JPS5992588A - Mono-axial mode semiconductor laser - Google Patents

Mono-axial mode semiconductor laser

Info

Publication number
JPS5992588A
JPS5992588A JP57202670A JP20267082A JPS5992588A JP S5992588 A JPS5992588 A JP S5992588A JP 57202670 A JP57202670 A JP 57202670A JP 20267082 A JP20267082 A JP 20267082A JP S5992588 A JPS5992588 A JP S5992588A
Authority
JP
Japan
Prior art keywords
layer
oscillation
reflectance
light guide
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57202670A
Other languages
Japanese (ja)
Inventor
Masafumi Seki
雅文 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57202670A priority Critical patent/JPS5992588A/en
Publication of JPS5992588A publication Critical patent/JPS5992588A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To increase an oscillation available temperature, reduce an oscillation threshold current, and enhance a differential quantum efficiency by a method wherein a reflection film having a reflectance close to 1 and a periodical structure, i.e. a distributed Bragg reflector wherein effective reflectance is determined 10% to 50% are used as a photo resonator. CONSTITUTION:A wafer 50 has a higher part 51 and a lower part 52. The first light guide layer 1, the first clad layer 2, the second light guide layer 3, an active layer 4, the second clad layer 5, a buried layer 6, and a cap layer 7 are successively formed thereon respecitvely. The light guide layer 3 and the active layer 4 compose a light amplification composite guide 8. A light is transmitted through the guide 8 and the guide layer 1 coupled therewith. Here, the resonator is composed of a reflection surface 81 whose reflectance is close to 1 and the periodical structure 90 the distributed Bragg reflector whose reflectance is 10-50%, therefore the increase of current injection causes to start the oscillation. Thereby, the oscillation available temperature can be increased, the oscillation current reduced, and the differential quantum efficiency enhanced.

Description

【発明の詳細な説明】 本発明は光通信用等に用いられる単一軸モード発振をす
る単一軸モード発振半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a single-axis mode oscillation semiconductor laser that oscillates in a single-axis mode and is used for optical communications and the like.

通常、臂開面を反射面とする7アプリペロ一共振器半導
体レーザは1発振軸モードが複数本あって安定せずまた
その波長の温度変化が大きいという欠点があり友、この
欠点は臂開面の代りに半導体レーザ内部に周期構造を形
成し分布帰還型(DFB)半導体レーザあるいは分布ブ
ラッグ反射器型(DBR)半導体レーザとすることで解
決しうる。その代りにこれらDFB半導体レーザやDB
R半導体レーザでは発振可能温度が高くない9発振閾値
電流が大きい、微分童子効率が小さいなどの問題点があ
った。
Normally, a 7-apple-Perot single-cavity semiconductor laser that uses the arm opening as the reflecting surface has the disadvantage that it has multiple oscillation axis modes, making it unstable and that its wavelength varies greatly with temperature. Instead, this problem can be solved by forming a periodic structure inside the semiconductor laser to create a distributed feedback (DFB) semiconductor laser or a distributed Bragg reflector (DBR) semiconductor laser. Instead, these DFB semiconductor lasers and DB
The R semiconductor laser has problems such as a high oscillation temperature, a large oscillation threshold current, and a low differential Doji efficiency.

従来のDBR半導体レーザにおける対向する2つの分布
ブラッグ反射器もしくは対向する1つの臂開面と分布ブ
ラッグ反射器との光共振器の構成において、この分布ブ
ラッグ反射器の実効反射率Rは1分布ブラッグ反射器の
設けられている光ガイドの結合係数にとその長さLを用
いて1次式で与えられることが知られている。
In a conventional DBR semiconductor laser in which an optical resonator is configured with two opposing distributed Bragg reflectors or one opposing arm opening and a distributed Bragg reflector, the effective reflectance R of the distributed Bragg reflector is 1 distributed Bragg. It is known that the coupling coefficient of a light guide provided with a reflector is given by a linear equation using its length L.

R= tanh” (kL )        −・−
・(1)この式によれば、実効反射率1tはkLが十分
太きければ1に十分近くなるので、DB几半導体レーザ
はファプリペロー共振器型半導体レーザと同等ないしそ
れ以上の効率を有することが期待されていた。しかし1
発明者の実験的検討によれば1分布ブラッグ反射器の反
射率はLi太キくシてもある程度以上大きくできないこ
とが判明した(結合係数にの方はあまり大きくできない
)、これは分布ブラッグ反射器の不均一性等による散乱
損失や結合係数にのゆらぎの友めと考られ、現状の技術
レベルでは克服困難と考えられる。
R= tanh” (kL) −・−
・(1) According to this formula, the effective reflectance 1t will be sufficiently close to 1 if kL is sufficiently thick, so the DB laser diode can have an efficiency equal to or higher than that of the Fabry-Perot cavity semiconductor laser. It was expected. But 1
According to the inventor's experimental study, it was found that the reflectance of a single-distribution Bragg reflector cannot be increased beyond a certain level even if the Li thickness is increased (the coupling coefficient cannot be increased very much); this is due to distributed Bragg reflection. This is thought to be due to scattering loss due to non-uniformity of the device and fluctuations in the coupling coefficient, and is thought to be difficult to overcome at the current technological level.

本発明の目的は、これらの問題点を解決し5発振可能部
度が高く1発振閾値電流が比較的小さく。
An object of the present invention is to solve these problems, to achieve a high 5-oscillation capability and a relatively small 1-oscillation threshold current.

微分量子効率が通常の7アブリペロ一共振器半導体レー
ザ並に大きい単一軸モードレーザを提供することにある
The object of the present invention is to provide a single-axis mode laser whose differential quantum efficiency is as high as that of a normal 7 Abry-Perot single-cavity semiconductor laser.

本発明の単一軸モード半導体レーザけ、半導体ウェーハ
上に成長され少なくとも活性層を含む光増幅複合ガイド
と、この光増幅複合ガイドと光学的に結合されその内部
に導波される光の波長の1の整数倍の周期を有する凹凸
の周期構造を含む分布反射型光ガイドと、前記光増幅複
合ガイドの軸方向にほぼ垂直な境界面に形成され九反射
膜とを含んで構成され、前記分布反射型光ガイドの前記
周期構造の結合係数にと長さLで定められる実効反射率
Th1(lから5(lの間に定めたことを特徴とする。
The single-axis mode semiconductor laser according to the present invention includes an optical amplification composite guide grown on a semiconductor wafer and including at least an active layer, and a wavelength of light that is optically coupled to the optical amplification composite guide and guided into the optical amplification composite guide. A distributed reflection type light guide including a periodic structure of concave and convex portions having a period that is an integral multiple of The effective reflectance Th1 (l) determined by the coupling coefficient of the periodic structure of the molded light guide and the length L is set between Th1 (l) and 5 (l).

本発明の発明者は1分布ブラッグ反射器の反射率を小さ
くして使用し代りに対向する1つの伸開面の反射率を上
げることが、DBR半導体レーザの効率化に最も有効で
あることを見出した。例えば1分布ブラッグ反射器の反
射率を設計上30チ。
The inventor of the present invention found that using a monodistribution Bragg reflector with a lower reflectance and instead increasing the reflectance of one opposing extended plane is most effective in increasing the efficiency of a DBR semiconductor laser. I found it. For example, the reflectance of a single distribution Bragg reflector is designed to be 30 cm.

対向する伸開面の反射率を100チとしたDBR半導体
レーザは1分布ブラッグ反射器の反射率を設計上100
チ、伸開面の反射率を30チとした場合よりはるかに良
い特性を示した。本発明の単一軸モード発振半導体レー
ザにおいては、発振可能温度が高く2発振閾値電流が比
較的小さく、微分量子効率が通常のファプリペロー共振
器半導体し−ザ並に大さいという特徴がある。
A DBR semiconductor laser with a reflectance of 100 on the opposing extended plane has a reflectance of 100 on the one-distribution Bragg reflector by design.
However, it showed much better characteristics than when the reflectance of the expanded plane was set to 30 degrees. The single-axis mode oscillation semiconductor laser of the present invention has a high oscillation temperature, a relatively small two-oscillation threshold current, and a differential quantum efficiency as high as that of a typical Farpry-Perot resonator semiconductor laser.

次に図面を用いて本発明の詳細な説明する。Next, the present invention will be explained in detail using the drawings.

第1図は本発明の実施例の単一軸モード半導体レーザの
横断面図、第2図は第1図のウエーノ飄高位部分の縦断
面図、第3図は第1図のウエーノ・低位部分の縦断面図
である。(100)面方位のn −InP  ウェーハ
50には高部51と低部52とがあり、その上にそれぞ
れ第1の光ガイド層1.第1のクラ゛ツド層2.第2の
光ガイド層3.活性層4、第2のクラッド層5.埋め込
み層6.キャップ層7が順次エピタキシャル成長されて
いる。第1の元ガイド層1は禁止帯波長1.15μmの
n −1n O,82G a 6.1B A S (,
40P 6.60の4元混晶、第1のクラッド層2はn
−InP、第2の光ガイド層3は禁止帯波長1.1B、
amの”−1n o、B2 G n o、ta人’ 0
,40PO,60の4元混晶、活性層4は発振波長1.
30μmの” 0.72 GaO,218”0.111
 PO,allの4元混晶・第2のクラッド層5はp−
InP、埋め込み層6はp −1n P。
FIG. 1 is a cross-sectional view of a single-axis mode semiconductor laser according to an embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view of a high-level portion of the Ueno in FIG. FIG. The (100)-oriented n-InP wafer 50 has a high portion 51 and a low portion 52, on which are respectively first light guide layers 1. First cloud layer 2. Second light guide layer 3. Active layer 4, second cladding layer 5. Buried layer 6. A cap layer 7 is epitaxially grown in sequence. The first original guide layer 1 is n −1n O,82G a 6.1B A S (,
40P 6.60 quaternary mixed crystal, first cladding layer 2 is n
-InP, the second optical guide layer 3 has a forbidden wavelength of 1.1B,
am'-1no, B2 Gno, ta person' 0
, 40PO, 60, and the active layer 4 has an oscillation wavelength of 1.
30μm" 0.72 GaO, 218" 0.111
The quaternary mixed crystal second cladding layer 5 of PO,all is p-
InP, the buried layer 6 is p-1nP.

キャップ層7は禁止帯波長1゜20μmのp−1n o
、ys”0,22 ASO,48PO152の4元混晶
である。第2の光ガイド層3と活性層4け光増幅複合ガ
イド8を構5− 成する。
The cap layer 7 is p-1no with a forbidden wavelength of 1°20 μm.
, ys"0, 22 ASO, 48PO152. The second light guide layer 3 and the active layer 4 constitute a light amplification composite guide 8.

このウェーハ50の高部51には、各層1〜7をエピタ
キシャル成長させる前に、第1の光ガイド層1の内部を
伝搬する光の波長(第1の光ガイド層10等価屈折率を
”督1  自由空間の光の波長をλ0としたときλO/
n@q、)の1/2である周期1860X、深さ800
人の周期構造90が(oTx)方向に形成されている。
Before each layer 1 to 7 is epitaxially grown on the high part 51 of the wafer 50, the wavelength of the light propagating inside the first light guide layer 1 (the equivalent refractive index of the first light guide layer 10) is measured. When the wavelength of light in free space is λ0, λO/
Period 1860X, which is 1/2 of n@q, ), depth 800
A human periodic structure 90 is formed in the (oTx) direction.

第1の光ガイド層1と第1のクラッド層20合計の厚み
は高部51と低部52との高低差にほぼ等しくしである
ので、第2の光ガイド層3の高さは第1の光ガイド層1
の高さとほぼ等しく、まt高部51から低部52に変わ
る領域の成長層はう丁いので、第1の光ガイド層1と第
2の光ガイド層3は光学的に高い効率で結合されている
Since the total thickness of the first light guide layer 1 and the first cladding layer 20 is approximately equal to the height difference between the high part 51 and the low part 52, the height of the second light guide layer 3 is equal to the height of the first light guide layer 3. light guide layer 1
The height of the growth layer is approximately equal to the height of the area where the height changes from the high part 51 to the low part 52, so the first light guide layer 1 and the second light guide layer 3 are optically coupled with high efficiency. has been done.

レーザ発振を行うメサストライプ部60の両脇にはp−
InPの第1のブロック層9とn−InPの第2のブロ
ック層10とが成長されている。キャップ層6の上には
、低部52の上のメサストライプ部60の上を除いて絶
縁用の5isNa膜11が6一 形成され、さらに全面にTi−Ptの正電極12が形成
されている。このため正電極12より電流が注入される
と低部52の上のメサストライプ部60の活性層4のみ
が励起される。
On both sides of the mesa stripe section 60 for laser oscillation, p-
A first blocking layer 9 of InP and a second blocking layer 10 of n-InP are grown. On the cap layer 6, an insulating 5isNa film 11 is formed except on the mesa stripe part 60 above the low part 52, and furthermore, a Ti--Pt positive electrode 12 is formed on the entire surface. . Therefore, when a current is injected from the positive electrode 12, only the active layer 4 in the mesa stripe portion 60 above the low portion 52 is excited.

第1.第2の襞間面70.80けメサストライプ部60
と直交する(011)  面であり、第1の襞間面70
には反射率1チ以下の反射防止膜71゜第2の襞間面8
0には反射率約100’%の反射膜81が形成されてい
る。この反射膜81けTi0zと5iOzとを1/4波
長の厚嘔で交互に多層形成(例えば、19層)シ友もの
であ凱反射防止膜71けSiO’!rl/4波長の厚さ
で1層形成したものである。周期構造90の結合係数に
は13cmm”であり、その長さLが150μmであっ
て、実効反射率は約20チであった。また、ウェーハ5
0の下側にはAu−Ge−Niの負電極13が形成され
ている。
1st. Second interfold surface 70.80 degrees mesa stripe portion 60
(011) plane orthogonal to the first interfold plane 70
has an antireflection film 71° with a reflectance of 1 inch or less and a second interfold surface 8.
A reflective film 81 with a reflectance of approximately 100'% is formed on the surface of the reflective film 81. This reflective film consists of 81 layers of Ti0z and 5iOz, alternately formed in multilayers (for example, 19 layers) with a thickness of 1/4 wavelength. One layer is formed with a thickness of rl/4 wavelength. The coupling coefficient of the periodic structure 90 was 13 cm'', the length L was 150 μm, and the effective reflectance was about 20 cm.
A negative electrode 13 made of Au-Ge-Ni is formed below the electrode 0.

以上の構成の実施例の動作を説明する。The operation of the embodiment having the above configuration will be explained.

波長1.300μmの光は光増幅複合ガイド8とそれに
結合した第1の光ガイド層1の内會伝搬するが2反射面
81と周期構造90とにより共振器が構成されているの
で、電流の注入を増加させると発振を開始する。この周
期構造90による分布ブラッグ反射器は反射率20チで
あるので約80%の光が反射防止膜71を通って出射す
る。この反射防止膜71の残留反射率け1チ以下と小さ
いので7アプリペローモードが発振することはシい。
Light with a wavelength of 1.300 μm propagates within the optical amplification composite guide 8 and the first optical guide layer 1 coupled thereto, but since a resonator is constituted by the reflecting surface 81 and the periodic structure 90, the current When the injection is increased it starts to oscillate. Since the distributed Bragg reflector made of the periodic structure 90 has a reflectance of 20 degrees, about 80% of the light passes through the antireflection film 71 and is emitted. Since the residual reflectance of the anti-reflection film 71 is as small as 1 inch or less, the 7-application-Perot mode is unlikely to oscillate.

次にこの実施例の単一軸モード半導体レーザの作製工程
を説明する。まず、n−InPウェーハ50にポジ型ホ
トレジストを塗布し&He−Cdレーザのa25oXの
発振光を約61°の角度で干渉させる三光束干渉露光法
により<oTx>方向に沿った周期1860Xのホトレ
ジストパターンヲ形成し。
Next, the manufacturing process of the single-axis mode semiconductor laser of this example will be explained. First, a positive photoresist is coated on the n-InP wafer 50, and a photoresist pattern with a period of 1860X along the <oTx> direction is formed using a three-beam interference exposure method in which the a25oX oscillation light of the He-Cd laser interferes at an angle of approximately 61°. Formed.

ついでHCQ、とH2Oの混合エッチャントによりウェ
ーハ50に周期構造90を転写する。次に、ホトリソグ
ラフィーとエツチングにより周期構造90の格子方向に
そって幅300 fimの溝を200μm間隔で形成し
て低部fs2t−作る。
Next, the periodic structure 90 is transferred onto the wafer 50 using a mixed etchant of HCQ and H2O. Next, grooves each having a width of 300 fim are formed at intervals of 200 μm along the lattice direction of the periodic structure 90 by photolithography and etching to form a lower portion fs2t-.

次に、第1のガイド層1から第2のクラッド層5までを
成長させ、その後<011>方向にホトリソグラフィー
とエツチングにより幅約2μmのメサストライプ60を
作るように2本の溝をほろ。
Next, the first guide layer 1 to the second cladding layer 5 are grown, and then two grooves are formed in the <011> direction by photolithography and etching to form a mesa stripe 60 with a width of about 2 μm.

次に、再びエピタキシャル成長法により第1.第2のブ
ロック層9.10.埋め込み層6.中キヤツプ7金成長
させる。正電極12と負電極13f:形成した後高部5
1の中央及び低部52の中央を襞間してバーを作製する
。次にそのバーの高部51側に反射防止膜71.低部5
2側に反射膜81を形−成しt後、レーザを1つづつ切
り出して作製が完了する。
Next, the first layer is grown again using the epitaxial growth method. Second block layer 9.10. Buried layer 6. Grow medium cap 7 gold. Positive electrode 12 and negative electrode 13f: formed rear high part 5
1 and the center of the lower part 52 to create a bar. Next, an anti-reflection film 71 is placed on the high part 51 side of the bar. lower part 5
After forming the reflective film 81 on the second side, the lasers are cut out one by one to complete the fabrication.

以上の作製工程において、2本の溝を第1.第2のブロ
ック層で埋め込む工程は電流狭窄と光閉じ込めを達成す
るための手段であり、北村らの特許出願特願昭56−1
66666号と同一の工程である。
In the above manufacturing process, two grooves are formed in the first groove. The process of embedding with the second block layer is a means to achieve current confinement and optical confinement, and the patent application filed by Kitamura et al.
This is the same process as No. 66666.

本発明の単一軸モード発振半導体レーザにおいては、レ
ーザ発振を生じさせる光共振器として。
In the single-axis mode oscillation semiconductor laser of the present invention, as an optical resonator that generates laser oscillation.

1に近い反射率を有する反射膜81と結合係数にと長さ
Lで定められる実効反射率が10チから50チの間に定
めた分布ブラッグ反射器である周期構造90を用いてい
るので、現状の不十分な作9− 裏技術による不完全な周期構造を使用しても7アブリベ
ロ一共振器半導体レーザと同等以上の効率を実現するこ
とができる。この実施例においては、1次の周期構造を
用いたが、2次の周期構造を用い友試作でも室温連続発
振が可能であっt。
Since the reflective film 81 having a reflectance close to 1 and the periodic structure 90 which is a distributed Bragg reflector with an effective reflectance determined by the coupling coefficient and the length L between 10 and 50 inches are used, Current Insufficient Work 9 - Even if an incomplete periodic structure is used using a secret technique, it is possible to achieve an efficiency equal to or higher than that of a seven-abbrero one-cavity semiconductor laser. In this example, a first-order periodic structure was used, but continuous oscillation at room temperature is also possible using a second-order periodic structure.

第4図、第5図はこの実施例の単一軸モード半導体レー
ザの分布ブラッグ反射器の反射率と閾値電流及び微分量
子効率の特性図を示す。この図の反射率は測定した結合
係数にと長さLから式(1)に基いて求めt値である2
反射率が10%以下では閾値電流が非常に大きくなり実
用的ではない。また1反射率が50ts以上の領域では
閾値電流の低減にはあまりきかず逆に微分量子効率の低
減が著しい。したがって、実用的な反射率は10チから
50tsの範囲にあることが明らかとなる。
FIGS. 4 and 5 show characteristic diagrams of the reflectance, threshold current, and differential quantum efficiency of the distributed Bragg reflector of the single-axis mode semiconductor laser of this embodiment. The reflectance in this figure is calculated from the measured coupling coefficient and length L based on equation (1) and is the t value 2
When the reflectance is less than 10%, the threshold current becomes extremely large and is not practical. Further, in a region where the 1 reflectance is 50 ts or more, the threshold current is not reduced much, and on the contrary, the differential quantum efficiency is significantly reduced. Therefore, it is clear that the practical reflectance is in the range of 10ts to 50ts.

以上5本発明の実施例について説明したが、n −1n
Pウエーハ51はp型のものであってもよいが。
Although the five embodiments of the present invention have been described above, n −1n
The P wafer 51 may be of p type.

この場合各層の導電型は実施例の導電型と全て逆にする
ことが必要である。tt、実施例の結晶構成はInP及
びInGaAsP以外のものであってもよ−1〇− く、その発振波長も1.30μmに限定されることなく
他の波長でもよいことは当然である。さらに。
In this case, the conductivity type of each layer must be reversed to that of the embodiment. It goes without saying that the crystal structure of the embodiment may be other than InP and InGaAsP, and the oscillation wavelength is not limited to 1.30 μm and may be any other wavelength. moreover.

反射膜81の形成されている第1の襞間面80はエツチ
ングによりて形成してもよい。また反射防止膜71の代
りに実効的な反射率がOとなるように傾けられた面をエ
ツチング法等で形成してもよい。ただし、その場合はそ
の傾き面の反射率が0でないので光出力はこの実施例の
場合より当然域することになる。
The first interfold surface 80 on which the reflective film 81 is formed may be formed by etching. Further, instead of the antireflection film 71, a surface inclined so that the effective reflectance is O may be formed by etching or the like. However, in that case, since the reflectance of the inclined surface is not 0, the optical output will naturally be in a higher range than in this embodiment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は本発明の一実施例の縦断面図
、高位部分の横断面図、低位部分の横面図、第4図、第
5図はこの実施例の分布ブラッグ反射器の反射率と閾値
電流および微分量子効率の関係を示す特性図である。図
において 1・・・・・・光ガイド層、2・・・・・・クラッド層
、3・・・・・・光ガイド層、4・・・・・!活性層、
訃・・・・・クラッド層。 6・・・・・・埋め込み層、7・・・・・・キャップ層
、8・・・・・・光増幅複合ガイド層、9.10・・・
・・・電流ブロック層。 11・・・・・・絶縁層、12・・・・・・正電極、1
3・・・・・・負電極、5Q・・・・・・ウェーハ、5
1・・・・・・高部、52・旧・・低部、60・・・・
・・メサストライプ部、70.80・・・・・・襞間面
、71・・・・・・反射防止膜% 81・・・・・・反
射膜。 90・・・・・・周期構造 である。
Figures 1, 2, and 3 are longitudinal cross-sectional views of one embodiment of the present invention, a cross-sectional view of a high-level portion, and a horizontal cross-sectional view of a low-level portion, and Figures 4 and 5 are distributions of this embodiment. FIG. 2 is a characteristic diagram showing the relationship between reflectance, threshold current, and differential quantum efficiency of a Bragg reflector. In the figure, 1... light guide layer, 2... cladding layer, 3... light guide layer, 4...! active layer,
Death... cladding layer. 6... Burying layer, 7... Cap layer, 8... Optical amplification composite guide layer, 9.10...
...Current blocking layer. 11... Insulating layer, 12... Positive electrode, 1
3...Negative electrode, 5Q...Wafer, 5
1...high part, 52, old...low part, 60...
... Mesa stripe portion, 70.80 ... Interfold surface, 71 ... Antireflection film% 81 ... Reflection film. 90... It is a periodic structure.

Claims (1)

【特許請求の範囲】[Claims] 半導体ウェーハ上に成長され少なくとも活性層全台む光
増幅複合ガイドと、この光増幅複合ガイドと光学的に結
合されその内部に導波される光の波長の1/2の整数倍
の周期を有する凹凸の周期構造を含む分布反射型光ガイ
ドと、前記光増幅複合ガイドの軸方向に#1は垂直な境
界面に形成された反射膜とを含み、前記分布反射型光ガ
イドの前−記周期構造の結合係数と長さで定められる実
効反射率1に10%から50チの間に定めたことを特徴
とする単一軸モード半導体レーザ。
an optical amplification composite guide grown on a semiconductor wafer and including at least the entire active layer; and an optical amplification composite guide that is optically coupled to the optical amplification composite guide and has a period that is an integral multiple of 1/2 of the wavelength of the light guided inside the optical amplification composite guide. A distributed reflection type light guide including a periodic structure of unevenness, and a reflection film formed on a boundary surface #1 perpendicular to the axial direction of the optical amplification composite guide, and the first period of the distributed reflection type light guide. A single-axis mode semiconductor laser characterized in that an effective reflectance of 1 determined by the coupling coefficient and length of the structure is set between 10% and 50 degrees.
JP57202670A 1982-11-18 1982-11-18 Mono-axial mode semiconductor laser Pending JPS5992588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57202670A JPS5992588A (en) 1982-11-18 1982-11-18 Mono-axial mode semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57202670A JPS5992588A (en) 1982-11-18 1982-11-18 Mono-axial mode semiconductor laser

Publications (1)

Publication Number Publication Date
JPS5992588A true JPS5992588A (en) 1984-05-28

Family

ID=16461201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57202670A Pending JPS5992588A (en) 1982-11-18 1982-11-18 Mono-axial mode semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5992588A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229385A (en) * 1985-04-03 1986-10-13 Matsushita Electric Ind Co Ltd Compound semiconductor device
JPS6316692A (en) * 1986-07-08 1988-01-23 Nec Corp Distributed feedback semiconductor laser
US5111475A (en) * 1990-01-02 1992-05-05 At&T Bell Laboratories Analog optical fiber communication system, and laser adapted for use in such a system
US5285468A (en) * 1992-07-17 1994-02-08 At&T Bell Laboratories Analog optical fiber communication system, and laser adapted for use in such a system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229385A (en) * 1985-04-03 1986-10-13 Matsushita Electric Ind Co Ltd Compound semiconductor device
JPS6316692A (en) * 1986-07-08 1988-01-23 Nec Corp Distributed feedback semiconductor laser
US5111475A (en) * 1990-01-02 1992-05-05 At&T Bell Laboratories Analog optical fiber communication system, and laser adapted for use in such a system
US5285468A (en) * 1992-07-17 1994-02-08 At&T Bell Laboratories Analog optical fiber communication system, and laser adapted for use in such a system

Similar Documents

Publication Publication Date Title
JPH02205092A (en) Semiconductor device laser and its manufacture
JPH0461514B2 (en)
JPS5992588A (en) Mono-axial mode semiconductor laser
JPS60124887A (en) Distributed feedback type semiconductor laser
US4773077A (en) Internal reflection interferometric semiconductor laser apparatus
JP2950302B2 (en) Semiconductor laser
JPS6250075B2 (en)
JPH0548214A (en) Distributed reflection type semiconductor laser
JPH0319292A (en) Semiconductor laser
JP2532449B2 (en) Semiconductor laser device
CN110178275B (en) Semiconductor laser element and method for manufacturing semiconductor laser element
JPH0671121B2 (en) Semiconductor laser device
JPS6066489A (en) Distributed feedback and distributed bragg reflector type semiconductor laser
JPH01183184A (en) Semiconductor laser and manufacture thereof
JPH0230195B2 (en)
JPS59184585A (en) Semiconductor laser of single axial mode
JPS63278290A (en) Semiconductor laser and its use
JP2706166B2 (en) Semiconductor laser
JPS60165782A (en) Semiconductor laser
JPS63305582A (en) Semiconductor laser
JPS59218786A (en) Single axial mode semiconductor laser
JPS625354B2 (en)
JP4024319B2 (en) Semiconductor light emitting device
JPH0724319B2 (en) Optical integrated device and manufacturing method thereof
JPH04372185A (en) Semiconductor laser