JPH0330492B2 - - Google Patents

Info

Publication number
JPH0330492B2
JPH0330492B2 JP57225787A JP22578782A JPH0330492B2 JP H0330492 B2 JPH0330492 B2 JP H0330492B2 JP 57225787 A JP57225787 A JP 57225787A JP 22578782 A JP22578782 A JP 22578782A JP H0330492 B2 JPH0330492 B2 JP H0330492B2
Authority
JP
Japan
Prior art keywords
coating film
glass
group
compound
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57225787A
Other languages
Japanese (ja)
Other versions
JPS59115840A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57225787A priority Critical patent/JPS59115840A/en
Publication of JPS59115840A publication Critical patent/JPS59115840A/en
Publication of JPH0330492B2 publication Critical patent/JPH0330492B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はガルス又は透明プラスチツクなどの透
明基体の表面に処理して、該基体の表面反射を低
下させるような用途に用いる多層構造からなる低
反射率塗膜に関するものである。 建築物,車輌などの窓、ドアーあるいはシヨー
ウインド,シヨーケース,光学レンズなどはガラ
ス又は透明プラスチツクなどの透明材料が好適に
用いられる。しかしながら、かかる材料表面は太
陽光,照明光の反射によるギラツキや眩しさを生
ずるという欠点があり、さらに周囲の景観が映る
ことにより、材料に特有な透明性や透視性が損な
われ易い。 又、近年、省エネルギー政策から太陽光の利用
が進められ、太陽光集光器が開発されているが、
集熱効率を向上させるには集光部に用いるガラス
又は透明プラスチツクなどの透明材料の表面から
の反射損失を除去あるいは低減せしめ、大量のエ
ネルギー通過させることが必要となつている。 従来から、ガラス又は透明プラスチツクなどの
透明基体の表面の反射防止法は光学部品を中心に
開発が進められていて、例えばガラス表面に金属
酸化物,金属フツ化物,金属窒化物などの薄膜を
形成せしめる真空蒸着法あるいはスパツタリング
法が光学レンズ,メガネレンズ,フイルターなど
に実用化されている。又、ガラスあるいは透明プ
ラスチツクなどの透明基体の表面に、高分子物質
からなる低反射処理剤を塗布、吹付け、あるいは
処理剤中に浸漬することにより、低反射性の塗膜
を形成するための処理方法あるいは低反射処理剤
が提案されている。 しかしながら、前記方法において、真空蒸着法
あるいはスパツタリング法は装置の機構上及びコ
スト面から適応物品は小型精密光学部品に限定さ
れ、更に連続的生産には適していない。低反射処
理剤の塗膜を塗布、吹付け、あるいは浸漬などの
方法により形成する方法では、形成された低反射
性塗膜は、汚染などに対する洗浄作業によつて損
傷を受け、剥離するなど硬度や耐久性に欠点があ
る。 本発明者は上記の如き問題点の認識に基づい
て、ガラス又は透明プラスチツクなどの透明基体
の透明性、透視性を損なうことなく、該基体の表
面上に塗布、吹付け、あるいは浸漬などの既知の
方法あるいは新規な方法によつて該基体の表面を
低反射性とし、且つ、その性能が長期にわたつて
持続する耐久性の良好な低反射率塗膜を提供すべ
く種々研究、検討を行なつた。 その結果、ポリフルオロ化基含有化合物はフツ
素原子の分極率が小さく、従つて屈折率も低く、
例えばC8F18の屈折率(25℃、以下同じ)は、
1.271、(C4F93Nは1.290、(CF2=CF2/CF3OCF
=CF2)の重合体は1.330であり、ガラス又は透明
プラスチツクなどの透明基体の表面に塗膜を形成
することにより低反射率化が可能となること、
又、ポリフルオロ化基含有化合物は基体への凝集
力は強いが、塗膜の硬度は膜厚に依存し、ある程
度の膜厚を必要とするが、低反射性能から薄膜で
あるのが好ましいこと、更にポリフルオロ化基含
有化合物の薄膜の硬度を向上せしめるには、透明
基体の表面上に接着力及び硬度の高い他の材料か
らなる透明塗膜を形成し、該塗膜上にポリフルオ
ロ化基含有化合物からなる薄膜を形成することに
より、低反射性能及び膜硬度の優れた塗膜が得ら
れるという知見が得られた。 本発明者はかかる知見から、ガラス又は透明プ
ラスチツクなどの透明基体の表面に形成する塗膜
(以下、下層塗膜という)は、透明基体に強固に
接着し、硬度が高く、透明性を有するものであつ
て、該塗膜上に形成するポリフルオロ化基含有化
合物との良好な接着性を有し、且つ屈折率が透明
基体と同程度か、それより大きいシラン化合物又
は透明性樹脂であるのが好ましく、更に該塗膜上
に形成する薄膜(以下、上層薄膜という)はポリ
フルオロ化基含有化合物からなつていて、重合体
の薄膜を形成するものが好ましく、このような多
層構造の塗膜とすることにより、薄膜であつても
硬度が大きく、しかも低反射性能の優れた塗膜と
なるという事実を見出し、本発明を完成したもの
である。 即ち、本発明はガラス又は透明プラスチツクな
どの透明基体の表面に処理する低反射率塗膜にお
いて、透明基体と同程度以上の屈折率を有するシ
ラン化合物、又は透明性樹脂の塗膜と、該塗膜上
にポリフルオロ化基含有化合物からなる厚さ0.2μ
以下の薄膜を形成してなることを特徴とする多層
構造の低反射率塗膜を提供するものである。 本発明における下層塗膜において透明基体と同
程度以上の屈折率を有するシラン化合物は、一般
式{X(A)CaSi(Z)bY4-a-bで表わされるシラン
カツプリング剤が好ましい。前記一般式において
Xは
The present invention relates to a low reflectance coating film having a multilayer structure, which is applied to the surface of a transparent substrate such as glass or transparent plastic to reduce the surface reflection of the substrate. Transparent materials such as glass or transparent plastics are suitably used for windows, doors, windows, cases, optical lenses, etc. of buildings, vehicles, etc. However, the surface of such a material has the disadvantage of causing glare and dazzle due to reflection of sunlight and illumination light, and furthermore, the transparency and see-through characteristic of the material are likely to be impaired due to the reflection of the surrounding scenery. In addition, in recent years, the use of sunlight has been promoted due to energy conservation policies, and solar concentrators have been developed.
In order to improve heat collection efficiency, it is necessary to eliminate or reduce reflection loss from the surface of a transparent material such as glass or transparent plastic used for the light collection portion, and to allow a large amount of energy to pass through. Conventionally, anti-reflection methods for the surface of transparent substrates such as glass or transparent plastics have been developed mainly for optical components.For example, methods for forming thin films of metal oxides, metal fluorides, metal nitrides, etc. Vacuum deposition or sputtering methods have been put into practical use for optical lenses, eyeglass lenses, filters, etc. In addition, it is possible to form a low-reflectivity coating film by coating, spraying, or immersing a low-reflection treatment agent made of a polymeric substance on the surface of a transparent substrate such as glass or transparent plastic. Treatment methods or low-reflection treatment agents have been proposed. However, in the above-mentioned methods, the vacuum evaporation method or the sputtering method is limited to small precision optical parts due to the mechanical structure of the apparatus and cost, and is not suitable for continuous production. When a coating film of a low-reflection treatment agent is formed by coating, spraying, or dipping, the formed low-reflection coating film may be damaged by cleaning operations for contamination, etc., and the hardness may deteriorate such as peeling off. There are drawbacks to durability. Based on the recognition of the above-mentioned problems, the inventors of the present invention have proposed a method of coating, spraying, dipping, etc. on the surface of a transparent substrate such as glass or transparent plastic without impairing the transparency and see-through of the substrate. We have conducted various research and studies in order to make the surface of the substrate low reflective using the above method or a new method, and to provide a highly durable low reflectance coating that maintains its performance over a long period of time. Summer. As a result, compounds containing polyfluorinated groups have a low polarizability of fluorine atoms, and therefore a low refractive index.
For example, the refractive index of C 8 F 18 (25°C, same below) is:
1.271, (C 4 F 9 ) 3 N is 1.290, (CF 2 = CF 2 /CF 3 OCF
= CF 2 ) polymer is 1.330, and it is possible to reduce the reflectance by forming a coating film on the surface of a transparent substrate such as glass or transparent plastic.
In addition, although polyfluorinated group-containing compounds have a strong cohesive force to the substrate, the hardness of the coating film depends on the film thickness, and a certain film thickness is required, but a thin film is preferable for low reflection performance. In order to further improve the hardness of a thin film of a compound containing a polyfluorinated group, a transparent coating film made of another material with high adhesive strength and hardness is formed on the surface of a transparent substrate, and a polyfluorinated compound is added on the coating film. It has been found that by forming a thin film made of a group-containing compound, a coating film with excellent low reflection performance and film hardness can be obtained. Based on this knowledge, the present inventor has determined that the coating film formed on the surface of a transparent substrate such as glass or transparent plastic (hereinafter referred to as the "lower coating film") should be one that firmly adheres to the transparent substrate, has high hardness, and has transparency. A silane compound or a transparent resin that has good adhesion to the polyfluorinated group-containing compound formed on the coating film and has a refractive index comparable to or greater than that of the transparent substrate. It is preferable that the thin film formed on the coating film (hereinafter referred to as the upper layer thin film) be made of a polyfluorinated group-containing compound and form a thin film of a polymer. The present invention was completed based on the discovery that by doing so, a coating film with high hardness and excellent low reflection performance can be obtained even if it is a thin film. That is, the present invention provides a low reflectance coating film to be applied to the surface of a transparent substrate such as glass or transparent plastic, which includes a coating film of a silane compound or transparent resin having a refractive index comparable to or higher than that of the transparent substrate, and the coating film. Thickness 0.2μ made of polyfluorinated group-containing compound on membrane
The object of the present invention is to provide a multilayer structure low reflectance coating film characterized by forming the following thin films. In the present invention, the silane compound having a refractive index comparable to or higher than that of the transparent substrate in the lower coating film is preferably a silane coupling agent represented by the general formula {X(A) C } a Si(Z) b Y 4-ab . . In the above general formula, X is

【式】NH2−, NH2CH2CH2NH−,HS−,Cl−,CH2=CH
−,
[Formula] NH 2 −, NH 2 CH 2 CH 2 NH−, HS−, Cl−, CH 2 =CH
−、

【式】,NCO−、Aはアルキレン 基、Zは炭素数1〜4の低級アルキル基、Yはハ
ロゲン,アルコキシ基が選定され、aは1〜3の
整数、bは0又は1〜2の整数、cは0又は1の
整数である。かかるシランカツプリング剤として
は、例えば
[Formula], NCO-, A is an alkylene group, Z is a lower alkyl group having 1 to 4 carbon atoms, Y is a halogen or alkoxy group, a is an integer of 1 to 3, and b is 0 or 1 to 2. The integer c is an integer of 0 or 1. Such silane coupling agents include, for example,

【式】NH2 (CH22NH(CH23Si(OCH33,NH2(CH23Si
(OCH33,CH2=CHSi(OCH33,CH2
CHSiCl3
[Formula] NH 2 (CH 2 ) 2 NH (CH 2 ) 3 Si (OCH 3 ) 3 , NH 2 (CH 2 ) 3 Si
(OCH 3 ) 3 , CH 2 = CHSi(OCH 3 ) 3 , CH 2 =
CHSiCl3 ,

【式】, HS(CH23Si(OCH33,NCO(CH23Si
(OC2H53,Cl(CH23Si(OCH33
[Formula], HS(CH 2 ) 3 Si(OCH 3 ) 3 , NCO(CH 2 ) 3 Si
(OC 2 H 5 ) 3 , Cl(CH 2 ) 3 Si(OCH 3 ) 3 ,

【式】 が挙げられる。かかるシランカツプリング剤縮合
物の屈折率は1.47〜1.60であり、ガラス又はポリ
カーボネートなどの透明プラスチツクと同程度か
それより大きい。シラン化合物は2種以上の組合
せ物であつて好ましい結果が得られる。 透明基体と同程度以上の屈折率を有する透明性
樹脂は、例えばエポキシ樹脂系,メラミン樹脂
系,ウレタン樹脂系などが挙げられる。 下層塗膜は透明基体の屈折率に応じて適宜選択
されるが、透明基体より屈折率が0.1以上低いも
のを選択した場合は、性能の優れた低反射率塗膜
は得られない。 上層薄膜のポリフルオロ化基含有化合物は、下
層塗膜と反応する−OCH3
[Formula] is mentioned. The refractive index of such a silane coupling agent condensate is 1.47 to 1.60, which is comparable to or greater than that of glass or transparent plastics such as polycarbonate. Preferable results can be obtained by using a combination of two or more silane compounds. Examples of the transparent resin having a refractive index comparable to or higher than that of the transparent substrate include epoxy resins, melamine resins, and urethane resins. The lower coating film is appropriately selected depending on the refractive index of the transparent substrate, but if a coating whose refractive index is 0.1 or more lower than that of the transparent substrate is selected, a low reflectance coating film with excellent performance cannot be obtained. The polyfluorinated group-containing compound of the upper layer thin film reacts with the lower layer coating -OCH 3 ,

【式】,【formula】,

【式】−COOH等の反応性基を有するポ リフルオロ化基含有化合物であり、例えば Rf(CH22SiCl3,Rf(CH22Si(CH3)Cl2,(Rf
CH2CH22SiCl2,Rf(CH22Si(CCH33,Rf
CONH(CH23Si(OC2H53, RfCONH(CH22NH(CH23Si(OC2H53, RfSO2N(CH3)(CH22CONH(CH23Si
(OC2H53, Rf(CH22OCO(CH22S(CH23Si(OCH33, Rf(CH22OCONH(CH23Si(OC2H53Rf(CH22NH(CH22Si(OCH33, Rf(CH22NH(CH22Si(CCH2CH2CCH33 (但し、Rfは炭素数4〜16のポリフルオロア
ルキル基、mは1以上の整数) などのポリフルオロアルキル基含有シラン化合
物、ポリフルオロアルキル基がエーテル結合を有
するシラン化合物、かかるシラン化合物と他のシ
ラン化合物との混合物、 Cl3Si(CH22(CF2o(CH22SiCl3 (H3CO)3Si(CH22(CF2o(CH22Si
(OCH33 (但し、nは4〜16の整数、以下同じ) などのポリフルオロアルキレン基含有シラン化合
物、及び
[Formula] A compound containing a polyfluorinated group having a reactive group such as -COOH, such as R f (CH 2 ) 2 SiCl 3 , R f (CH 2 ) 2 Si(CH 3 )Cl 2 , (R f
CH 2 CH 2 ) 2 SiCl 2 , R f (CH 2 ) 2 Si(CCH 3 ) 3 , R f
CONH ( CH2 ) 3Si ( OC2H5 ) 3 , RfCONH( CH2 ) 2NH ( CH2 ) 3Si ( OC2H5 ) 3 , RfSO2N ( CH3 ) ( CH2 ) 2 CONH(CH 2 ) 3 Si
(OC 2 H 5 ) 3 , R f (CH 2 ) 2 OCO (CH 2 ) 2 S (CH 2 ) 3 Si (OCH 3 ) 3 , R f (CH 2 ) 2 OCONH (CH 2 ) 3 Si (OC 2 H5 ) 3 , R f (CH 2 ) 2 NH (CH 2 ) 2 Si (OCH 3 ) 3 , R f (CH 2 ) 2 NH (CH 2 ) 2 Si (CCH 2 CH 2 CCH 3 ) 3 , (However, R f is a polyfluoroalkyl group having 4 to 16 carbon atoms, and m is an integer of 1 or more.) A silane compound containing a polyfluoroalkyl group such as Mixtures with other silane compounds, Cl3Si ( CH2 ) 2 ( CF2 ) o ( CH2 ) 2SiCl3 , (H 3 CO) 3 Si (CH 2 ) 2 (CF 2 ) o (CH 2 ) 2 Si
(OCH 3 ) 3 , (However, n is an integer of 4 to 16, the same shall apply hereinafter.) Polyfluoroalkylene group-containing silane compounds such as

【式】 などのポリフルオロアルキレン基含有ジエポキシ
化合物が挙げられる。 又、ポリフルオロアルキル基含有メタクリレー
トとメタクリル酸誘導体との共重合体、例えば ポリフルオロアルキル基含有アルコールとメラ
ミン誘導体との反応物、例えば Rf(CH22OHと などが挙げられる。 更に、C8F17CH=CH,CF3−C≡C−CF3
C8F18などのプラズマ重合性化合物を用いること
ができる。 本発明の低反射率塗膜は透明基体の表面上に下
層塗膜を形成し、該塗膜上に上層薄膜を形成した
多層構造からなるが、下層塗膜の厚さは少なくと
も0.1μ、特に0.5〜5μであるのが好ましい。塗膜
の厚さ0.1μ以下では塗膜材料の分子の絡み合いが
不十分となり、塗膜強度が保持されず、該塗膜上
に形成する上層薄膜の硬度の向上は得られない。
下層塗膜の厚さは厚いほど該塗膜上に形成する上
層薄膜の硬度は向上するが、光透過性への影響、
塗布の作業性及び経済性の点から必要以上に厚く
することは好ましくなく、上限は10μまでであ
る。 下層塗膜の透明基体表面上への形成方法は特に
限定されない。シラン化合物を用いる場合は、例
えばシラン化合物をアセトン,テトラヒドロフラ
ン,低級アルコールなどの有機溶剤に溶解し、5
〜50重量%、好ましくは15〜40重量%溶液として
塗布、吹付け、浸漬など既知の方法により行なわ
れる。塗布後は室温、あるいは必要に応じて100
℃程度の温度で30分〜1時間乾燥してシラン化合
物の架橋が部分的に進行した状態の塗膜とし、そ
の上に上層薄膜材料を塗布し薄膜を形成する。シ
ラン化合物は2種以上組合せてもよく、かかる場
合は2種以上のシラン化合物を混合撹拌して反応
させた後、有機溶剤を加えて粘度を調整し、前記
と同様に塗布及び処理して塗膜を形成する。透明
性樹脂を用いる場合は、例えばエポキシ樹脂とし
て“エピコート−1001”(商品名:油化シエル化
学社製品)、メラミン樹脂として“サイメル−
325”(商品名:三井東圧化学社製品)、ウレタン
樹脂として“オレスターM75−50E”(商品名:
三井東圧化学社製品)が好適に用いられる。エポ
キシ樹脂及びメラミン樹脂は架橋剤あるいは重合
開始剤を加えて透明基体の表面に塗布して部分架
橋を進めた後、上層薄膜材料を塗布して薄膜を形
成する。ウレタン樹脂は透明基体の表面に塗布
後、空気中の水分によつて部分的に重合硬化せし
めた後、上層薄膜材料を塗布して薄膜を形成す
る。かかる下層塗膜材料に帯電防止剤あるいは高
屈折率を付与する他の成分を含有せしめることも
できる。 下層塗膜上に形成するポリフルオロ化基含有化
合物からなる上層薄膜の形成方法は、既知の塗布
方法によつて行なうことができるが、該化合物の
塗布に好適な調製法は用いる化合物によつて異な
る。 即ち、前記ポリフルオロアルキル基含有シラン
化合物、ポリフルオロアルキル基がエーテル結合
を有するシラン化合物及びかかるシラン化合物と
他のシラン化合物との混合物あるいはポリフルオ
ロアルキレン基含有シラン化合物の場合は、該化
合物又は混合物をアセトン,テトラヒドロフラ
ン,塩素系あるいはフツ素系などの有機溶剤の1
種又は2種以上の混合溶剤に希釈して1〜15重量
%溶剤溶液、好ましくは3〜10重量%溶剤溶液と
して、下層塗膜上に塗布、吹付け、浸漬など既知
の方法により塗布する。塗布後は100℃以上の温
度で20分以上キユアリングすることによつて薄膜
を形成することができる。 ポリフルオロアルキレン基含有ジエポキシ化合
物の場合は、該化合物に、ポリフルオロアルキレ
ン基含有アミン化合物、他のアミン類、アミン類
のBF3塩、カルボン酸無水物から選ばれる1種の
硬化剤を硬化反応が進行するに十分な量を加え、
室温〜150℃にて5分〜3時間反応させて部分重
合物とする。硬化剤は硬化剤自身が低屈折率物で
あるものを用いるのが好ましく、この場合使用量
を増加しても低反射性能に影響を与えることはな
い。例えば、 H2N(CH22(CF26(CH22NH2は10〜50重量加
えることができる。 ポリフルオロアルキル基含有メタクリレートと
メタクリル酸誘導体との共重合は該化合物の混合
物に重合開始剤を加えて加熱して共重合物とす
る。ポリフルオロアルキレン基含有アルコールと
メラミン誘導体との反応物は固形成分に対して1
重量%のP−トルエンスルホン酸を触媒成分とし
て加え、加熱して反応生成物を得る。かかる共重
合体あるいは反応生成物は前記の化合物と同様に
溶剤に希釈して、下層塗膜上に塗布した後、キユ
アリングすることによつて薄膜を形成することが
できる。 プラズマ重合性化合物は下層塗膜上に、プラズ
マ重合装置を使用して装置内で重合を行なうこと
によつて薄膜を形成することができる。 かかる方法によつて形成される上層薄膜の厚さ
は0.2μ以下、特に0.08〜0.2μであるのが好ましい。
0.2μより厚い場合は低反射率塗膜としての性能は
著るしく劣つたものとなる。薄膜の厚さは塗布条
件によつて変化し、例えば浸漬法ではポリフルオ
ロ化基含有化合物の有機溶剤との希釈濃度と引上
速度の関係で決定される。 ポリフルオロ化基含有化合物からなる上層薄膜
材料には無機物フイラー、例えばシリカゲル,
Li2SiF6,MgF2,NaSiF6,MgSiF6などを添加し
て薄膜の硬度を更に向上せしめることができる。
又、上層薄膜材料の使用形態は常法に従つて、溶
剤溶液,溶媒分散液,乳濁液,エアゾールなど任
意の形態に調製すること、あるいは帯電防止剤,
架橋剤など適宜添加剤を添加することができる。 本発明の低反射率塗膜を形成した透明基体の可
視光における反射率は0.6〜1.4%であり、通常の
ソーダ石灰ガラスの反射率4.2%、メタアクリル
樹脂の反射率3.9%、ポリカーボネートの反射率
4.8%に対し優れた効果が認められる。更に塗膜
の硬度は鉛筆硬度B〜>5Hであり、ポリフルオ
ロ化基含有化合物のみの塗膜の鉛筆硬度>2Bに
対し顕著な向上が認められる。又、透明性あるい
は透視性を損なうことはない。 本発明の低反射率塗膜の用途に特に限定される
ことなく、例えば建築物の窓,車輛の窓,ドア
ー,シヨーウインド,シヨーケース,光学機器
類,メガネ類,太陽光集光部材などのガラス又は
透明プラスチツク材料を用いることができる。 本発明の低反射率塗膜の評価方法は次の通りで
ある。即ち、自記分光光度計反射光測定付属装置
(323型:日立製作所製)を使用して波長540mμ
の入射角5゜における反射率を測定することにより
行ない、塗膜の厚さは透明基体上に形成された膜
厚(下層塗膜と上層薄膜の合計)を“タリステツ
プ”(Rank Taylor Hobson社製)を使用して針
圧を測定することにより行ない、更に塗膜の硬度
は鉛筆引かき試験機(JIS−K5401)を使用して
鉛筆硬度を測定することにより行なつた。 以下に、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例のみに限定される
ものではない。 合成例 1 RfCH=CH2(但し、Rf:CoF2o+1,n:6,8,
10,12の混合物で平均値9.0)49.6g(0.1モル)、
HSiCl3 15.9g(0.12モル)、H2PtCl6・6H2Oの50
%イソプロパノール溶液0.2gを内容積100mlのガ
ラス製耐圧アンプルに入れ、振盪しながら85℃で
20時間反応させた。反応終了後、減圧蒸留をする
ことにより反応生成物を得た。反応生成物はガス
クロマトグラフイーで分析するとRf(CH22SiCl3
(b.P.85℃〜100℃/3〜5mmHg)であり、それ
への転化率は95%であつた。 合成例 2 合成例1の反応生成物Rf(CH22SiCl3 50.3g
(0.08モル)、メタノール15gを混合し、乾燥窒素
をバブリングして生成するHClを除去しながら反
応させた。この反応の終点は生成したHClを定量
して確認した。反応終了後、過剰のメタノールを
留去して反応生成物を得た。反応生成物はガスク
ロマトグラフイーで分析するとRf(CH22Si
(OCH33であり、それへの転化率は100%であつ
た。 合成例 3 RfCOOCH(CH32(但し、Rf:CoF2o+1,n:
6,8,10,12の混合物で平均値9.0)111.2g
(0.2モル)、H2N(CH23Si(OC2H53 44.2g(0.2
モル)、乾燥テトラヒドロフラン150gを温度計、
撹拌機、冷却管を装着した内容積300mlの四つ口
フラスコに入れ、乾燥窒素気流下にゆつくり撹拌
しながら還流温度(約80℃)で5時間反応させ
た。テトラヒドロフランを留去し反応生成物を得
た。反応生成物はガスクロマトグラフイーで分析
するとRfCONH(CH23Si(OC2H53であり、それ
への転化率は100℃であつた。 合成例 4 69.0g(0.1モル)、H2N(CH23Si(OC2H53 22.1
g(0.1モル)、乾燥テトラヒドロフラン150gを
合成例3と同様の方法で反応させた。反応生成物
はガスクロマトグラフで分析すると であり、それへの転化率は100%であつた。 合成例 5 CH2≡CHC6F12CH=CH2 22.6g(0.06モル)、
HSiCl3 25.9(0.19モル)、H2PtCl6・6H2Oの50%
イソプロパノール溶液0.2gを内容積100mlのガラ
ス製耐圧アンプルに入れ振盪しながら85℃で20時
間反応させた。反応終了後、フロン(R−113:
旭硝子社製品)30gを加え、過し、液から低
沸点物を留去して反応生成物を得た。反応生成物
はガスクロマトグラフイーで分析するとCl3Si
(CH22C6F12(CH22SiCl3であり、それへの転化
率は97%であつた。 合成例 6 合成例5の反応生成物Cl3Si(CH22C6F12
(CH22SiCl3 35g(0.056モル)、メタノール15g
を混合し、合成例2と同様の方法で反応させ、反
応生成物を得た。反応生成物はガスクロマトグラ
フイーで分析すると(H3CO)3Si(CH22C6F12
(CH22Si(OCH33であり、それへの転化率は100
%であつた。 合成例 7 IC6F12I 22.2g(0.4モル)、CH2
CHCH2OH92.8g(1.6モル)を温度計、撹拌機、
冷却管を装着した内容積500mlの四つ口フラスコ
に入れ、乾燥窒素気流下、撹拌しながら内温を80
℃に昇温した。これにα,α′−アゾビスイソブチ
ロニトリルを30分〜1時間毎に合計10.5g添加
し、反応温度80℃〜95℃で12時間反応させた。反
応生成物はガスクロマトグラフイーで分析すると
HOCH2CHICH2C6F16CH2CHICH2OHであり、
それへの転化率は90℃であつた。次にこの反応生
成物61g(0.1モル)、25%NaOH水溶液35g
(0.22モル)を前記と同様なフラスコに入れ、50
℃〜60℃で30時間反応させ、反応混合物をエーテ
ルにて抽出し、エーテルを留去後、減圧蒸留する
ことにより、
Examples include polyfluoroalkylene group-containing diepoxy compounds such as [Formula]. Also, copolymers of polyfluoroalkyl group-containing methacrylates and methacrylic acid derivatives, such as A reaction product of a polyfluoroalkyl group-containing alcohol and a melamine derivative, such as R f (CH 2 ) 2 OH and Examples include. Furthermore, C8F17CH = CH, CF3- C≡C- CF3 ,
Plasma polymerizable compounds such as C 8 F 18 can be used. The low reflectance coating film of the present invention has a multilayer structure in which a lower layer coating film is formed on the surface of a transparent substrate, and an upper layer thin film is formed on the coating film, and the thickness of the lower layer coating film is at least 0.1μ, particularly It is preferably 0.5 to 5μ. If the thickness of the coating film is less than 0.1 μm, the entanglement of the molecules of the coating material becomes insufficient, the strength of the coating film cannot be maintained, and the hardness of the upper thin film formed on the coating film cannot be improved.
The thicker the lower coating film is, the harder the upper thin film formed on the coating film will be.
From the viewpoint of workability and economical efficiency of coating, it is not preferable to make the coating thicker than necessary, and the upper limit is 10 μm. The method of forming the lower coating film on the surface of the transparent substrate is not particularly limited. When using a silane compound, for example, dissolve the silane compound in an organic solvent such as acetone, tetrahydrofuran, or lower alcohol, and
It is applied as a solution of ~50% by weight, preferably 15 to 40% by weight, by known methods such as coating, spraying, dipping, etc. After application, leave at room temperature or 100°C if necessary.
The coated film is dried at a temperature of about 0.9°C for 30 minutes to 1 hour to form a coating film in which crosslinking of the silane compound has partially progressed, and an upper layer thin film material is applied thereon to form a thin film. Two or more types of silane compounds may be combined. In such a case, two or more types of silane compounds are mixed and stirred to react, then an organic solvent is added to adjust the viscosity, and the coating is applied and treated in the same manner as above. Forms a film. When using transparent resins, for example, epoxy resin "Epikoat-1001" (product name: Yuka Ciel Chemical Co., Ltd. product), melamine resin "Cymel-1001", etc.
325” (product name: Mitsui Toatsu Chemical Co., Ltd. product), “Orestar M75-50E” (product name: urethane resin)
Mitsui Toatsu Chemical Co., Ltd. products) are preferably used. After adding a crosslinking agent or a polymerization initiator to the epoxy resin and melamine resin and applying them to the surface of the transparent substrate to proceed with partial crosslinking, an upper layer thin film material is applied to form a thin film. After the urethane resin is applied to the surface of the transparent substrate, it is partially polymerized and cured by moisture in the air, and then an upper layer thin film material is applied to form a thin film. The underlayer coating material may also contain an antistatic agent or other components that impart a high refractive index. The upper layer thin film made of a polyfluorinated group-containing compound to be formed on the lower layer coating can be formed by any known coating method, but the preparation method suitable for coating the compound will depend on the compound used. different. That is, in the case of the polyfluoroalkyl group-containing silane compound, a silane compound in which the polyfluoroalkyl group has an ether bond, a mixture of such a silane compound and another silane compound, or a polyfluoroalkylene group-containing silane compound, the compound or mixture with an organic solvent such as acetone, tetrahydrofuran, chlorine or fluorine.
A 1-15% by weight solvent solution, preferably a 3-10% by weight solvent solution, is diluted with a seed or a mixed solvent of two or more kinds, and is applied onto the lower coating film by a known method such as coating, spraying, dipping, etc. After application, a thin film can be formed by curing at a temperature of 100°C or more for 20 minutes or more. In the case of a polyfluoroalkylene group-containing diepoxy compound, the compound is subjected to a curing reaction with one type of curing agent selected from polyfluoroalkylene group-containing amine compounds, other amines, BF 3 salts of amines, and carboxylic acid anhydrides. Add enough amount to progress,
The mixture is reacted at room temperature to 150°C for 5 minutes to 3 hours to obtain a partially polymerized product. It is preferable to use a curing agent that itself has a low refractive index, and in this case, even if the amount used is increased, the low reflection performance will not be affected. For example, 10-50 weight of H2N ( CH2 ) 2 ( CF2 ) 6 ( CH2 ) 2NH2 can be added. Copolymerization of a polyfluoroalkyl group-containing methacrylate and a methacrylic acid derivative is carried out by adding a polymerization initiator to a mixture of the compounds and heating the mixture to form a copolymer. The reaction product of polyfluoroalkylene group-containing alcohol and melamine derivative is 1% to solid component.
% by weight of P-toluenesulfonic acid is added as a catalyst component and heated to obtain a reaction product. Such a copolymer or reaction product can be diluted with a solvent in the same manner as the above-mentioned compounds, applied onto the lower coating film, and then cured to form a thin film. A thin film of the plasma polymerizable compound can be formed on the lower coating film by polymerizing it in a plasma polymerization device. The thickness of the upper thin film formed by this method is preferably 0.2μ or less, particularly 0.08 to 0.2μ.
If it is thicker than 0.2μ, the performance as a low reflectance coating will be significantly inferior. The thickness of the thin film changes depending on the coating conditions, and for example, in the case of a dipping method, it is determined by the relationship between the dilution concentration of the polyfluorinated group-containing compound with the organic solvent and the pulling speed. The upper layer thin film material consisting of a polyfluorinated group-containing compound contains an inorganic filler such as silica gel,
The hardness of the thin film can be further improved by adding Li 2 SiF 6 , MgF 2 , NaSiF 6 , MgSiF 6 or the like.
In addition, the upper layer thin film material can be prepared in any form such as a solvent solution, solvent dispersion, emulsion, or aerosol according to a conventional method, or can be prepared using an antistatic agent,
Additives such as a crosslinking agent can be added as appropriate. The visible light reflectance of the transparent substrate on which the low reflectance coating film of the present invention is formed is 0.6 to 1.4%, which is 4.2% for ordinary soda lime glass, 3.9% for methacrylic resin, and 3.9% for polycarbonate. rate
An excellent effect was observed compared to 4.8%. Furthermore, the hardness of the coating film is a pencil hardness of B to >5H, which is a remarkable improvement over the pencil hardness of a coating film containing only a polyfluorinated group-containing compound, which is >2B. Further, transparency or visibility is not impaired. Applications of the low reflectance coating film of the present invention are not particularly limited, and examples thereof include glass such as building windows, vehicle windows, doors, show windows, show cases, optical instruments, eyeglasses, and sunlight condensing members. Or a transparent plastic material can be used. The evaluation method for the low reflectance coating film of the present invention is as follows. That is, using a self-recording spectrophotometer reflected light measurement accessory (type 323: manufactured by Hitachi), the wavelength was 540 mμ.
The thickness of the coating film is determined by measuring the reflectance at an incident angle of 5°. ), and the hardness of the coating film was determined by measuring the pencil hardness using a pencil scratch tester (JIS-K5401). EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples. Synthesis example 1 R f CH=CH 2 (However, R f :C o F 2o+1 , n: 6, 8,
A mixture of 10 and 12 has an average value of 9.0) 49.6 g (0.1 mol),
HSiCl3 15.9g ( 0.12 mol), H2PtCl6.6H2O 50
Pour 0.2 g of % isopropanol solution into a 100 ml glass pressure-resistant ampoule and heat at 85°C while shaking.
The reaction was allowed to proceed for 20 hours. After the reaction was completed, a reaction product was obtained by distillation under reduced pressure. When the reaction product is analyzed by gas chromatography, it is found to be R f (CH 2 ) 2 SiCl 3
(bP85°C to 100°C/3 to 5 mmHg), and the conversion rate thereto was 95%. Synthesis Example 2 Reaction product of Synthesis Example 1 R f (CH 2 ) 2 SiCl 3 50.3g
(0.08 mol) and 15 g of methanol were mixed, and the mixture was reacted while bubbling dry nitrogen to remove generated HCl. The end point of this reaction was confirmed by quantifying the amount of HCl produced. After the reaction was completed, excess methanol was distilled off to obtain a reaction product. When the reaction product is analyzed by gas chromatography, it is found to be R f (CH 2 ) 2 Si
(OCH 3 ) 3 and the conversion rate thereto was 100%. Synthesis example 3 R f COOCH (CH 3 ) 2 (where, R f :C o F 2o+1 , n:
A mixture of 6, 8, 10, 12 with an average value of 9.0) 111.2g
(0.2 mol), H 2 N (CH 2 ) 3 Si (OC 2 H 5 ) 3 44.2 g (0.2
mole), 150 g of dry tetrahydrofuran with a thermometer,
The mixture was placed in a 300 ml four-necked flask equipped with a stirrer and a condenser, and reacted at reflux temperature (approximately 80°C) for 5 hours with gentle stirring under a stream of dry nitrogen. Tetrahydrofuran was distilled off to obtain a reaction product. The reaction product was analyzed by gas chromatography to be R f CONH (CH 2 ) 3 Si (OC 2 H 5 ) 3 , and the conversion rate thereto was 100°C. Synthesis example 4 69.0g (0.1 mol), H 2 N (CH 2 ) 3 Si (OC 2 H 5 ) 3 22.1
(0.1 mol) and 150 g of dry tetrahydrofuran were reacted in the same manner as in Synthesis Example 3. The reaction products are analyzed using a gas chromatograph. The conversion rate was 100%. Synthesis example 5 CH 2 ≡CHC 6 F 12 CH=CH 2 22.6 g (0.06 mol),
HSiCl3 25.9 (0.19 mol), 50 % of H2PtCl6.6H2O
0.2 g of the isopropanol solution was placed in a pressure-resistant glass ampoule with an internal volume of 100 ml, and the mixture was reacted at 85° C. for 20 hours with shaking. After the reaction is completed, Freon (R-113:
30 g of Asahi Glass Co., Ltd. product) was added, filtered, and low-boiling substances were distilled off from the liquid to obtain a reaction product. When analyzed by gas chromatography, the reaction product was found to be Cl 3 Si
(CH 2 ) 2 C 6 F 12 (CH 2 ) 2 SiCl 3 and the conversion rate thereto was 97%. Synthesis Example 6 Reaction product of Synthesis Example 5 Cl 3 Si (CH 2 ) 2 C 6 F 12
(CH 2 ) 2 SiCl 3 35g (0.056 mol), methanol 15g
were mixed and reacted in the same manner as in Synthesis Example 2 to obtain a reaction product. When analyzed by gas chromatography, the reaction product is (H 3 CO) 3 Si (CH 2 ) 2 C 6 F 12
(CH 2 ) 2 Si(OCH 3 ) 3 and the conversion rate to it is 100
It was %. Synthesis example 7 IC 6 F 12 I 22.2 g (0.4 mol), CH 2 =
92.8 g (1.6 mol) of CHCH 2 OH with a thermometer, stirrer,
Place in a 500ml four-necked flask equipped with a cooling tube, and bring the internal temperature to 80°C while stirring under a stream of dry nitrogen.
The temperature was raised to ℃. A total of 10.5 g of α,α'-azobisisobutyronitrile was added every 30 minutes to 1 hour, and the mixture was reacted at a reaction temperature of 80°C to 95°C for 12 hours. The reaction products are analyzed using gas chromatography.
HOCH 2 CHICH 2 C 6 F 16 CH 2 CHICH 2 OH,
The conversion rate thereto was 90°C. Next, 61 g (0.1 mol) of this reaction product, 35 g of 25% NaOH aqueous solution
(0.22 mol) was placed in the same flask as above, and 50
By reacting at ℃ to 60℃ for 30 hours, extracting the reaction mixture with ether, distilling off the ether, and distilling under reduced pressure.

【式】(b.p.125℃ 〜129℃/3〜5mmHg)を得た。 合成例 8[Formula] (b.p.125℃ -129°C/3-5 mmHg) was obtained. Synthesis example 8

【式】(但し、Rf:CoF2o+1, n:6,8,10,12の混合物で平均値9.0)10g、
[Formula] (However, R f : C o F 2o+1 , n: A mixture of 6, 8, 10, 12, average value 9.0) 10 g,

【式】 2.5gα,α′− アゾビスイソブチロニトリル0.3g、フロン(R
−113:旭硝子社製品)50gを100mlのガラス製耐
圧アンプルに入れ65℃で15時間反応して共重合体
を得た。 合成例 9
[Formula] 2.5gα,α′-Azobisisobutyronitrile 0.3g, Freon (R
-113: Asahi Glass Co., Ltd. product) 50g was placed in a 100ml glass pressure-resistant ampoule and reacted at 65°C for 15 hours to obtain a copolymer. Synthesis example 9

【式】(但し、Rf:Co F2o+1,n:6,8,10,12の混合物で平均値
9.0)10g、
[Formula] (However, R f :C o F 2o+1 , n: Average value for a mixture of 6, 8, 10, 12
9.0) 10g,

【式】 25g、α,α′− アゾビスイソブチロニトリル0.3g、フロン(R
−113,旭硝子社製品)30g、テトラヒドロフラ
ン20gを100mlのガラス製耐圧アンプルに入れ65
℃で15時間反応して共重合体を得た。 合成例 10 13g(0.33モル)、RfC2H4OH(但し、Rf:Co
F2o+1,n:6,8,10,12の混合物で平均値
9.0)34.3g(0.67モル)を100mlの三つ口フラス
コに入れ、120℃に加熱し、生成するメタノール
を留去しながら22時間反応させて、RfC2H4OHと
の反応物及びメラミンが部分的に縮合した混合物
を得た。 合成例 11
[Formula] 25g, α,α′-azobisisobutyronitrile 0.3g, Freon (R
-113, Asahi Glass Co., Ltd. product) 30g and tetrahydrofuran 20g into a 100ml glass pressure-resistant ampoule 65
A copolymer was obtained by reacting at ℃ for 15 hours. Synthesis example 10 13g (0.33 mol), R f C 2 H 4 OH (however, R f :C o
F 2o+1 , average value for a mixture of n: 6, 8, 10, 12
9.0) 34.3 g (0.67 mol) was placed in a 100 ml three-necked flask, heated to 120°C, and reacted for 22 hours while distilling off the methanol produced to form a reaction product with R f C 2 H 4 OH and A mixture in which melamine was partially condensed was obtained. Synthesis example 11

【式】83.4g、 H2N(CH22NH(CH23Si(OCH33 66.6gを温度
計、撹拌機、冷却管を装着した内容積500mlの四
つ口フラスコに入れ、80℃で2時間反応応させた
後、室温に冷却し、テトラヒドロフラン170gを
加えて、粘度6.7cpのシラン化合物溶液を調製し
た。 合成例 12
[Formula] 83.4 g and 66.6 g of H 2 N (CH 2 ) 2 NH (CH 2 ) 3 Si (OCH 3 ) 3 were placed in a 500 ml four-necked flask equipped with a thermometer, stirrer, and cooling tube. After reacting at 80° C. for 2 hours, the mixture was cooled to room temperature, and 170 g of tetrahydrofuran was added to prepare a silane compound solution with a viscosity of 6.7 cp. Synthesis example 12

【式】 139g、 0.1N−HCl27gを撹拌機を装着した内容積500ml
の四つ口フラスコに入れ、室温で48時間反応させ
た後、シリカゾルのメタノール30%溶液150g、
メタノール51gを加えて、粘度3.5cpのシラン化
合物溶液を調製した。 実施例 1 合成例2の反応生成物Rf(CH22Si(OCH33 25
gをフロン(R−113:旭硝子社製品):アセトン
=3:1重量比の混合溶媒で希釈して500gとし
たポリフルオロ化基含有化合物の溶液を調製し
た。別に洗剤で洗浄し、2%フツ酸溶液に浸漬し
て水洗後、乾燥したガラス板(ソーダ石灰ガラス
5×5cm)を用意し、合成例11のシラン化合物溶
液に浸漬し、引上速度9.0cm/分で引上げた後、
室温で30分乾燥した。次に、先きに調製したポリ
フルオロ化基含有化合物溶液に浸漬し、引上速度
4.5cm/分で引上げた後、160℃でキユアリングし
た。処理後のガラス表面に形成された塗膜の厚さ
は2.1μ、塗膜の鉛筆硬度はB、反射率は0.6%で
あつた。 実施例 2〜4 実施例1のポリフルオロ化基含有化合物を合成
例1の反応生成物Rf(CH22SiCl3、合成例3の反
応生成物RfCONH(CH23Si(OC2H53、及び合成
例4の反応生成物 に変えた他は実施例1と同様の方法でガラス板に
処理し、塗膜の厚さ、鉛筆硬度及び反射率を測定
した。 測定結果を第1表に示した。
[Formula] 139g, 27g of 0.1N-HCl, inner volume 500ml with a stirrer attached
After reacting at room temperature for 48 hours, add 150 g of a 30% solution of silica sol in methanol,
51 g of methanol was added to prepare a silane compound solution with a viscosity of 3.5 cp. Example 1 Reaction product R f (CH 2 ) 2 Si(OCH 3 ) 3 25 of Synthesis Example 2
A solution of the polyfluorinated group-containing compound was prepared by diluting 500 g of the polyfluorinated compound with a mixed solvent having a weight ratio of Freon (R-113: Asahi Glass Co., Ltd.):acetone=3:1. Prepare a glass plate (soda lime glass 5 x 5 cm) that was washed separately with a detergent, immersed in a 2% hydrofluoric acid solution, washed with water, and dried, and immersed in the silane compound solution of Synthesis Example 11 at a pulling speed of 9.0 cm. /min after pulling
Dry for 30 minutes at room temperature. Next, it is immersed in the polyfluorinated group-containing compound solution prepared earlier, and the pulling rate is
After pulling at a rate of 4.5 cm/min, curing was performed at 160°C. The thickness of the coating film formed on the glass surface after treatment was 2.1μ, the pencil hardness of the coating film was B, and the reflectance was 0.6%. Examples 2 to 4 The polyfluorinated group-containing compound of Example 1 was combined with the reaction product R f (CH 2 ) 2 SiCl 3 of Synthesis Example 1 and the reaction product R f CONH(CH 2 ) 3 Si( OC 2 H 5 ) 3 and the reaction product of Synthesis Example 4 A glass plate was treated in the same manner as in Example 1, except that the coating film thickness, pencil hardness, and reflectance were measured. The measurement results are shown in Table 1.

【表】 実施例 5 合成例6の反応生成物(H3CO)3Si
(CH22C6F12(CH22Si(OCH33 21.2g、アセト
ン150g、フロン(R−113旭硝子社製品)128g、
1%酢酸水溶液0.6gを室温で12時間撹拌してポ
リフルオロ化基含有化合物溶液を調製した。別に
実施例1と同様の方法でシラン化合物を処理した
ガラス板を用意し、あらかじめ調製した前記溶液
に浸漬し、実施例1と同様の方法でガラス板に処
理した。処理後のガラス表面に形成された塗膜の
厚さは1.6μ、鉛筆硬度は5H、反射率は1.3%であ
つた。 実施例 6 合成例5の反応生成物Cl3Si(CH22C6F12
(CH22SiCl3を用いた他の実施例5と同様の方法
で処理した後、塗膜の厚さ、鉛筆硬度及び反射率
を測定した。 測定結果を第2表に示した。 実施例 7 合成例6の反応生成物(H3CO)3Si(CH2
C6F12(CH22Si(OCH33 17.0g、Rf(CH22Si
(OCH33 3.4g(但し、RfはCoF2o+1,nは6,
8,10,12の混合物で平均値9.0)、アセトン15.0
g、フロン(R−113:旭硝子社製品)129g、1
%酢酸水溶液0.6gを室温で12時間撹拌してポリ
フルオロ化基含有化合物溶液を調製した。この溶
液を実施例5と同様の方法で処理した後、塗膜の
厚さ、鉛筆硬度及び反射率を測定した。 結果を第2表に示した。 実施例 8 合成例6の反応生成物(H3CO)3Si
(CH22C6F12(CH22Si(OCH33 19.0g、
[Table] Example 5 Reaction product of Synthesis Example 6 (H 3 CO) 3 Si
(CH 2 ) 2 C 6 F 12 (CH 2 ) 2 Si (OCH 3 ) 3 21.2 g, acetone 150 g, Freon (R-113 product from Asahi Glass Co., Ltd.) 128 g,
A polyfluorinated group-containing compound solution was prepared by stirring 0.6 g of a 1% aqueous acetic acid solution at room temperature for 12 hours. Separately, a glass plate treated with a silane compound in the same manner as in Example 1 was prepared, immersed in the solution prepared in advance, and treated in the same manner as in Example 1. The coating film formed on the glass surface after treatment had a thickness of 1.6μ, a pencil hardness of 5H, and a reflectance of 1.3%. Example 6 Reaction product of Synthesis Example 5 Cl 3 Si (CH 2 ) 2 C 6 F 12
After treatment in the same manner as in Example 5 using (CH 2 ) 2 SiCl 3 , the thickness, pencil hardness and reflectance of the coating were measured. The measurement results are shown in Table 2. Example 7 Reaction product of Synthesis Example 6 (H 3 CO) 3 Si(CH 2 )
C 6 F 12 (CH 2 ) 2 Si (OCH 3 ) 3 17.0g, R f (CH 2 ) 2 Si
(OCH 3 ) 3 3.4g (However, R f is C o F 2o+1 , n is 6,
8, 10, 12 mixture, average value 9.0), acetone 15.0
g, Freon (R-113: Asahi Glass product) 129g, 1
% aqueous acetic acid solution was stirred at room temperature for 12 hours to prepare a polyfluorinated group-containing compound solution. After treating this solution in the same manner as in Example 5, the thickness, pencil hardness, and reflectance of the coating film were measured. The results are shown in Table 2. Example 8 Reaction product of Synthesis Example 6 (H 3 CO) 3 Si
(CH 2 ) 2 C 6 F 12 (CH 2 ) 2 Si (OCH 3 ) 3 19.0g,

【式】 2.5g、 アセトン150g、フロン(R−113:旭硝子社製
品)128g、1%酢酸水溶液0.75gを実施例7と
同様の方法で撹拌してポリフルオロ化基含有化合
物を調製した。この溶液を実施例5と同様の方法
で処理した後、塗膜の厚さ、鉛筆硬度及び反射率
を測定した。 測定結果を第2表に示した。
[Formula] 2.5g, acetone 150g, Freon (R-113: Asahi Glass Co., Ltd. product) 128g, and 1% acetic acid aqueous solution 0.75g were stirred in the same manner as in Example 7 to prepare a polyfluorinated group-containing compound. After treating this solution in the same manner as in Example 5, the thickness, pencil hardness, and reflectance of the coating film were measured. The measurement results are shown in Table 2.

【表】 実施例 9 合成例7の反応生成物
[Table] Example 9 Reaction product of Synthesis Example 7

【式】 12.06g、 H2N(CH22C4F8(CH22NH2 4.2gを120℃で3
時間反応後、アセトン:フロン(R:113:旭硝
子社製品)=206g:103gの混合溶媒で希釈しポ
リフルオロ化基含有化合物の溶液を調製した。別
に実施例1と同様の方法でシラン化合物を処理し
たガラス板を用意し、あらかじめ調製した前記溶
液に浸漬し、引上速度8.8cm/分で引上後、160℃
でキユアリングした。処理後のガラス表面に形成
された塗膜の厚さは21μ、塗膜の鉛筆硬度は3H、
反射率は1.4%であつた。 実施例 10〜12 合成例8,9の共重合体及び合成例10の混合物
それぞれに対し、1%のp−トルエンスルホン酸
を加え、それぞれをフロン(R−113:旭硝子社
製品):アセトン=3:1重量比の混合溶媒で希
釈して5%溶液を調製した。別に実施例1と同様
の方法でシラン化合物を処理したガラス板を用意
し、あらかじめ調製した前記溶液に浸漬し、実施
例1と同様の方法で処理した後、塗膜の厚さ、鉛
筆硬度及び反射率を測定した。 測定結果を第3表に示した。
[Formula] 12.06g, H 2 N (CH 2 ) 2 C 4 F 8 (CH 2 ) 2 NH 2 4.2g at 120℃
After the time reaction, the mixture was diluted with a mixed solvent of acetone: Freon (R: 113: Asahi Glass Co., Ltd. product) = 206 g: 103 g to prepare a solution of the polyfluorinated group-containing compound. Separately, a glass plate treated with a silane compound in the same manner as in Example 1 was prepared, immersed in the solution prepared in advance, pulled up at a pulling speed of 8.8 cm/min, and then heated to 160°C.
I did a cue ring. The thickness of the coating formed on the glass surface after treatment is 21μ, the pencil hardness of the coating is 3H,
The reflectance was 1.4%. Examples 10 to 12 1% p-toluenesulfonic acid was added to each of the copolymers of Synthesis Examples 8 and 9 and the mixture of Synthesis Example 10, and each was mixed with Freon (R-113: product of Asahi Glass Co., Ltd.):acetone= A 5% solution was prepared by diluting with a mixed solvent in a 3:1 weight ratio. Separately, a glass plate treated with a silane compound in the same manner as in Example 1 was prepared, immersed in the solution prepared in advance, and treated in the same manner as in Example 1. Reflectance was measured. The measurement results are shown in Table 3.

【表】 実施例 13〜15 実施例1と同様の方法でシラン化合物を処理し
たガラス板を用意し、CF3−C≡C−CF3
C8F17CH=CH、C8F18をそれぞれアルゴンで希
釈した気体により表面にプラズマ重合薄膜を作成
し、塗膜の厚さ、鉛筆硬度及び反射率を測定し
た。 測定結果を第4表に示した。
[Table] Examples 13 to 15 A glass plate treated with a silane compound in the same manner as in Example 1 was prepared, and CF 3 -C≡C-CF 3 ,
A plasma-polymerized thin film was created on the surface using a gas in which C 8 F 17 CH=CH and C 8 F 18 were diluted with argon, and the thickness, pencil hardness, and reflectance of the coating film were measured. The measurement results are shown in Table 4.

【表】 実施例 16〜25 実施例1〜6、及び9〜12におけるガラス板に
処理したシラン化合物を合成例12のシラン化合物
に変え、浸漬、引上後100℃で10分間乾燥した他
は実施例1〜6及び9〜12と同様の方法で処理し
た後、塗膜の厚さ、鉛筆硬度及び反射率を測定し
た。 測定結果を第5表に示した。
[Table] Examples 16 to 25 The silane compound treated on the glass plates in Examples 1 to 6 and 9 to 12 was changed to the silane compound of Synthesis Example 12, and the glass plates were dried for 10 minutes at 100°C after immersion and pulling. After processing in the same manner as in Examples 1-6 and 9-12, the thickness, pencil hardness and reflectance of the coating were measured. The measurement results are shown in Table 5.

【表】 実施例 26〜30 実施例5におけるガラス板に処理したシラン化
合物を第6表のシラン化合物に変え、それぞれ75
gをテトラヒドロフランに希釈して500gとして
溶液を用いた他は実施例5と同様の方法で処理し
た後、塗膜の厚さ、鉛筆硬度、及び反射率を測定
した。 測定結果を第6表に示した。
[Table] Examples 26 to 30 The silane compound treated on the glass plate in Example 5 was replaced with the silane compound shown in Table 6, and each
The coating film thickness, pencil hardness, and reflectance were measured after processing in the same manner as in Example 5, except that a solution of 500 g was diluted with tetrahydrofuran. The measurement results are shown in Table 6.

【表】 実施例 31〜32 実施例1におけるガラス板に処理したシラン化
合物をエポキシ樹脂“エピコート−1001”(商品
名:油化シエル社製品):トリエチレンテトラミ
ン=90:10(重量比)、メラミン樹脂“サイメル−
325”(商品名:三井東圧化学社製品):“キヤタリ
スト6000”(商品名:三井東圧化学社製品)=99:
1(重量比)を100℃にて10分間加熱した部分重合
体75gをテトラヒドロフランに希釈して500gと
した溶液に変えた他は実施例5と同様の方法で処
理した後、塗膜の厚さ、鉛筆硬度及び反射率を測
定した。 測定結果を第7表に示した。 実施例 33 実施例5におけるガラス板に処理したシラン化
合物をウレタン樹脂“オレスターM75−50E”
(商品名:三井東圧化学製品)75gをテトラヒド
ロフランに希釈して500gとした溶液に変えた他
は実施例5と同様の方法で処理した後、塗膜の厚
さ、鉛筆硬度及び反射率を測定した。 測定結果を第7表に示した。
[Table] Examples 31 to 32 The silane compound treated on the glass plate in Example 1 was mixed with epoxy resin "Epikoat-1001" (trade name: Yuka Shell Co., Ltd. product): triethylenetetramine = 90:10 (weight ratio), Melamine resin “Cymel”
325” (product name: Mitsui Toatsu Chemical Co., Ltd. product): “Catalyst 6000” (product name: Mitsui Toatsu Chemical Co., Ltd. product) = 99:
1 (weight ratio) was heated at 100°C for 10 minutes to create a solution of 75 g of partial polymer diluted with tetrahydrofuran to make 500 g. After processing in the same manner as in Example 5, the thickness of the coating film was , pencil hardness and reflectance were measured. The measurement results are shown in Table 7. Example 33 The silane compound treated on the glass plate in Example 5 was used as a urethane resin “Orestar M75-50E”
(Product name: Mitsui Toatsu Chemical Products) After processing in the same manner as in Example 5 except that 75 g was diluted with tetrahydrofuran to make 500 g, the thickness of the coating film, pencil hardness, and reflectance were determined. It was measured. The measurement results are shown in Table 7.

【表】 実施例 34〜46 実施例における透明基体のガラス板をポリカー
ボネート板(旭硝子社製品)に変え、キユアリン
グ温度を100℃とした他は実施例1〜6,9〜10,
13,21,26,27及び31と同様の方法で処理した
後、塗膜の厚さ、鉛筆硬度及び反射率を測定し
た。 測定結果を第8表に示した。
[Table] Examples 34 to 46 Examples 1 to 6, 9 to 10, except that the glass plate of the transparent substrate in the example was changed to a polycarbonate plate (manufactured by Asahi Glass Co., Ltd.), and the curing temperature was 100°C.
After processing in the same manner as Nos. 13, 21, 26, 27, and 31, the thickness, pencil hardness, and reflectance of the coatings were measured. The measurement results are shown in Table 8.

【表】 実施例 47〜60 実施例における透明基体のガラス板をポリメチ
ルメタクリレート板(三菱レイヨン社製品)又は
ポリスチレン板(ダウケミカル社製ペレツトを板
に成形)に、キユアリング温度を100℃に変えた
他は実施例1,5,9,10,13,21及び31と同様
の方法で処理した後、塗膜の厚さ、鉛筆硬度及び
反射率を測定した。 測定結果を第9表に示した。 比較例 1〜12 実施例に使用したと同様のガラス板、ポリカー
ボネート板、ポリメチルメタクリレート板、ポリ
スチレン板の反射率の測定結果を第10表に示し
た。 実施例1,10,13及び34において、シラン化合
物の処理を行なわない他は同様の方法で処理した
後(ポリフルオロ化基化合物の薄膜のみ)の、塗
膜の厚さ、鉛筆硬度及び反射率の測定結果を第10
表に示した。 実施例1,16,26及び31において、ポリフルオ
ロ化基化合物の薄膜形成処理を行なわない他は同
様の方法で処理した後(下層塗膜のみ)の塗膜の
厚さ、鉛筆硬度及び反射率の測定結果を第10表に
示した。
[Table] Examples 47 to 60 The transparent substrate glass plate in the example was replaced with a polymethyl methacrylate plate (manufactured by Mitsubishi Rayon Co., Ltd.) or a polystyrene plate (made by molding pellets made by Dow Chemical Co. into a plate), and the curing temperature was changed to 100°C. After treatment in the same manner as in Examples 1, 5, 9, 10, 13, 21, and 31, the thickness, pencil hardness, and reflectance of the coating film were measured. The measurement results are shown in Table 9. Comparative Examples 1 to 12 Table 10 shows the results of measuring the reflectance of glass plates, polycarbonate plates, polymethyl methacrylate plates, and polystyrene plates similar to those used in Examples. In Examples 1, 10, 13, and 34, the coating film thickness, pencil hardness, and reflectance after processing in the same manner except that the silane compound treatment was not performed (only the thin film of the polyfluorinated group compound) The measurement results of the 10th
Shown in the table. In Examples 1, 16, 26, and 31, the thickness, pencil hardness, and reflectance of the coating film after processing in the same manner (lower coating film only) except that the thin film forming treatment of the polyfluorinated group compound was not performed The measurement results are shown in Table 10.

【表】【table】

【表】【table】

【表】 比較例 13〜16 実施例1において、ガラス板にシラン化合物を
刷毛で塗膜厚さが10μ以上になるように塗布、塗
膜を形成し、該塗膜上にポリフルオロ化基含有化
合物の調製液を流延して、160℃でキユアリング
した後、形成された塗膜の厚さ、塗膜の鉛筆硬度
及び反射率を測定した。 又、実施例1,5及び34において、ガラス板又
はポリカーボネート板にシラン化合物の処理を行
なわず、直接ポリフルオロ化基化合物の調製液を
厚さ0.5以上になるように流延して、ガラス板は
160℃、ポリカーボネート板は100℃でキユアリン
グした後、形成された塗膜の厚さ、塗膜の鉛筆硬
度及び反射率を測定した。 測定結果を第11表に示した。
[Table] Comparative Examples 13 to 16 In Example 1, a silane compound was applied to a glass plate with a brush to a coating thickness of 10μ or more to form a coating film, and a polyfluorinated group containing polyfluorinated group was formed on the coating film. After casting the compound preparation and curing at 160°C, the thickness, pencil hardness, and reflectance of the formed coating film were measured. In addition, in Examples 1, 5, and 34, the glass plate or polycarbonate plate was not treated with the silane compound, but the prepared liquid of the polyfluorinated group compound was directly cast to a thickness of 0.5 or more. teeth
After curing the polycarbonate plate at 160°C and 100°C, the thickness of the formed coating film, the pencil hardness and reflectance of the coating film were measured. The measurement results are shown in Table 11.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 透明基体の表面に処理する低反射率塗膜にお
いて、透明基体と同程度以上の屈折率を有するシ
ラン化合物又は透明性樹脂からなり、透明基体上
に形成する塗膜と、該塗膜上に形成し、前記シラ
ン化合物又は透明性樹脂と反応する反応性基を有
するポリフルオロ化基含有化合物からなる0.2μ以
下の薄膜とからなることを特徴とする多層構造の
低反射率塗膜。
1. A low reflectance coating film to be treated on the surface of a transparent substrate is made of a silane compound or transparent resin having a refractive index comparable to or higher than that of the transparent substrate, and a coating film formed on the transparent substrate and a coating film formed on the coating film. 1. A low reflectance coating film having a multilayer structure, comprising a thin film of 0.2 μm or less and comprising a polyfluorinated group-containing compound having a reactive group that reacts with the silane compound or transparent resin.
JP57225787A 1982-12-24 1982-12-24 Low reflectivity coating Granted JPS59115840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57225787A JPS59115840A (en) 1982-12-24 1982-12-24 Low reflectivity coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57225787A JPS59115840A (en) 1982-12-24 1982-12-24 Low reflectivity coating

Publications (2)

Publication Number Publication Date
JPS59115840A JPS59115840A (en) 1984-07-04
JPH0330492B2 true JPH0330492B2 (en) 1991-04-30

Family

ID=16834767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57225787A Granted JPS59115840A (en) 1982-12-24 1982-12-24 Low reflectivity coating

Country Status (1)

Country Link
JP (1) JPS59115840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531622B2 (en) * 2005-05-09 2010-08-25 四国化工機株式会社 Rotating filling valve device with cutter

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745586B2 (en) * 1986-11-28 1995-05-17 旭硝子株式会社 Method for producing water- and oil-repellent plastic molding
JPS63228101A (en) * 1987-03-17 1988-09-22 Nippon Sheet Glass Co Ltd Antistatic non-reflection plate having stain resistance
JPH0781024B2 (en) * 1989-03-22 1995-08-30 旭硝子株式会社 Water repellency. Antifouling transparent base material and structure equipped with the same
US5328768A (en) * 1990-04-03 1994-07-12 Ppg Industries, Inc. Durable water repellant glass surface
US4983459A (en) * 1990-04-03 1991-01-08 Ppg Industries, Inc. Chemically reacted glass surface
US5851674A (en) * 1997-07-30 1998-12-22 Minnesota Mining And Manufacturing Company Antisoiling coatings for antireflective surfaces and methods of preparation
US6277485B1 (en) 1998-01-27 2001-08-21 3M Innovative Properties Company Antisoiling coatings for antireflective surfaces and methods of preparation
KR100901544B1 (en) * 2005-03-02 2009-06-08 파나소닉 전공 주식회사 Coating material composite and coated article

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698166A (en) * 1979-12-29 1981-08-07 Nitto Electric Ind Co Complex of polytetrafluoroethylene and glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698166A (en) * 1979-12-29 1981-08-07 Nitto Electric Ind Co Complex of polytetrafluoroethylene and glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531622B2 (en) * 2005-05-09 2010-08-25 四国化工機株式会社 Rotating filling valve device with cutter

Also Published As

Publication number Publication date
JPS59115840A (en) 1984-07-04

Similar Documents

Publication Publication Date Title
US4073967A (en) Method for rendering substrates resistant to abrasion
US3429845A (en) Compositions comprising polysilicic acid and copolymers of fluorinated monomers with omega-hydroxyalkyl vinyl ethers
KR100940086B1 (en) Per-fluoro polyether compound, antifouling coating composition and film containing same
EP0166363B1 (en) Low reflectance transparent material having antisoiling properties
US4042749A (en) Article having abrasion resistant surface formed from the reaction product of a silane and a metal ester
JP3133357B2 (en) Coating composition for forming high-refractive-index abrasion-resistant film and molded article using the composition
US7196212B2 (en) Perfluoropolyether-modified silane, surface treating agent, and antireflection filter
EP0327906B1 (en) Hard coating agents
JPS6040254A (en) Water-repellent oil-repellent film
TWI391454B (en) Coating fluid for forming film, and film thereof and film-forming process
KR20010040789A (en) Optical Article, Method for Preparing Optical Article, and Organic Silicon Compound
KR100647159B1 (en) Curable Surface Modifier and Curable Composition for Surface Modification Comprising the Same
TW201736537A (en) Coating material composition
JPS6154800B2 (en)
JPH0455615B2 (en)
JP2002053806A (en) Coating film forming composition
JPH0330492B2 (en)
JPS6017384B2 (en) Surface treatment method for polycarbonate resin molded products
JPH1135585A (en) Fluorine-containing compound and optical thin film and article capable of preventing reflection
JPS58167448A (en) Glass having low reflectance
KR100297952B1 (en) Coating Solution for Antifogging Properties
JPH04321660A (en) Urethane (meth)acrylate and resin composition, coating agent for optical fiber and curing agent using the same monomer
JPS6118901A (en) Low reflection working agent
JPH0219801A (en) Reflection reducing agent
JPS624060B2 (en)