JPH0330381A - Etch mirror semiconductor laser - Google Patents

Etch mirror semiconductor laser

Info

Publication number
JPH0330381A
JPH0330381A JP16379089A JP16379089A JPH0330381A JP H0330381 A JPH0330381 A JP H0330381A JP 16379089 A JP16379089 A JP 16379089A JP 16379089 A JP16379089 A JP 16379089A JP H0330381 A JPH0330381 A JP H0330381A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor laser
active layer
etch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16379089A
Other languages
Japanese (ja)
Inventor
Hideho Saito
斎藤 秀穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16379089A priority Critical patent/JPH0330381A/en
Publication of JPH0330381A publication Critical patent/JPH0330381A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable the title etch mirror semiconductor laser in low threshold value to be manufactured by a method wherein the total thickness of an active layer and one or two guide layers in contact with the active layer is specified to be within the range of 0.25-0.35mum. CONSTITUTION:The title semiconductor laser is composed of an n type InP substrate 1, an n type InP clad layer 2, an undoped InGaAsP layer 3, a p type InGaAsP guide layer 4, a p type InP clad layer 5, a p type InGaAsP contact layer 6, an n type electrode 7, a p type electrode 8 and an etching end 9 (etching surface) while the total thickness of the active layer 3 and the guide layer 4 is specified to be within the range of 0.25-0.35mum. In such a constitution, the decline in the reflectance by the gradient of etch mirror is small while the entrapment coefficient of laser beams into the active layer 3 is large. Through these procedures, the title etch mirror semiconductor laser in low threshold value can be manufactured.

Description

【発明の詳細な説明】 (1)発明の属する技術分野 本発明は、0EIC等の集積化半導体レーザに不可欠の
エッチミラー半導体レーザに関するものでる。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical field to which the invention pertains The present invention relates to an etch mirror semiconductor laser which is essential for integrated semiconductor lasers such as 0EICs.

(2)従来の技術 従来のエッチミラー半導体レーザの層構造は、n型クラ
ンド層、undope活性層、ρ型クラッド層からなる
単純なグブルヘテロ接合構造であったため、エッチミラ
ー製作時に、不可避的にエツチング端面がわずかに傾く
ことによって著しく反射率が低下し、エッチミラーレー
ザの特性が劣っていた。
(2) Conventional technology The layer structure of a conventional etch mirror semiconductor laser was a simple double heterojunction structure consisting of an n-type cladding layer, an undoped active layer, and a ρ-type cladding layer. The slight inclination of the end face significantly reduced the reflectance, resulting in poor characteristics of the etch mirror laser.

(3)発明の目的 本発明の目的は、工・ンチングミラー製作時に不可避的
に入るエツチング端面が垂直端面よりわずかに傾くこと
による端面の反射率の低下を掻小にし、且つ閉じ込め係
数の大なる低発振しきい値を有するエッチミラー半導体
レーザを提供することにある。
(3) Purpose of the Invention The purpose of the present invention is to minimize the decrease in the reflectance of the end face due to the slight inclination of the etched end face with respect to the vertical end face, which inevitably occurs during the production of etched mirrors, and to greatly reduce the confinement coefficient. An object of the present invention is to provide an etch mirror semiconductor laser having a oscillation threshold.

(4)発明の構成 (4−1)発明の特徴と従来の技術との差異本発明は、
エッチミラー半導体レーザの層構造を、第1導電型(例
えばn型)の基板と、第1導電型(例えばn型)のクラ
ッド層と、undopeの活性層と、その活性層に接す
る1つないし2つのガイド層と、第2の導電型(例えば
p型)のクラッド層と、第2の導電型(例えばp型)の
コンタクト層からなるようにして、かつ活性層と1つな
いし2つのガイド層の厚みを足し合わせた厚さを0.2
5〜0.35μmの範囲にすることを主要な特徴とする
。これにより、エッチミラーのわずかな傾きによる反射
率の低下を極小にし、かつ、光の活性層への閉じ込め係
数を大ならしめて、低発振しきい値のエッチミラー半導
体レーザを得ることができる。従来のエッチミラー半導
体レーザは、活性層を2つのクラッド層で挟む単純なグ
ブルヘテロ構造であったため、エッチミラーのわずかな
傾きに対して、著しく反射率が低下し、このため、特性
の悪いエッチミラー半導体レーザしか得られなかった。
(4) Structure of the invention (4-1) Differences between the characteristics of the invention and the conventional technology The present invention has the following features:
The layer structure of an etch mirror semiconductor laser includes a substrate of a first conductivity type (for example, n-type), a cladding layer of first conductivity type (for example, n-type), an undoped active layer, and one or more layers in contact with the active layer. It consists of two guide layers, a cladding layer of a second conductivity type (for example, p-type), and a contact layer of a second conductivity type (for example, p-type), and an active layer and one or two guides. The total thickness of the layers is 0.2
The main feature is that the thickness is in the range of 5 to 0.35 μm. This makes it possible to minimize the decrease in reflectance due to a slight tilt of the etch mirror, increase the light confinement coefficient in the active layer, and obtain an etch mirror semiconductor laser with a low oscillation threshold. Conventional etch-mirror semiconductor lasers have a simple double-hetero structure in which the active layer is sandwiched between two cladding layers, so the reflectance decreases significantly when the etch mirror is slightly tilted, resulting in an etch mirror with poor characteristics. Only semiconductor lasers were available.

(4−2)実施例 第1図は、本発明の第1の実施例を説明する断面図であ
って、1はn型i n p a 仮、2はn型1nPク
ラッド層、3はundope−1nGaAsP活性層、
4はp型InGaAsPガイド層、5はp型1nPクラ
’ンド層、6はp型1nGaAsPコンタクト層、7は
n型電極、8はp型電極、9はエツチング端面(反射鏡
)である。
(4-2) Example FIG. 1 is a cross-sectional view for explaining the first example of the present invention, in which 1 is an n-type INPA temporary layer, 2 is an n-type 1nP cladding layer, and 3 is an undoped layer. -1nGaAsP active layer,
4 is a p-type InGaAsP guide layer, 5 is a p-type 1nP ground layer, 6 is a p-type 1nGaAsP contact layer, 7 is an n-type electrode, 8 is a p-type electrode, and 9 is an etched end face (reflector).

活性層3の厚みとガイド層4の厚みを足した厚みが0.
25〜0.35μ盾の範囲にある。このような構造にな
っているから、エッチミラーの傾きによる反射率の低下
も小さ(、かつ光の活性層への閉じ込め係数も大で、低
しきい値のエッチミラー半導体レーザを得ることができ
る。この理由は、第4図と第5図の4層構造スラブガイ
ドの端面の傾きに対する反射率低下の様子と、光の活性
層の閉じ込め係数の計算結果により証明できる。第4図
は、活性層の厚みが、0.1nの場合を示してあり、L
はガイド層の厚みを示すパラメータである。同様に第5
図は、活性層の厚みが0.2μmの場合を示している。
The sum of the thickness of the active layer 3 and the thickness of the guide layer 4 is 0.
It is in the range of 25 to 0.35μ shield. Because of this structure, the decrease in reflectance due to the tilt of the etch mirror is small (and the light confinement coefficient in the active layer is large, making it possible to obtain an etch mirror semiconductor laser with a low threshold value). The reason for this can be proven by the decrease in reflectance with respect to the inclination of the end face of the four-layer slab guide shown in Figures 4 and 5, and the calculation results of the light confinement coefficient of the active layer. The case where the layer thickness is 0.1n is shown, and L
is a parameter indicating the thickness of the guide layer. Similarly, the fifth
The figure shows a case where the thickness of the active layer is 0.2 μm.

一般に半導体レーザのしきい値電流工いは次のように書
ける。
Generally, the threshold current value of a semiconductor laser can be written as follows.

ここで、Aは比例係数、dは活性層の厚さ、「は閉じ込
め係数、αは吸収係数、!はキャビティ長、Rは端面の
反射率である。また、Rが大きい程かつ、d/rが小さ
い程Iいは小さくなる。第4図と第5図の計算結果より
、閉じ込め係数Fと、反射率Rを両方考慮すると、活性
層の厚さdとガイド層の厚さもの両方を足し合わせたd
+t、=0.3μmが、低しきい値エッチミラーを製作
するのに最も適した層構造であることがわかる。
Here, A is the proportionality coefficient, d is the thickness of the active layer, ``is the confinement coefficient, α is the absorption coefficient, ! is the cavity length, and R is the reflectance of the end face. The smaller r is, the smaller I becomes.From the calculation results in Figures 4 and 5, when considering both the confinement coefficient F and reflectance R, both the active layer thickness d and the guide layer thickness can be Added d
It can be seen that +t, = 0.3 μm is the most suitable layer structure for fabricating a low threshold etch mirror.

第2図は第2の実施例を示す断面図であり、1はn型1
nP基板、2はn型1nPクラッド層、13はn型ガイ
ド層L 3はundope fnGaAsP活性層、■
4はp型1nGaAsPガイド層■、5はρ型1nPク
ラッド層、6はP型1nGaAsPコンタクト層、7は
n型電極、8はp型電極、9はエツチング端面である。
FIG. 2 is a cross-sectional view showing the second embodiment, where 1 is an n-type 1
nP substrate, 2 is n-type 1nP cladding layer, 13 is n-type guide layer L, 3 is undoped fnGaAsP active layer,
4 is a p-type 1nGaAsP guide layer (1), 5 is a ρ-type 1nP cladding layer, 6 is a p-type 1nGaAsP contact layer, 7 is an n-type electrode, 8 is a p-type electrode, and 9 is an etched end surface.

、二の実施例では、ガイド層を2つに分け、活性層3の
上と下に配置しである。この場合も活性層3.13のガ
イド[1,14のガイド層■の厚みを足し合わせた厚み
が、0.25〜0.35μmの範囲にある。
In the second embodiment, the guide layer is divided into two parts and placed above and below the active layer 3. In this case as well, the total thickness of the active layer 3.13 and the guide layer 1 and 14 is in the range of 0.25 to 0.35 μm.

第3図は、第3の実施例の埋め込み型エッチミラー半導
体レーザの斜視図であり、1はn型1nP基板、2はn
型1nPクラッド層、3はundope−1nGaAs
P活性層、4はp型1nGaAsPガイド層、5はp型
InPクラッド層、6はp型1nGaAsPコンタクト
層、7はn型電極、8はp型電極、9はエツチング鏡面
、lOはp型1nP埋め込み層、11はn型1nP埋め
込み層、12は電流注入領域である。活性層3の厚みと
ガイド層4の厚みを足し合わせた厚さが0.25〜0.
35pmの範囲にある。
FIG. 3 is a perspective view of the buried etched mirror semiconductor laser of the third embodiment, where 1 is an n-type 1nP substrate, 2 is an n-type
Type 1nP cladding layer, 3 is undoped-1nGaAs
P active layer, 4 is p-type 1nGaAsP guide layer, 5 is p-type InP cladding layer, 6 is p-type 1nGaAsP contact layer, 7 is n-type electrode, 8 is p-type electrode, 9 is etched mirror surface, IO is p-type 1nP A buried layer 11 is an n-type 1nP buried layer, and 12 is a current injection region. The sum of the thickness of the active layer 3 and the thickness of the guide layer 4 is 0.25 to 0.
It is in the range of 35pm.

なお実施例には、InGaAsP/ lnP系を例にあ
げたが、GaAs/A I GaAs系でも同様であり
、本発明の範囲に含まれる。またp型とn型をとり換え
た、p型基板半導体レーザでも、同様であり、本発明の
範囲に含まれる。
In the examples, an InGaAsP/lnP system is given as an example, but the same applies to a GaAs/A I GaAs system and is included within the scope of the present invention. The same applies to a p-type substrate semiconductor laser in which p-type and n-type are replaced, and this is included within the scope of the present invention.

(5)発明の効果 以上、第4図と第5図の計算結果と式■によって説明し
たように、活性層とそれと接する1つないし2つのガイ
ド層の厚みを足し合わせた厚みが0.25〜0.35μ
lの範囲にあれば、エツチング端面の傾きによる端面の
反射率の低下も小さく、かつ光の活性層に対する閉じ込
め係数も大であるので、本発明により、d/rが小さく
なり、低発振しきい値のエッチミラー半導体レーザが得
られる利点がある。
(5) Effects of the invention As explained using the calculation results in FIGS. 4 and 5 and the formula (■), the total thickness of the active layer and one or two guide layers in contact with it is 0.25. ~0.35μ
If it is within the range of 1, the decrease in the reflectance of the etched end face due to the inclination of the etched end face will be small, and the confinement coefficient of light to the active layer will be large. There is an advantage that an etch-mirror semiconductor laser with a high value can be obtained.

図は(頃斜したレーザ端面の反射率特性図である。The figure is a reflectance characteristic diagram of an oblique laser end face.

1・・・n型fnP基板、2・・・n型1nPクラッド
層、3 □= u型InGaAsP活性層、4・・・p
型1nGaAsPガイド層、5・・・p型1nPクラッ
ド層、6・・・p型!nGaAsPコンタクト層、7・
・・n型電極、8・・・p型電極、9・・・エツチング
反射鏡、10・・・p型1 n P 11込み層、11
・・・n型1nP埋込み層、12・・・電流注入領域、
13−n型1nGaAsP力イト層1.14− n型I
nGaAsPガイド層■。
1... n-type fnP substrate, 2... n-type 1nP cladding layer, 3 □= u-type InGaAsP active layer, 4... p
Type 1nGaAsP guide layer, 5...p type 1nP cladding layer, 6...p type! nGaAsP contact layer, 7.
... n-type electrode, 8 ... p-type electrode, 9 ... etching reflector, 10 ... p-type 1 n P 11 containing layer, 11
... n-type 1nP buried layer, 12 ... current injection region,
13-n-type 1nGaAsP power layer 1.14-n-type I
nGaAsP guide layer■.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (2)

【特許請求の範囲】[Claims] (1)エッチングで形成された反射鏡面を持つ、エッチ
ミラー半導体レーザにおいて、 半導体レーザの層構造が、第1導電形の基板と、第1導
電形のクラッド層と、undopeの活性層と、該活性
層に接する1つないし2つのガイド層と、第2の導電形
のクラッド層と、第2の導電形のコンタクト層とで構成
されてなり、かつ前記活性層の厚さ(d)と前記1つな
いし2つのカイド層の厚さ(t)とが0.25μm≦d
+t≦0.35μmであることを特徴とするエッチミラ
ー半導体レーザ。
(1) In an etched mirror semiconductor laser having a reflective mirror surface formed by etching, the layer structure of the semiconductor laser includes a substrate of a first conductivity type, a cladding layer of the first conductivity type, an undoped active layer, and an undoped active layer. It is composed of one or two guide layers in contact with the active layer, a cladding layer of a second conductivity type, and a contact layer of a second conductivity type, and the thickness (d) of the active layer and the The thickness (t) of one or two guide layers is 0.25 μm≦d
An etch mirror semiconductor laser characterized in that +t≦0.35 μm.
(2)ストライプ状の電流注入領域をもち、それ以外の
部分は、屈折率の小なる絶縁性あるいはp−n接合の逆
バイアスによる埋込み層によって埋め込まれていること
を特徴とする特許請求の範囲第1項記載のエッチミラー
半導体レーザ。
(2) Claims characterized in that the device has a striped current injection region, and the other parts are buried with an insulating layer having a small refractive index or a buried layer formed by a reverse bias of a p-n junction. The etch mirror semiconductor laser according to item 1.
JP16379089A 1989-06-28 1989-06-28 Etch mirror semiconductor laser Pending JPH0330381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16379089A JPH0330381A (en) 1989-06-28 1989-06-28 Etch mirror semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16379089A JPH0330381A (en) 1989-06-28 1989-06-28 Etch mirror semiconductor laser

Publications (1)

Publication Number Publication Date
JPH0330381A true JPH0330381A (en) 1991-02-08

Family

ID=15780756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16379089A Pending JPH0330381A (en) 1989-06-28 1989-06-28 Etch mirror semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0330381A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681584U (en) * 1993-05-17 1994-11-22 株式会社藤商事 Ball supply equipment for ball game machines
US5627851A (en) * 1995-02-10 1997-05-06 Ricoh Company, Ltd. Semiconductor light emitting device
WO2002103866A1 (en) * 2001-06-15 2002-12-27 Nichia Corporation Semiconductor laser element, and its manufacturing method
KR100941028B1 (en) * 2008-02-28 2010-02-05 효림산업주식회사 Screen basket of traveling water screen device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681584U (en) * 1993-05-17 1994-11-22 株式会社藤商事 Ball supply equipment for ball game machines
US5627851A (en) * 1995-02-10 1997-05-06 Ricoh Company, Ltd. Semiconductor light emitting device
WO2002103866A1 (en) * 2001-06-15 2002-12-27 Nichia Corporation Semiconductor laser element, and its manufacturing method
KR100941028B1 (en) * 2008-02-28 2010-02-05 효림산업주식회사 Screen basket of traveling water screen device

Similar Documents

Publication Publication Date Title
US4847844A (en) Surface-emitting semiconductor laser device
JPH10303500A (en) High-output semiconductor laser diode
JPH02205092A (en) Semiconductor device laser and its manufacture
JPH0497206A (en) Semiconductor optical element
CA1196078A (en) Double channel planar buried heterostructure laser with periodic structure formed in guide layer
JP2770496B2 (en) Optical amplifier, super luminescent diode, optical integrated circuit, and manufacturing method thereof
JPH0330381A (en) Etch mirror semiconductor laser
JPH0697596A (en) Semiconductor laser element
JP2000244059A (en) Semiconductor laser device
JPS62291192A (en) Surface emission laser
JPS60163486A (en) Semiconductor laser
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0671121B2 (en) Semiconductor laser device
JP3535201B2 (en) Semiconductor laser device
JPS62219684A (en) Distributed feedback type semiconductor laser
JPS5992588A (en) Mono-axial mode semiconductor laser
JPS5840881A (en) Manufacture of buried hetero-structure semiconductor laser-photodiode beam integrating element
JP2822195B2 (en) Semiconductor laser manufacturing method
JPH02213186A (en) Semiconductor laser device
JPH0277174A (en) End face radiation type light emitting diode
JP2872741B2 (en) Edge emitting diode and method of manufacturing the same
JPH02260679A (en) Semiconductor laser device
JPH0581198B2 (en)
JP2763781B2 (en) Semiconductor laser device and method of manufacturing the same
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same