JPH0334378A - Mos type field effect transistor - Google Patents

Mos type field effect transistor

Info

Publication number
JPH0334378A
JPH0334378A JP16945689A JP16945689A JPH0334378A JP H0334378 A JPH0334378 A JP H0334378A JP 16945689 A JP16945689 A JP 16945689A JP 16945689 A JP16945689 A JP 16945689A JP H0334378 A JPH0334378 A JP H0334378A
Authority
JP
Japan
Prior art keywords
type
region
gate
active region
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16945689A
Other languages
Japanese (ja)
Inventor
Shuichi Oya
大屋 秀市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16945689A priority Critical patent/JPH0334378A/en
Publication of JPH0334378A publication Critical patent/JPH0334378A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To lessen a non-active region used for isolating elements so as to improve a transistor in degree of plane integration by a method wherein a gate insulating film is formed on a part which is not only the side wall of a groove but also the side wall of active region, and a gate electrode is provided onto the gate insulating film, where the groove is so formed as to separate the active region as far as two layers from the top. CONSTITUTION:An N-type source region 2, a P-type channel region 3, and an N-type drain region 4 are formed on a P-type silicon substrate 1, and transistors are isolated from each other by an interelement isolation groove 5. The exposed silicon surface is thermally oxidized to form a gate oxide film 6. Then, a gate electrode 7 of N-type polycrystalline silicon is formed on the side wall of the groove 5. In an after process, an interlaminar insulating film, electrode lead-out contacts of a source, a drain, and a gate, and metal wirings are formed through a conventional method, and thus a MOS type field effect transistor of this design is realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMOS型電界効果トランジスタに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a MOS type field effect transistor.

〔従来の技術〕[Conventional technology]

MO3型トランジスタは、バイポーラ型トランジスタに
比して高集積化に適し、特に大容量メモリデバイスに広
く使用されている。しがしながら、メモリデバイスを更
に大容量高集積化するには通常の平面的な構造よりも平
面積利用効率の高い三次元的な構造のMO3型トランジ
スタが望ましい。
MO3 type transistors are more suitable for high integration than bipolar type transistors, and are particularly widely used in large capacity memory devices. However, in order to further increase the capacity and integration of memory devices, MO3 type transistors having a three-dimensional structure, which has a higher planar area utilization efficiency than a normal planar structure, are desirable.

従来、三次元構造のMO8型トランジスタはいくつか提
案されているが、代表的なものに溝内にソース、ドレイ
ン、チャネルを形成した縦型MOSトランジスタがある
。縦型MOS)ランジスタについては、例えばアイイー
デイエム(IEDM)1985年、予稿集、714〜7
17頁に記載されている。
Several MO8 type transistors with a three-dimensional structure have been proposed in the past, and a typical one is a vertical MOS transistor in which a source, drain, and channel are formed in a trench. Regarding vertical MOS) transistors, for example, IEDM (IEDM) 1985, Proceedings, 714-7.
It is described on page 17.

第3図は従来の縦型MOSトランジスタの一例の断面図
である。
FIG. 3 is a cross-sectional view of an example of a conventional vertical MOS transistor.

P型シリコン基板1に後でソース領域、チャネル領域と
なるN型層、P型層を形成し、フィールド酸化膜8を形
成する。イオン注入法等により表面にN型層を形成した
後、素子間分離溝5を掘る。ゲート酸化膜6、ゲート電
極7を形成することにより、N型ソース領域2、P型チ
ャネル領域3、N型ドレイン領域4、ゲート電極7から
成る縦型MOSトランジスタが構成される。
An N-type layer and a P-type layer, which will later become a source region and a channel region, are formed on a P-type silicon substrate 1, and a field oxide film 8 is formed. After forming an N-type layer on the surface by ion implantation or the like, an isolation groove 5 between elements is dug. By forming gate oxide film 6 and gate electrode 7, a vertical MOS transistor consisting of N type source region 2, P type channel region 3, N type drain region 4, and gate electrode 7 is configured.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の縦型MOSトランジスタは、第3図から
分るように、平面的な活性領域内に縦型のチャネルを形
成するための溝5を設けていた。
As can be seen from FIG. 3, the conventional vertical MOS transistor described above has a trench 5 for forming a vertical channel in a planar active region.

この溝の開孔面積は活性領域の面積(ドレインの平面積
)を減少させ、平面積利用効率を低下させるという欠点
がある。また、従来の縦型トランジスタでは素子間を電
気的に分離するのになんらかの素子量分Mn4造を必要
とする(第3図ではフィールド酸化膜8による分離〉。
The opening area of this groove reduces the area of the active region (the planar area of the drain), which has the disadvantage of reducing the planar area utilization efficiency. Furthermore, in conventional vertical transistors, a certain amount of Mn4 is required to electrically isolate between elements (isolation by field oxide film 8 in FIG. 3).

この素子間分離用の非活性領域の面積もトランジスタを
高集積化する上での大きな障害となる。
The area of this inactive region for isolation between elements also becomes a major obstacle in achieving high integration of transistors.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のMO3型電界効果トランジスタは、半導体基板
上にソース領域、チャネル領域及びドレイン領域が積層
されて成る活性領域と、前記活性領域のうちの少くとも
上から二層までの領域を分−離するように形成された溝
と、前記溝の側壁でありかつ前記活性領域の側壁である
部分に設けられたゲート絶縁膜と、前記ゲート絶縁膜上
に形成されたゲート電極とを含んで構成される。
The MO3 type field effect transistor of the present invention has an active region formed by stacking a source region, a channel region, and a drain region on a semiconductor substrate, and at least the upper two layers of the active region are separated. A gate insulating film provided on a side wall of the trench and a side wall of the active region, and a gate electrode formed on the gate insulating film. Ru.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)、(b)は本発明の一実施例の平面図及び
A−A’線断面図である。
FIGS. 1(a) and 1(b) are a plan view and a sectional view taken along the line AA' of an embodiment of the present invention.

P型シリコン基板1の上にN型ソース領域2、P型チャ
ネル領域3、N型ドレイン領域4を形成し、各々のトラ
ンジスタを素子間分離用溝5によって分離する。露出し
たシリコン表面を熱酸化してゲート酸化膜6を形成する
。次に、溝の側壁にN型多結晶シリコンでゲート電極を
形成する。後は通常の方法に従って眉間絶縁膜、ソース
、ドレイン、ゲートの各電極引き出し用のコンタクト及
び金属配線等を形成して完成させる。
An N-type source region 2, a P-type channel region 3, and an N-type drain region 4 are formed on a P-type silicon substrate 1, and each transistor is separated by an element isolation trench 5. A gate oxide film 6 is formed by thermally oxidizing the exposed silicon surface. Next, a gate electrode is formed using N-type polycrystalline silicon on the side wall of the trench. After that, a glabellar insulating film, contacts for drawing out each of the source, drain, and gate electrodes, metal wiring, etc. are formed according to the usual method to complete the process.

本実施例のトランジスタは、表面反転層型MOSトラン
ジスタとして動作する。
The transistor of this example operates as a surface inversion layer type MOS transistor.

次に、この実施例の製造方法を説明する。Next, the manufacturing method of this example will be explained.

第2図(a)〜(c)は第1図に示す実施例の製造方法
を説明するための工1程順に示した断面図である。
FIGS. 2(a) to 2(c) are sectional views shown in order of step 1 for explaining the manufacturing method of the embodiment shown in FIG. 1.

まず、第2図に示すように、面指数(100)のP型シ
リコン基板1の上にN型不純物であるヒ素を5X101
5/−のドーズ量でイオン打込みしてN型ソース領域2
を形成する0通常のエピタキシャル成長性により比抵抗
1Ω・0で厚さ2μmのP型シリコン層を成長させP型
チャネル領域3とする。ヒ素を5X1015/−のドー
ズ量でイオン打込みしてN型ドレイン領域4を順次形成
する。
First, as shown in FIG.
N-type source region 2 is formed by ion implantation at a dose of 5/-.
A P-type silicon layer having a resistivity of 1 Ω·0 and a thickness of 2 μm is grown using normal epitaxial growth to form a P-type channel region 3. Arsenic is ion-implanted at a dose of 5.times.10.sup.15/- to sequentially form an N-type drain region 4.

次に、第2図(b)に示すように、活性領域を分離する
ための素子間分離溝5を形成する。この講の形成はホト
レジストをマスクとして通常の反応性イオンエツチング
(RIE)技術を用いて形成した。ここで渭5の深さは
N型ソース領域2に達するだけの深さ約2,5μmに設
定される。
Next, as shown in FIG. 2(b), element isolation trenches 5 for isolating the active regions are formed. This layer was formed using a conventional reactive ion etching (RIE) technique using a photoresist as a mask. Here, the depth of the edge 5 is set to be about 2.5 μm deep enough to reach the N-type source region 2.

次に、第2図(c)に示すように、900℃のスチーム
雰囲気中で熱酸化して厚さ20nmのゲート酸化膜6を
形成する。次いで全面に400nmの厚さに多結晶シリ
コン膜7aを成長させ、リンを添加する。
Next, as shown in FIG. 2(c), a gate oxide film 6 having a thickness of 20 nm is formed by thermal oxidation in a steam atmosphere at 900°C. Next, a polycrystalline silicon film 7a is grown to a thickness of 400 nm over the entire surface, and phosphorus is added.

次いで、異方性の強いドライエツチング技術により多結
晶シリコン膜7aを全面エツチングして活性領域の側壁
にのみ多結晶シリコンのゲート電極7を残すと、第1図
の(a)、(b)に示す構造を得る。
Next, by etching the entire surface of the polycrystalline silicon film 7a using a highly anisotropic dry etching technique, leaving the polycrystalline silicon gate electrode 7 only on the sidewalls of the active region, the result is shown in FIGS. 1(a) and (b). Obtain the structure shown.

上記実施例はチャネル領域をP型としたが、N型にした
縦型MOSトランジスタに対しても本発明を適用するこ
とができる。このトランジスタは、いわゆる埋込チャネ
ル型のMOSトランジスタと類似の動作をする。ゲート
電極の電位がOV(或は低電位)の場合には、ワークフ
ァンクションの違いによりチャネル領域4中に側面のゲ
ート電極側からバルク中央に向って空乏層が広がる。
Although the above embodiment has a P-type channel region, the present invention can also be applied to a vertical MOS transistor having an N-type channel region. This transistor operates similar to a so-called buried channel type MOS transistor. When the potential of the gate electrode is OV (or low potential), a depletion layer spreads in the channel region 4 from the side gate electrode side toward the center of the bulk due to the difference in work function.

チャネル中のN型不純物濃度と、チャネル領域のバルク
の寸法を適当に設定すれば、ゲート側がら広がった空乏
層が継がり、チャネルを完全にカットオフする。逆に、
フラットバンド電圧以上の高電圧を印加すれば、空乏層
が縮み、蓄積層型のチャネルが形成されて導通する。
If the N-type impurity concentration in the channel and the bulk dimensions of the channel region are appropriately set, the depletion layer that spreads from the gate side will continue and completely cut off the channel. vice versa,
When a high voltage higher than the flat band voltage is applied, the depletion layer shrinks and an accumulation layer-type channel is formed, resulting in conduction.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、活性領域分離用の溝と
縦型MOSトランジスタのチャネルを形成するための溝
を共用するから、素子間分離のための余分な非活性領域
を必要としない、このために、従来装置に比して平面的
な集積度を向上できるという効果を有する。
As explained above, in the present invention, since the trench for active region isolation and the trench for forming the channel of the vertical MOS transistor are shared, there is no need for an extra inactive region for isolation between elements. For this reason, it has the effect that the degree of planar integration can be improved compared to conventional devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は本発明の一実施例の平面図及び
A−A’線断面図、第2図(a)〜(C)は第1図(a
)、(b)に示す実施例の製造方法を説明するための工
程順に示した断面図、第3図は従来の縦型MOS)ラン
ジスタの一例の断面図である。 1・・・P型シリコン基板、2・・・N型ソース領域、
3・・・P型チャネル領域、4・・・N+型トドレイン
領域5・・・素子間分離用溝、6・・・ゲート酸化膜、
7・・・ゲート電極、7a・・・多結晶シリコン膜。
FIGS. 1(a) and (b) are a plan view and a sectional view taken along the line A-A' of an embodiment of the present invention, and FIGS. 2(a) to (C) are FIGS.
) and (b) are cross-sectional views shown in the order of steps for explaining the manufacturing method of the embodiment shown in FIG. 3, and FIG. 3 is a cross-sectional view of an example of a conventional vertical MOS transistor. 1... P-type silicon substrate, 2... N-type source region,
3... P type channel region, 4... N+ type drain region 5... element isolation groove, 6... gate oxide film,
7... Gate electrode, 7a... Polycrystalline silicon film.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上にソース領域、チャネル領域及びドレイン
領域が積層されて成る活性領域と、前記活性領域のうち
の少くとも上から二層までの領域を分離するように形成
された溝と、前記溝の側壁でありかつ前記活性領域の側
壁である部分に設けられたゲート絶縁膜と、前記ゲート
絶縁膜上に形成されたゲート電極とを含むことを特徴と
するMOS型電界効果トランジスタ。
an active region formed by stacking a source region, a channel region, and a drain region on a semiconductor substrate; a trench formed to separate at least two upper layers of the active region; A MOS field effect transistor comprising: a gate insulating film provided on a sidewall of the active region; and a gate electrode formed on the gate insulating film.
JP16945689A 1989-06-29 1989-06-29 Mos type field effect transistor Pending JPH0334378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16945689A JPH0334378A (en) 1989-06-29 1989-06-29 Mos type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16945689A JPH0334378A (en) 1989-06-29 1989-06-29 Mos type field effect transistor

Publications (1)

Publication Number Publication Date
JPH0334378A true JPH0334378A (en) 1991-02-14

Family

ID=15886926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16945689A Pending JPH0334378A (en) 1989-06-29 1989-06-29 Mos type field effect transistor

Country Status (1)

Country Link
JP (1) JPH0334378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315143A (en) * 1992-04-28 1994-05-24 Matsushita Electric Industrial Co., Ltd. High density integrated semiconductor device
JP2009038201A (en) * 2007-08-01 2009-02-19 Elpida Memory Inc Semiconductor device and manufacturing method of semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263152A (en) * 1985-05-15 1986-11-21 Nippon Texas Instr Kk Mask rom device
JPS6231167A (en) * 1985-07-30 1987-02-10 イ−トン コ−ポレ−シヨン Bidirectional power fet having on state of bipolar

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263152A (en) * 1985-05-15 1986-11-21 Nippon Texas Instr Kk Mask rom device
JPS6231167A (en) * 1985-07-30 1987-02-10 イ−トン コ−ポレ−シヨン Bidirectional power fet having on state of bipolar

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315143A (en) * 1992-04-28 1994-05-24 Matsushita Electric Industrial Co., Ltd. High density integrated semiconductor device
JP2009038201A (en) * 2007-08-01 2009-02-19 Elpida Memory Inc Semiconductor device and manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
KR0163759B1 (en) Semiconductor device and semiconductor memory device
JPH0355984B2 (en)
JPH02166762A (en) Compact cmos device and
JPH01164064A (en) Semiconductor device
JP2571004B2 (en) Thin film transistor
JPH01130542A (en) Semiconductor device having interelement isolation region and manufacture thereof
JPH0334378A (en) Mos type field effect transistor
JP2996694B2 (en) Method for manufacturing semiconductor stacked CMOS device
JP2739965B2 (en) Semiconductor memory device and method of manufacturing the same
JP3270875B2 (en) Method for manufacturing MOS transistor
JPS632368A (en) Semiconductor device and manufacture thereof
JP3157245B2 (en) Semiconductor device and method of manufacturing the same
JPH02201965A (en) Semiconductor device and manufacture thereof
JPS61269377A (en) Semiconductor device
JP2764988B2 (en) Semiconductor device
JP3194313B2 (en) Thin-film semiconductor device with improved withstand voltage
JPS6386467A (en) Semiconductor device
JPH05335329A (en) Semiconductor device and its manufacture
JPH0793367B2 (en) Semiconductor memory device and manufacturing method thereof
JPH06151453A (en) High-withstand voltage transistor and its manufacture
JPS60150643A (en) Complementary semiconductor device and manufacture thereof
JPS63207173A (en) Manufacture of semiconductor device
JPH07106436A (en) Semiconductor memory and preparation thereof
JPS62296465A (en) Manufacture of semiconductor device
JPS63143865A (en) Semiconductor integrated circuit device