake valves la and lb are arranged for each mechanism of the engine E, and these pair of intake valves 1a+1b are integrally connected to a camshaft 2 that is driven at a rotation ratio of 1/2 in synchronization with the rotation of the engine. The first low speed cam provided in 3. The first cam 3' is pivotally supported by a second low-speed cam 3', a high-speed cam 5, and a rocker shaft 6 parallel to the camshaft 2. It is opened and closed by the action of the second and thirtieth claw arms 7.8.9.

カムシャフト2はエンジン本体の上方で回転自在に配設
されており、第1低速用カム3は一方の吸気バルブ1a
に対応する位置でカムシャフト2に一体的に設けられ、
第2低速用カム3′は他方の吸気バルブ1bに対応する
位置でカムシャフト2に一体的に設けられる。また、高
速用カム5は両吸気バルブ1a*1b間に対応する位置
でカムシャフト2に一体的に設けられる。しかも、第1
および第2低速用カム3,3′はエンジンの低速運転時
に対応した高位部3 a + 3 a ’を有する。
The camshaft 2 is rotatably disposed above the engine body, and the first low-speed cam 3 is connected to one intake valve 1a.
is provided integrally with the camshaft 2 at a position corresponding to
The second low-speed cam 3' is integrally provided on the camshaft 2 at a position corresponding to the other intake valve 1b. Further, the high-speed cam 5 is integrally provided on the camshaft 2 at a position corresponding to between both intake valves 1a*1b. Moreover, the first
The second low speed cams 3, 3' have high portions 3a+3a' corresponding to low speed operation of the engine.

高速用カム5はエンジンの高速運転時に対応した高位部
5aを有する。
The high-speed cam 5 has a high portion 5a suitable for high-speed operation of the engine.

ロッカシャフト6には第1〜第30ツカアーム7〜9が
それぞれ枢支され、第1および第20ツカアーム7.8
は各吸気バルブ1a、1bの上方位置まで延設される。
First to thirtieth lever arms 7 to 9 are respectively pivotally supported on the rocker shaft 6, and the first to thirtieth lever arms 7.8
is extended to a position above each intake valve 1a, 1b.

また、第10ツカアーム7の上部には低速用カム3に摺
接するカムスリッパ10が設けられ、第20ツカアーム
8の上部には第2低速用カム4に当接し得るカムスリッ
パ11が設けられる。なお、各吸気バルブla、lbは
、バルブばね1θ、17により閉弁方向すなわち上方に
向けて付勢されている。
Further, a cam slipper 10 that slides on the low-speed cam 3 is provided at the top of the tenth claw arm 7, and a cam slipper 11 that can come into contact with the second low-speed cam 4 is provided on the top of the 20th claw arm 8. The intake valves la and lb are biased toward the valve closing direction, that is, upward, by valve springs 1θ and 17.

第30ツカアーム9は、第1および第20ツカアーム7
.8間でロッカシャフト6に枢支される。この第30ツ
カアーム9は、ロッカシャフトθから両吸気バルブ1a
+1b側に僅かに延出され、その上部には高速用カム5
に摺接するカムスリッパが設けられる。
The 30th claw arm 9 is connected to the first and 20th claw arms 7.
.. It is pivotally supported on the rocker shaft 6 between 8 and 8. This 30th lever arm 9 connects both intake valves 1a from the rocker shaft θ.
It extends slightly to the +1b side, and a high-speed cam 5 is mounted above it.
A cam slipper is provided that slides into contact with the cam slipper.

第3図に示すように、第1〜第30ツカアーム7.8.
9は、相互に摺接されており、それらの相対角度変位を
可能とする状態と、各ロッカアーム7〜9を一体的に連
結する状態とを切換可能な連結手段21が第1〜第20
ツカアーム7.8゜9に設けられる。
As shown in FIG. 3, the first to 30th claw arms 7.8.
9 are in sliding contact with each other, and a connecting means 21 that can switch between a state that allows relative angular displacement thereof and a state that integrally connects each rocker arm 7 to 9 is connected to the first to 20th rocker arms 7 to 9.
It is installed at the claw arm 7.8°9.

連結手段21は、第1および第30ツカアーム7.9を
連結する位置およびその連結を解除する位置間で移動可
能な第1ピストン22と、第3および第20ツカアーム
9,8を連結する位置およびその連結を解除する位置間
で移動可能な第2ピストン23と、第1および第2ピス
トン22.23の移動を規制するストッパ24と、第1
および第2ピストン22.23を連結解除位置側に移動
させるべくストッパ24を付勢するばね25とを備える
The connecting means 21 has a first piston 22 movable between a position where the first and 30th lever arms 7.9 are connected and a position where the connection is released, and a position where the third and 20th lever arms 7.9 are connected and A second piston 23 that is movable between positions where the connection is released, a stopper 24 that restricts movement of the first and second pistons 22.23, and a first
and a spring 25 that biases the stopper 24 to move the second piston 22, 23 to the disconnection position.

これら第1および第2ピストン22.23の移動は、ソ
レノイドバルブ91の作動に応じて油路31.32.3
0を通って油圧室29内に供給される油圧により行われ
る。
The movement of these first and second pistons 22.23 is caused by the movement of the oil passage 31.32.3 in accordance with the operation of the solenoid valve 91.
This is done by the hydraulic pressure supplied into the hydraulic chamber 29 through 0.

なお、このような可変バルブタイミング・リフト機構は
、例えば、特開昭82−121811号公報に詳細に開
示されている。
Incidentally, such a variable valve timing/lift mechanism is disclosed in detail in, for example, Japanese Patent Laid-Open No. 82-121811.

次に、上記のように構成された可変バルブタイミング・
リフト機構VTの作動について説UITる。
Next, the variable valve timing
This section explains the operation of the lift mechanism VT.

エンジンEの低速運転時には、ソレノイドバルブ91が
OFFであり、第3図に示すように油路31と油圧源(
図示せず)との連通が断たれており、連結切換手段21
の油圧室2θに油圧が供給されず、ストッパ24はばね
25によって第30ツカアームθ側に押圧される。この
ため各ロッカアーム7.8.9はそれぞれ独立して変位
可能である。
When the engine E is operating at low speed, the solenoid valve 91 is OFF, and the oil passage 31 and the oil pressure source (
(not shown), and the connection switching means 21
Hydraulic pressure is not supplied to the hydraulic chamber 2θ, and the stopper 24 is pressed by the spring 25 toward the 30th lever arm θ. Each rocker arm 7.8.9 is therefore independently displaceable.

このような連結切換手段21の連結解除状態にあって、
カムシャフト2の回転動作により、第10ツカアーム7
は第1低速用カム3との摺接に応じて揺動し、第20ツ
カアーム8は第2低速用カム3′との摺接に応じて揺動
する。したがって、両吸気バルブ1a+1−bが、第1
および第2低速用カム3,3′によって開閉作動する。
When the connection switching means 21 is in the disconnected state,
Due to the rotational movement of the camshaft 2, the tenth lever arm 7
swings in response to sliding contact with the first low-speed cam 3, and the 20th claw arm 8 swings in response to sliding contact with the second low-speed cam 3'. Therefore, both intake valves 1a+1-b are
Opening and closing operations are performed by the second low-speed cams 3 and 3'.

このとき、第30ツカアーム9は高速用カム5との摺接
により揺動するが、その揺動動作は両吸気バルブ1a*
1bの作動に何の影響も及ぼさない。
At this time, the 30th lever arm 9 swings due to sliding contact with the high-speed cam 5, but the swinging action is similar to that of both intake valves 1a*.
It has no effect on the operation of 1b.

このようにして、エンジンEの低速運転時には、第5A
図において破線3および一点鎖線3′で示すように、一
方の吸気バルブ1aが第1低速用カム3の形状に応じた
タイミングおよびリフト量で開閉作動し、他方の吸気バ
ルブ1bが第2低速用カム3′の形状に応じたタイミン
グおよびリフト量で開閉作動する。したがって低速運転
に適した混合気流人速度が得られ、燃費の低減およびキ
ラキング防止を図るとともに、最適な低速運転を行わせ
ることができる。
In this way, when the engine E is operating at low speed, the 5th A
As shown by a broken line 3 and a dashed-dotted line 3' in the figure, one intake valve 1a opens and closes at a timing and lift amount according to the shape of the first low-speed cam 3, and the other intake valve 1b operates as a second low-speed cam 3. It opens and closes with timing and lift amount depending on the shape of the cam 3'. Therefore, a mixture flow rate suitable for low-speed operation can be obtained, reducing fuel consumption and preventing sparkling, and allows optimum low-speed operation to be performed.

なお、低速運転に適した混合気流人速度を得るために、
例えば、第5B図に示すように、第2低速用カム3′の
高位部3a’を低くして低速運転時には吸気バルブ1b
の開放時間・量を掻く僅かにするようにしても良く、さ
らには、上記高位部3a’を零にして、低速運転時には
吸気バルブ1bを全く開弁させないようにしてバルブ休
止状態を作り出すようにしても良い。
In addition, in order to obtain a mixture flow speed suitable for low-speed operation,
For example, as shown in FIG. 5B, the high part 3a' of the second low-speed cam 3' is lowered to lower the intake valve 1b during low-speed operation.
Alternatively, the opening time and amount of the intake valve 1b may be made very small, and furthermore, the above-mentioned high portion 3a' may be set to zero so that the intake valve 1b is not opened at all during low-speed operation to create a valve rest state. It's okay.

エンジンEの高速運転に際しては、ソレノイドバルブ9
1がONであり、第4図に示すようにソレノイドバルブ
91により油圧源(図示せず)と油路31とが連通され
ており、連結切換手段21の油圧室29に作動油圧が供
給される。これにより、第4図に示すように、ストッパ
24が規制段部36に当接するまで、第1および第2ピ
ストン22.23が移動し、第1ピストン22により第
1および第30ツカアーム7.9が連結され、第2ピス
トン23により第3および第20ツカアーム9,8が連
結される。
When operating engine E at high speed, solenoid valve 9
1 is ON, and as shown in FIG. 4, the hydraulic pressure source (not shown) and the oil passage 31 are communicated by the solenoid valve 91, and the hydraulic pressure is supplied to the hydraulic chamber 29 of the connection switching means 21. . As a result, as shown in FIG. 4, the first and second pistons 22.23 move until the stopper 24 comes into contact with the restriction step 36, and the first piston 22 causes the first and 30th lever arms 7.9 to move. are connected, and the third and twentieth hook arms 9, 8 are connected by the second piston 23.

このようにして、第1〜第30ツカアーム7゜8.9が
連結切換手段21によって相互に連結された状態では、
高速用カム5に摺接した第30ツカアーム9の揺動量が
最も大きいので、第1および第20ツカアーム7.8は
第30ツカアーム9とともに揺動する。したがって、エ
ンジンEの高速運転時には、第5A図において実線5で
示すように、両吸気バルブ1a+1bが、高速用カム5
の形状に応じたタイミングおよびリフト量で開閉作動す
る。この場合のタイミングおよびリフト量は、低速運転
時のそれらより大きく、高速運転に適する吸気が得られ
るようになっており、エンジン出力の向上を図ることが
できる。
In this manner, when the first to thirtieth lever arms 7°8.9 are connected to each other by the connection switching means 21,
Since the amount of swing of the 30th claw arm 9 in sliding contact with the high speed cam 5 is the largest, the first and 20th claw arms 7.8 swing together with the 30th claw arm 9. Therefore, during high-speed operation of the engine E, both intake valves 1a+1b are connected to the high-speed cam 5, as shown by the solid line 5 in FIG. 5A.
It opens and closes with timing and lift amount depending on the shape of the door. The timing and lift amount in this case are larger than those during low-speed operation, so that intake air suitable for high-speed operation can be obtained, and the engine output can be improved.

以上のような作動において、第1および第2低速用カム
3,3′に基づく吸気バルブla、lbの開閉タイミン
グおよびリフト量を低速バルブ作動特性と称し、高速用
カム5に基づく吸気バルブla、1bの開閉タイミング
およびリフト量を高速バルブ作動特性と称する。両バル
ブ作動特性は低速運転領域と高速運転領域とに分けて用
いられ、このときのエンジン出力トルクとエンジン回転
数との関係は第6図のようになり、バルブ作動特性の切
換は、低速バルブ作動特性におけるエンジン出力トルク
Lと高速バルブ作動特性におけるエンジン出力トルクH
との一致点Aにおいて行われる。
In the above-described operation, the opening/closing timing and lift amount of the intake valves la, lb based on the first and second low-speed cams 3, 3' are referred to as low-speed valve operating characteristics, and the intake valves la, lb based on the high-speed cams 5 are referred to as low-speed valve operating characteristics. The opening/closing timing and lift amount of 1b are referred to as high-speed valve operation characteristics. Both valve operating characteristics are used separately for low-speed operation region and high-speed operation region, and the relationship between engine output torque and engine speed at this time is as shown in Figure 6. Engine output torque L in operating characteristics and engine output torque H in high-speed valve operating characteristics
This is done at the matching point A.

第7図は、本発明に係るバルブ作動特性の切換制御方法
の制御フローである。
FIG. 7 is a control flow of the valve operating characteristic switching control method according to the present invention.

まずこの制御フロー中で用いられている燃料噴射量マツ
プ(TILマツプITI)!マツプ)について説明する
First, the fuel injection amount map (TIL map ITI) used in this control flow! Map) will be explained.

燃料噴射量T、は、様々な運転状況に対応するエンジン
回転数Neと吸気圧PBに応じたシリンダ41a(第1
図参照)への吸入空気量に合わせて、吸入混合気が理論
空燃比に近い所定空燃比になるように設定されるもので
、この燃料噴射量T、の集合をTIマツプと称し、この
TIマツプを低速バルブ作動特性LVT用のTILマツ
プと高速バルブ作動特性HVT用のTINマツプとに分
けて電子制御回路48に記憶させておく。なお、ここで
はエンジンの負荷として吸気圧PBを用いているが、そ
れに加えであるいはその代わりに第1図のスロットル・
ポジシーン・センサ56により検出されるスロットル開
度θ。を用いても良い。
The fuel injection amount T is determined based on the cylinder 41a (first
The intake air-fuel mixture is set to a predetermined air-fuel ratio close to the stoichiometric air-fuel ratio according to the intake air amount to The map is divided into a TIL map for low-speed valve operating characteristics LVT and a TIN map for high-speed valve operating characteristics HVT and stored in the electronic control circuit 48. In this case, the intake pressure PB is used as the engine load, but in addition to or in place of it, the throttle pressure in Fig. 1 is used.
Throttle opening degree θ detected by the positive scene sensor 56. You may also use

ステップS1において、第1図の回転センサ52、吸気
圧センサ63および水温センサ54により、それぞれエ
ンジン回転数N e を吸気圧PBおよび冷却水温Tw
を検出し、ステップS2において冷却水温Twが所定水
温Ti、より低いか否かを判断し、低いときはステップ
S3へ進み、低速バルブ作動特性LVT維持の合図とな
るようにフラグFVTにOを立てる。というのは、冷却
水温Twが所定水温TLより低いときは、まだ暖機運転
中であるとし、このときは、バルブ作動特性切換を行う
作動油も低温であり、バルブ作動特性の切換を行わせる
ために、第3図の連結切換手段21の油圧室29に作動
油圧を供給しても作動油の粘度が高く作動遅れが生じる
という問題があるためである。そこで、この場合には、
ステップS4に進んで、高速バルブ作動特性に切換わら
ないように低速バルブ作動特性にロックしておく。そし
てステップS5でTILマツプを選択し、ステップS6
でそのときの回転数Neと吸気圧PBに応じた燃料噴射
量T+t、を算出しこれを暖機運転用に補正して、ステ
ップS7において第1図のインジェクタ48から噴射す
る。
In step S1, the rotation sensor 52, intake pressure sensor 63, and water temperature sensor 54 shown in FIG.
is detected, and in step S2 it is determined whether or not the cooling water temperature Tw is lower than a predetermined water temperature Ti. If it is low, the process proceeds to step S3, and a flag FVT is set to O to serve as a signal to maintain the low speed valve operating characteristic LVT. . This is because when the cooling water temperature Tw is lower than the predetermined water temperature TL, it is assumed that the warm-up operation is still in progress, and at this time, the hydraulic fluid that performs the switching of the valve operating characteristics is also at a low temperature, and the switching of the valve operating characteristics is performed. This is because, even if hydraulic pressure is supplied to the hydraulic chamber 29 of the connection switching means 21 shown in FIG. 3, the viscosity of the hydraulic oil is high, causing a delay in operation. Therefore, in this case,
Proceeding to step S4, the low-speed valve operating characteristics are locked to prevent switching to the high-speed valve operating characteristics. Then, in step S5, the TIL map is selected, and in step S6
The fuel injection amount T+t corresponding to the rotational speed Ne and intake pressure PB at that time is calculated, corrected for warm-up operation, and injected from the injector 48 in FIG. 1 in step S7.

以下、低速バルブ作動特性LVTから高速バルブ作動特
性HVTへの切換の場合を説明する。
The case of switching from the low-speed valve operating characteristic LVT to the high-speed valve operating characteristic HVT will be described below.

暖機運転が終了し、ステップS2でTw≧TLと判断さ
れると、ステップS8へ進み、フラグFVT” Oであ
ったこと、つまり現在低速バルブ作動特性LVTである
ことを判断し、ステップS9で低速バルブ作動特性LV
T用のTILマツプを選択する。本来設計どうりであれ
ば、ある吸気圧FBIにおけるTILマツプは高速バル
ブ作動特性HVT用のTIIIマツプと第8A図に示す
ように回転数Ne1のA点で一致しており、エンジン出
力トルクも同じ回転数Ne1のB点で一致している。し
たがって燃料噴射量の一致点であるA点においてバルブ
作動特性の切換を行えば、トルク変動がなくシジックも
発生しない。この場合にはステップS10においてその
ときの回転数と吸気圧とに応じた燃料噴射量をTILマ
ツプから検索し、ステップ811で噴射すれば、ステッ
プSL2では所定空燃比A / F oが検出され問題
ないのであるが、前述のようにエンジンの量産時の吸気
系部品およびセンサのバラツキや、それらの経年変化等
があると、設計値どうりの吸入空気量がシリンダ内に吸
入されなかったり、また正確な回転数や吸気圧が検出さ
れなかったりして、そのときの回転数と吸気圧に応じた
燃料噴射量と異なる燃料噴射量を検索して噴射してしま
うというように、低速バルブ作動特性全域で誤った燃料
噴射量を噴射することになり、それはすなわちTILマ
ツプと異なるTILマツプを使用していることになる。
When the warm-up operation is completed and it is determined in step S2 that Tw≧TL, the process proceeds to step S8, in which it is determined that the flag FVT"O, that is, the current low speed valve operating characteristic LVT is determined, and in step S9 Low speed valve operating characteristics LV
Select the TIL map for T. If it is originally designed, the TIL map at a certain intake pressure FBI will match the TIII map for high-speed valve operation characteristics HVT at point A at rotation speed Ne1 as shown in Figure 8A, and the engine output torque will also be the same. They match at point B at rotational speed Ne1. Therefore, if the valve operating characteristics are switched at point A, which is the point where the fuel injection amounts match, there will be no torque fluctuations and no sysonics will occur. In this case, if the fuel injection amount corresponding to the rotational speed and intake pressure at that time is searched from the TIL map in step S10, and the fuel is injected in step 811, the predetermined air-fuel ratio A/F o is detected in step SL2, and the problem is solved. However, as mentioned above, if there are variations in intake system parts and sensors during engine mass production, or if they change over time, the amount of intake air as designed may not be drawn into the cylinder, or Low-speed valve operation characteristics may cause the engine to search for and inject a fuel injection amount that is different from the fuel injection amount corresponding to the current rotation speed and intake pressure when the accurate rotation speed or intake pressure is not detected. An incorrect fuel injection amount will be injected over the entire range, which means that a different TIL map is used.

この場合は、第8A図に示すように、実空燃比A/F’
が所定空燃比A/F  とならなくなり燃料噴射量とエ
ンジン出力トルクの関係がずれて、燃料噴射量の一致点
A′とエンジン出力トルクの一致点B′が一致しないの
で、このまま燃料噴射量の一致点A′においてバルブ作
動特性の切換を行えば、ΔTrのトルク差が生じ、シ「
ツクが発生する。そこでステップ813において例えば
今、回転数Ne2であるとすると、この場合の実空燃比
A/F8′と所定空燃比A / F oとを比較し、当
然これらは等しくないので、ステップ814へ進み、実
空燃比A/ F 2 ’を所定空燃比A / F oに
するような燃料噴射量TIL2’の補正量ΔTIL2を
算出し、ステップ815においてその補正量ΔTIL2
を基に、回転数と吸気圧に応じたTit、マツプ上の各
点における補正量を求め、第8C図に示すようにNTI
L’マツプ全体を修正して、これを修正マツプ(TIL
”マツプ)とする。すると両バルブ作動特性での燃料噴
射量の一致点は回転数N e、#のA#点へ移り、エン
ジン出力トルクの一致点も同じ回転数Net”のB#点
に移る。したがって燃料噴射量の一致点であるA#点で
バルブ作動特性の切換を行えば、トルク変動がなく、シ
ロツクも発生しない。
In this case, as shown in FIG. 8A, the actual air-fuel ratio A/F'
will no longer be the predetermined air-fuel ratio A/F, and the relationship between the fuel injection amount and engine output torque will deviate, and the matching point A' of the fuel injection amount and the matching point B' of the engine output torque will not match, so the fuel injection amount will not change as it is. If the valve operating characteristics are switched at the coincidence point A', a torque difference of ΔTr will occur, and the
Tsuku occurs. Therefore, in step 813, assuming that the rotational speed is now Ne2, the actual air-fuel ratio A/F8' in this case is compared with the predetermined air-fuel ratio A/F o, and since these are naturally not equal, the process proceeds to step 814. A correction amount ΔTIL2 of the fuel injection amount TIL2' that makes the actual air-fuel ratio A/F 2 ' become a predetermined air-fuel ratio A/F o is calculated, and in step 815, the correction amount ΔTIL2 is calculated.
Based on this, calculate Tit according to the rotational speed and intake pressure, and the correction amount at each point on the map, and calculate the NTI as shown in Figure 8C.
Correct the entire L' map and modify this map (TIL
Then, the point of agreement of the fuel injection amount in both valve operating characteristics moves to point A# at the rotation speed Ne, #, and the point of agreement of the engine output torque also moves to point B# of the same rotation speed Net. Move. Therefore, if the valve operating characteristics are switched at point A#, which is the point where the fuel injection amounts match, there will be no torque fluctuation and no lock-up.

このようにしてステップ810において検索したTIL
#マツプ上の燃料噴射量TIL”による実空燃比A/F
が、ステップ813においてA / F 。
The TIL searched in step 810 in this way
#Actual air-fuel ratio A/F according to the fuel injection amount TIL on the map
However, in step 813, the A/F.

と等しいと判断すると、ステップ824へ進み、切換対
象である高速バルブ作動特性HVT用のT■マツプから
、そのときの回転数と吸気圧に応じた燃料噴射量TIg
を検索する。ここで、TIL#は最新の燃料噴射量であ
ることを意味し、前回のルーチンで上記のような修正を
していないTit。
If it is determined that it is equal to , the process proceeds to step 824, and the fuel injection amount TIg is determined according to the rotational speed and intake pressure at that time from the T map for the high-speed valve operation characteristic HVT that is the switching target.
Search for. Here, TIL# means the latest fuel injection amount, and is Tit that has not been modified as described above in the previous routine.

マツプ上の燃料噴射量を含む。そしてステップS25に
おいて第8C図のA#点のようにTIL#とTIIIが
一致した場合は、切換条件が成立したと判断し、ステッ
プ82Bにおいて高速バルブ作動特性HVTに切換える
ための合図となるように、フラグFVTに1を立てる。
Includes fuel injection amount on the map. If TIL# and TIII match in step S25 as at point A# in FIG. 8C, it is determined that the switching condition has been met, and this is a signal to switch to the high-speed valve operating characteristic HVT in step 82B. , sets flag FVT to 1.

ただし、TIL#とTI□が一致したか否かの判断は、
これらの差が所定のしきい値ΔGより小さいか否かを判
断して行う。次にステップS27において低速バルブ作
動特性LVTから高速バルブ作動特性HVTへの切換を
実行すべく、第1図の切換バルブ60のソレノイドBo
aに切換信号VTSを送り、第4図のように切換バルブ
60を開位置とし、切換連結機構21を連結させる。
However, to determine whether TIL# and TI□ match,
This is done by determining whether the difference between these is smaller than a predetermined threshold value ΔG. Next, in step S27, the solenoid Bo of the switching valve 60 in FIG.
A switching signal VTS is sent to a, the switching valve 60 is set to the open position as shown in FIG. 4, and the switching connection mechanism 21 is connected.

ステップ825で切換条件が成立していないと判断した
場合には低速バルブ作動特性LVTを維持する。
If it is determined in step 825 that the switching condition is not satisfied, the low speed valve operating characteristic LVT is maintained.

次に高速バルブ作動特性HVTから低速/<)レブ作動
特性LVTへの切換の場合について説明する。ステップ
SL、S2を経てステップS8でフラグFvT=1であ
ること、つまり現在高速ノくルブ作動特性HVTである
ことを確認すると、ステップ849で高速バルブ作動特
性HVT用のTIMマツプ(T (II’ ”、ツブ)
を選択し、ステップS50で、このTIHマツプ(To
o’マツプ)からステップS1で検出した回転数(前記
切換のN e 2と同様に仮定した、例えばNe3)+
 吸気圧PB3に応じた燃料噴射量’r、、、(T、、
、’ )を算出し、ステップ851でインジェクシロン
46から噴射する。次にステップ852でこのTllI
3  (T1113 ’ )での実空燃比A/F3  
(A/F3 ’ )と所定空燃比A / F oと比較
する。これらが等しくなければ、前記切換と同様に、ス
テップS54で補正量ΔT1)I3を算出し、これを基
にステップS55においてT I11’マツプ全体を修
正し、修正マツプ(TllI“マツプ)とする。
Next, a case of switching from high speed valve operating characteristic HVT to low speed/<) rev operating characteristic LVT will be explained. After passing through steps SL and S2, it is confirmed in step S8 that the flag FvT=1, that is, the current high-speed valve operating characteristic HVT. ”, whelk)
is selected, and in step S50, this TIH map (To
o'map) detected in step S1 (assumed in the same way as Ne2 of the switching, for example, Ne3) +
Fuel injection amount 'r, , (T, ,) according to intake pressure PB3
, ') are calculated and injected from the injector 46 in step 851. Next, in step 852, this TllI
Actual air-fuel ratio A/F3 at 3 (T1113')
(A/F3') is compared with a predetermined air-fuel ratio A/F o. If these are not equal, the correction amount ΔT1)I3 is calculated in step S54, and based on this, the entire TI11' map is corrected in step S55 to form a corrected map (TllI" map).

このようにしてステップS53で実空燃比A/FがA 
/ F oと等しいと判断すると、ステップS64で、
今回の切換対象である低速バルブ作動特性LVT用のT
ILマツプからそのときの回転数と吸気圧に応じたTI
Lを検索し、ステップ865においてTIH”とTIL
がほぼ一致した場合には、切換条件が成立したと判断し
、ステップS66でフラグFVT=0として、ステップ
867において高速バルブ作動特性HVTから低速バル
ブ作動特性LVTに切換えるべく、高速バルブ作動特性
HVTの間切換バルブ60のソレノイド80aに送って
いた切換信号VTSをカットし、第3図のように切換バ
ルブ60を閉位置にし、切換連結機構21の連結を解除
させる。
In this way, in step S53, the actual air-fuel ratio A/F is set to A.
/F o, in step S64,
The T for the low-speed valve operating characteristic LVT, which is the target of this change.
TI according to the rotation speed and intake pressure at that time from the IL map
TIH'' and TIL in step 865.
If they almost match, it is determined that the switching condition is satisfied, and the flag FVT is set to 0 in step S66, and the high-speed valve operating characteristic HVT is changed in step 867 in order to switch from the high-speed valve operating characteristic HVT to the low-speed valve operating characteristic LVT. The switching signal VTS sent to the solenoid 80a of the switching valve 60 is cut off, the switching valve 60 is placed in the closed position as shown in FIG. 3, and the switching coupling mechanism 21 is released.

このようにこのバルブ作動特性の切換制御方法では、切
換前後のバルブ作動特性における燃料噴射量が一致すれ
ばエンジン出力トルクも一致するように燃料噴射量マツ
プが学習修正されるので、切換時の両バルブ作動特性に
おいて、そのときのエンジン回転数と負荷に応じたそれ
ぞれの燃料噴射量が等しければ、エンジン出力トルクも
一致していることになり、切換時のトルク変動はなく、
シeツクを防止できる。
In this way, in this valve operating characteristic switching control method, the fuel injection amount map is learned and corrected so that if the fuel injection amounts in the valve operating characteristics before and after switching match, the engine output torque also matches. In terms of valve operating characteristics, if the engine speed and fuel injection amount according to the load are the same at that time, the engine output torque will also be the same, and there will be no torque fluctuation when switching.
It can prevent e-sock.

(効果) 以上のようなバルブ作動特性の切換制御方法を用いれば
、エンジン量産時の吸気系の各部品やセンサのバラツキ
や、長時間運転に伴う経年変化等があっても、切換前後
のバルブ作動特性における燃料噴射量が一致すれば常に
エンジン出力トルクも一致するように燃料噴射量マツプ
が学習修正されるので、切換時の両バルブ作動特性にお
いて、そのときのエンジン回転数と負荷に応じたそれぞ
れの燃料噴射量が等しければ、エンジン出力トルクも一
致していることになり、切換時のトルク変動はなく、シ
ョックを防止できる。
(Effects) By using the switching control method for valve operating characteristics as described above, even if there are variations in intake system parts and sensors during engine mass production, or aging due to long-term operation, the valve operating characteristics before and after switching can be controlled. The fuel injection amount map is learned and corrected so that if the fuel injection amount in the operating characteristics matches, the engine output torque always matches, so the fuel injection amount map is learned and corrected so that the engine output torque always matches. If the respective fuel injection amounts are equal, the engine output torque will also be the same, so there will be no torque fluctuation during switching, and shock can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係るバルブ作動特性切換の学習制御
方法を用いたエンジンの構成を示した概略図、 第2図、第3図および第4図は、上記制御方法により制
御されるバルブ作動特性の切換機構を示した断面図、 第5A図と第5B図は、上記バルブ作動特性におけるバ
ルブの開閉タイミングとリフト量の関係を示したグラフ
、 第6図は、上記バルブ作動特性でのエンジン回転数と出
力トルクの関係を示したグラフ、第7図は、上記バルブ
作動特性の切換制御方法の制御フロー 第8A図、第8B図および第8C図は、このバルブ作動
特性の切換制御方法を用いた場合の燃料噴射量マツプと
エンジン出力トルクの関係を示した概念図である。 1a、1b・・・吸気バルブ 2・・・カムシャフト   3,3′・・・低速用カム
5・・・高速用カム    6・・・ロッカシャフト2
1・・・切換連結手段  41・・・エンジン48・・
・電子制御回路  52・・・回転センサ53・・・吸
気圧センサ  54・・・水温センサ55・・・A/F
センサ 56…スロツトル・ポジション・センサ60・・・切換
バルブ
FIG. 1 is a schematic diagram showing the configuration of an engine using the learning control method for switching valve operating characteristics according to the present invention, and FIGS. 2, 3, and 4 show valves controlled by the above control method. 5A and 5B are graphs showing the relationship between valve opening/closing timing and lift amount in the above valve operating characteristics. FIG. FIG. 7 is a graph showing the relationship between engine speed and output torque, and FIG. 7 is a control flow of the above valve operating characteristic switching control method. FIGS. 8A, 8B, and 8C are this valve operating characteristic switching control method. FIG. 3 is a conceptual diagram showing the relationship between the fuel injection amount map and the engine output torque when using the fuel injection amount map. 1a, 1b... Intake valve 2... Camshaft 3, 3'... Low speed cam 5... High speed cam 6... Rocker shaft 2
1... Switching connection means 41... Engine 48...
・Electronic control circuit 52... Rotation sensor 53... Intake pressure sensor 54... Water temperature sensor 55... A/F
Sensor 56...Throttle position sensor 60...Switching valve

Claims (1)

【特許請求の範囲】 1)吸気バルブと排気バルブのうち少なくとも一方のバ
ルブ作動特性が切換自在なエンジンにおいて、 前記バルブ作動特性に応じて設定された燃料噴射量マッ
プから前記エンジンの回転数と負荷とに応じた燃料噴射
量を検索し、 この燃料噴射量に基づく噴射を行った場合の前記エンジ
ンの実空燃比を検出し、 この実空燃比と所定空燃比とを比較して、この所定空燃
比を得るための前記燃料噴射量の補正量を算出し、 この補正量に基づいて、前記バルブ作動特性用の燃料噴
射量マップの全体を修正して、これを修正マップとし、 前記バルブ作動特性の切換を行うときには、現在使用し
ているバルブ作動特性用の修正された燃料噴射量マップ
と切換対象のバルブ作動特性用の修正された燃料噴射量
マップとから、前記エンジンの回転数と負荷とに応じた
燃料噴射量をそれぞれ検索し、 これら両燃料噴射量がほぼ一致した時点で、前記使用バ
ルブ作動特性から前記切換対象のバルブ作動特性への切
換を行うことを特徴としたバルブ作動特性の切換制御方
法。 2)前記実空燃比を前記エンジンの排気管内に設けられ
た排気ガスセンサにより検出するようにした特許請求の
範囲第1項記載のバルブ作動特性の切換制御方法。
[Scope of Claims] 1) In an engine in which the valve operating characteristics of at least one of an intake valve and an exhaust valve are switchable, the rotation speed and load of the engine are determined from a fuel injection amount map set according to the valve operating characteristics. The actual air-fuel ratio of the engine when injection is performed based on this fuel injection amount is detected, the actual air-fuel ratio is compared with a predetermined air-fuel ratio, and the predetermined air-fuel ratio is determined. Calculate a correction amount for the fuel injection amount to obtain the fuel ratio, correct the entire fuel injection amount map for the valve operation characteristics based on this correction amount, and use this as a correction map, and the valve operation characteristics. When switching, the engine speed and load are determined from the modified fuel injection amount map for the currently used valve operating characteristics and the modified fuel injection amount map for the valve operating characteristics to be switched. The valve operating characteristic is characterized in that the fuel injection amount corresponding to the above is searched for, and when the two fuel injection amounts substantially match, the valve operating characteristic in use is switched to the valve operating characteristic to be switched. Switching control method. 2) The method for controlling switching of valve operating characteristics according to claim 1, wherein the actual air-fuel ratio is detected by an exhaust gas sensor provided in an exhaust pipe of the engine.
JP1139671A 1989-06-01 1989-06-01 Switching control method for valve operating characteristics Expired - Fee Related JPH0676768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1139671A JPH0676768B2 (en) 1989-06-01 1989-06-01 Switching control method for valve operating characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1139671A JPH0676768B2 (en) 1989-06-01 1989-06-01 Switching control method for valve operating characteristics

Publications (2)

Publication Number Publication Date
JPH033910A true JPH033910A (en) 1991-01-10
JPH0676768B2 JPH0676768B2 (en) 1994-09-28

Family

ID=15250711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1139671A Expired - Fee Related JPH0676768B2 (en) 1989-06-01 1989-06-01 Switching control method for valve operating characteristics

Country Status (1)

Country Link
JP (1) JPH0676768B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590632A (en) * 1994-03-10 1997-01-07 Toyota Jidosha Kabushiki Kaisha Apparatus for computing the amount of intake air in internal combustion engine
US5694912A (en) * 1995-08-29 1997-12-09 Toyota Jidosha Kabushiki Kaisha Fuel injection amount control apparatus for engine
JP2002256937A (en) * 2001-03-02 2002-09-11 Denso Corp Injection quantity map correcting method
DE19958932C2 (en) * 1999-01-26 2003-10-30 Mitsubishi Electric Corp Combustion engine control system
EP1482152A2 (en) 2003-05-27 2004-12-01 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
US7013852B2 (en) * 2003-03-06 2006-03-21 Denso Corporation Control apparatus for an internal combustion engine
GB2492102A (en) * 2011-06-21 2012-12-26 Jaguar Cars Diagnostic for cam profile switching operation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4832068B2 (en) 2005-12-05 2011-12-07 トヨタ自動車株式会社 Air-fuel ratio control device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590632A (en) * 1994-03-10 1997-01-07 Toyota Jidosha Kabushiki Kaisha Apparatus for computing the amount of intake air in internal combustion engine
US5694912A (en) * 1995-08-29 1997-12-09 Toyota Jidosha Kabushiki Kaisha Fuel injection amount control apparatus for engine
DE19958932C2 (en) * 1999-01-26 2003-10-30 Mitsubishi Electric Corp Combustion engine control system
JP2002256937A (en) * 2001-03-02 2002-09-11 Denso Corp Injection quantity map correcting method
US7013852B2 (en) * 2003-03-06 2006-03-21 Denso Corporation Control apparatus for an internal combustion engine
US7222594B2 (en) 2003-03-06 2007-05-29 Denso Corporation Control apparatus for an internal combustion engine
US7360515B2 (en) 2003-03-06 2008-04-22 Denso Corporation Control apparatus for an internal combustion engine
EP1482152A2 (en) 2003-05-27 2004-12-01 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
EP1482152A3 (en) * 2003-05-27 2012-03-14 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
GB2492102A (en) * 2011-06-21 2012-12-26 Jaguar Cars Diagnostic for cam profile switching operation
GB2492102B (en) * 2011-06-21 2013-08-28 Jaguar Cars Improved emissions control during cam profile switching diagnostic operation
US9416735B2 (en) 2011-06-21 2016-08-16 Jaguar Land Rover Limited Emissions control during cam profile switching diagnostic operation

Also Published As

Publication number Publication date
JPH0676768B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
EP0268433B1 (en) Method of controlling an air/fuel ratio for an internal combustion engine
US7314041B2 (en) EGR control system for internal combustion engine
KR970007393B1 (en) Engine ignition timing control system and method
US7610898B2 (en) Apparatus and method for controlling idle speed of internal combustion engine
US7458347B2 (en) Apparatus and method for controlling variable valve operating mechanism
EP2602461A1 (en) Device for controlling internal combustion engine
JP2707832B2 (en) Output control device for internal combustion engine
JPH033910A (en) Transfer control method for valve operating characteristics
JP2006312943A (en) Variable valve gear of internal combustion engine
US6250282B1 (en) Idle rotation speed learning control method and apparatus of an electronically controlled throttle type internal combustion engine
EP2282034B1 (en) Internal egr control device for internal combustion engine
KR20080104330A (en) Variable valve timing apparatus and control method therefor
JPH0647966B2 (en) Engine with valve timing controller
JP2842054B2 (en) Output control device for internal combustion engine
JP2001271664A (en) Knocking control device for internal combustion engine
JP2752705B2 (en) Engine control method
JP4258453B2 (en) Intake control device for internal combustion engine
JPH0676767B2 (en) Engine torque control method when switching valve operating characteristics
JP4380499B2 (en) Control device for internal combustion engine
JP2817055B2 (en) Failure detection method for valve timing switching control device of internal combustion engine
JPH06159027A (en) Variable valve system of internal combustion engine
JP2684842B2 (en) Cam switching control device for internal combustion engine
JP2004100547A (en) Control device for internal combustion engine
JP2920808B2 (en) Fuel control device for internal combustion engine
JPH10169477A (en) Engine with valve timing control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees