JPH0329513B2 - - Google Patents

Info

Publication number
JPH0329513B2
JPH0329513B2 JP12701082A JP12701082A JPH0329513B2 JP H0329513 B2 JPH0329513 B2 JP H0329513B2 JP 12701082 A JP12701082 A JP 12701082A JP 12701082 A JP12701082 A JP 12701082A JP H0329513 B2 JPH0329513 B2 JP H0329513B2
Authority
JP
Japan
Prior art keywords
wire
welding
welding wire
curved
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12701082A
Other languages
Japanese (ja)
Other versions
JPS5916677A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12701082A priority Critical patent/JPS5916677A/en
Publication of JPS5916677A publication Critical patent/JPS5916677A/en
Publication of JPH0329513B2 publication Critical patent/JPH0329513B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/133Means for feeding electrodes, e.g. drums, rolls, motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Guides For Winding Or Rewinding, Or Guides For Filamentary Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は湾曲部を伴う送給経路に溶接ワイヤを
送給する際のワイヤの送給特性を改善した溶接ワ
イヤ送給方法に関する。 一般に連続した溶接ワイヤを使用するCO2溶接
やMAG溶接、MIG溶接等の消耗電極方式の自動
アーク溶接や、添加ワイヤを使用するTIG溶接、
ろう接等に於いて、溶接ワイヤを円滑に溶接個所
まで送給してアーク部に正確に供給する必要があ
ることは伝うまでもない。 ところで、溶接ワイヤを送給する送給径路(通
常はワイヤガイドチユーブ等が使用される)の途
中に湾曲部が存在する場合、仮に真直ぐな溶接ワ
イヤを送給径路内に送給しても、湾曲部を通過す
る際に湾曲歪を生じて、溶接トーチ先端部を出た
ところでは開先方向と異なつた方向に偏位するこ
とが避けられない。 特に狭隘な場所に溶接継手があつて、使用する
溶接トーチに、いわゆるカーブドトーチと称する
トーチの先端部が極端に湾曲したものを使用しな
ければならない場合や、ロボツト溶接装置等にお
いて、手首の回動等によつて溶接ワイヤを送給す
る送給径路に極度な湾曲部を生じることが避けら
れない場合、こうした湾曲部を溶接ワイヤが通過
することによつてワイヤ自身が湾曲変形し、トー
チ部先端からは送給径路中に存在する湾曲部の曲
率半径よりも大きな曲率半径をもつて湾曲変形し
た溶接ワイヤが出てくることになり、溶接ワイヤ
の実際に供給される位置が正規の供給位置から外
れてしまい、溶接作業に支障を来す結果となる。 第1図は溶接トーチに前述のカーブドトーチを
使用して溶接ワイヤを送給した場合に、溶接ワイ
ヤがいかに湾曲変形して送給されるかを説明した
略図であつて、図中1はガイドチユーブ、2はガ
イドチユーブ先端に設けられる溶接トーチ、Wは
溶接ワイヤを示しいる。また上記溶接トーチ2の
先端部は曲率半径Rの円弧状に約90゜湾曲し、そ
の他の部分については直線状に配置されている。 ところで、このような送給径路中をガイドチユ
ーブ1の基端部側に設けられた図示しないワイヤ
送給器によつて溶接ワイヤWを矢印a方向に送給
すると、溶接トーチ2に至るまでの間では全く直
線状に送給されるが、溶接トーチ2の湾曲部2a
を通過する際に湾曲変形して、溶接トーチ2を出
て溶接部に至る空間では曲率半径R1の曲り癖が
つき、正規の溶接位置Pから大きく偏位した方向
に進む結果となる。 勿論、この曲り癖によつて溶接ワイヤWに生じ
た湾曲部4の曲率半径R1の値は送給径路におけ
る湾曲部(ここでは溶接トーチ2の湾曲部2aを
指す)の湾曲の程度が著しい程、つまり上記湾曲
部2aの曲率半径Rが小さい程小さくなる傾向に
ある。 表1は現在多用されている径1.2mmのCO2溶接
用鋼ワイヤについて、送給径路に存在する湾曲部
の曲率半径Rと湾曲変形した溶接ワイヤWの曲率
半径R1との相間関係を実測によつて求めた結果
の一例を示したものである。
The present invention relates to a welding wire feeding method that improves the wire feeding characteristics when feeding the welding wire to a feeding path with curved portions. Automatic arc welding with consumable electrodes, such as CO 2 welding, MAG welding, and MIG welding, which generally use continuous welding wire, and TIG welding, which uses additive wire,
Needless to say, in brazing and the like, it is necessary to smoothly feed the welding wire to the welding location and accurately supply it to the arc portion. By the way, if there is a curved part in the feeding path (usually a wire guide tube etc. is used) for feeding the welding wire, even if a straight welding wire is fed into the feeding path, When passing through a curved portion, a bending strain occurs, and it is inevitable that the welding torch will be deflected in a direction different from the groove direction when it exits the tip of the welding torch. Particularly when welding joints are in a narrow space and a welding torch with an extremely curved tip called a so-called curved torch must be used, or when using robot welding equipment, etc., wrist rotation is required. If it is unavoidable that the welding wire is extremely curved in the feed path due to movement, etc., the welding wire passes through such a curved part, causing the wire itself to be curved and deformed, causing damage to the torch section. A welding wire that is curved and deformed with a radius of curvature larger than the radius of curvature of the curved part existing in the feeding path will come out from the tip, and the actual position where the welding wire is fed is not the normal feeding position. It may come off and cause problems in welding work. FIG. 1 is a schematic diagram illustrating how the welding wire is bent and deformed when the welding wire is fed using the aforementioned curved torch, and 1 in the figure is a guide. 2 indicates a welding torch provided at the tip of the guide tube, and W indicates a welding wire. Further, the tip of the welding torch 2 is curved approximately 90 degrees in the shape of a circular arc with a radius of curvature R, and the other portion is arranged in a straight line. By the way, when the welding wire W is fed in the direction of arrow a through such a feeding path by a wire feeder (not shown) provided on the base end side of the guide tube 1, the welding wire W reaches the welding torch 2. Although the welding torch 2 is fed in a completely straight line between the curved portion 2a of the welding torch 2
The welding torch 2 is curved and deformed when passing through the welding area, and in the space where it leaves the welding torch 2 and reaches the welding part, it has a bending tendency with a radius of curvature R1 , resulting in the welding proceeding in a direction that is largely deviated from the normal welding position P. Of course, the value of the radius of curvature R 1 of the curved portion 4 caused in the welding wire W due to this bending tendency is determined by the degree of curvature of the curved portion in the feeding path (here, the curved portion 2a of the welding torch 2). In other words, the smaller the radius of curvature R of the curved portion 2a, the smaller the radius of curvature. Table 1 shows the actual measured correlation between the radius of curvature R of the curved part in the feeding path and the radius of curvature R 1 of the welding wire W that has been deformed into a curve, for a currently widely used steel wire for CO 2 welding with a diameter of 1.2 mm. This figure shows an example of the results obtained by .

【表】 また第1図に於いて溶接部の正規の溶接位置をP
とし、溶接ワイヤWの突出し長さをLとして、こ
の突出し長さLと等距離にあつて、かつ溶接ワイ
ヤWが実際に供給される位置をP1として、P,
P′間の距離δを溶接ワイヤWの湾曲変形によつて
生じるワイヤ先端部の偏位量とすれば、表1に示
した実験結果に基づいて第2図の関係が得られ
る。 すなわち、同図の曲線1及び2は溶接ワイヤの
突出し長さLをそれぞれ30mm及び20mmに設定した
場合に於ける送給径路の曲率半径Rとワイヤの偏
位量δとの関係を示している。 ところで、この程度の溶接ワイヤを用いる溶接
方法では溶接ワイヤ先端部の偏位量δを少くとも
0.5mm以下に抑える必要があることが一般に知ら
れている。 したがつて第2図にQ1及びQ2で示すように溶
接ワイヤの突出し長ささLを30mmまたは200mmに
設定した場合、送給径路に存在する湾曲部の曲率
半径Rを115mmまたは90mm程度以上になるよう相
当緩やかに湾曲するような送給径路に維持しなけ
ればならないという制約を課せられることにな
り、溶接装置を設計する上で大きな障害となつて
いた。 本発明はこのような事情に鑑みてなされたもの
であつて、その目的とするところは溶接ワイヤを
送給する送給径路の途中に極度な湾曲部を伴う場
合でも、溶接ワイヤが特定方向に湾曲変形を受け
ず、溶接ワイヤを溶接部の適正位置に正確に送給
することができる溶接ワイヤ送給方法を提供する
ことにある。 このような目的を達成すべく本発明は以下の如
く構成したことを特徴とする。 すなわち、湾曲部を伴う送給径路に溶接ワイヤ
を送給するもので、湾曲部を経て送給される溶接
ワイヤをその湾曲部の手前側で円周方向に捩りな
がら送給することにより、湾曲部の通過によつて
溶接ワイヤに生じる湾曲変形がワイヤの周方向に
均一に分散され、溶接ワイヤが直接に近い状態で
送給されるため、溶接ワイヤを溶接部の適正位置
に正確に送給することができるものである。 以下、本発明の方法を第3図に示す実施例に基
づいて説明する。 第3図は第1図に示す送給径路の途中にワイヤ
捩り装置10を設けた状態を示しており、特にこ
の実施例では曲率半径Rの湾曲部11を伴う溶接
トーチ12の手前側にワイヤ捩り装置10を設
け、この湾曲部11の手前側で溶接ワイヤWをそ
の円周方向(図中矢印βで示す方向)に捩るよう
にしている。 ところで上記ワイヤ捩り装置10は駆動モータ
13の出力軸13aに互いに対峙する1対の支持
アーム14,14を突設したブラケツト15を取
着して両支持アーム14,14の先端部に1対の
加圧ロール16,16を支軸17,17を介して
軸支したもので、両支持アーム14,14間に図
示しないバネ部材、及びバネ圧調整部材を設けて
両加圧ロール16,16によつて溶接ワイヤWを
挾圧するとともに、その挾圧力をバネ圧調整部材
によつて適宜調整できるようにしている。 尚、上記加圧ロール16,16の外周にその周
方向に沿つて凹みを設け、溶接ワイヤWを挾圧し
て回転した場合に溶接ワイヤWが加圧ロール1
6,16から外れないようにしている。 次にこの実施例の作用について説明する。溶接
ワイヤWを図示しないワイヤ送給器によつて矢印
a方向に送給すると、溶接トーチ12の手前側に
設けられたワイヤ捩り装置10によつて溶接ワイ
ヤWがその円周方向に捩じられながら溶接トーチ
12内を挿通し、この溶接トーチ12から出た溶
接ワイヤWは曲率半径Rの湾曲部11を通過した
にもかかわらず、殆んど直線状態のままで正規の
溶接位置Pの極めて近い位置を通ることになる。 このように本発明の送給方法によれば、溶接ワ
イヤWは外見上、略直線に近い状態で溶接部に送
給されることになる。 ここで正規の溶接位置Pに対する溶接ワイヤW
の偏位量δを前述の第2図の測定結果を求める際
に使用した溶接ワイヤと同一規格の溶接ワイヤ、
つまり径1.2mmのCO2溶接用鋼ワイヤを用いて詳
細に実測した結果を第4図に示す。 同図に於いて、曲線3,4,5はそれぞれワイ
ヤ捩り装置10の回転速度Nを125、167、
250rpmに変えた場合に於ける湾曲部11の曲率
半径Rに対する溶接ワイヤWの偏位量δの変化を
測定したものである。 また溶接ワイヤWは一定速度で送給径路内を送
給される訳であつて、その速度をVとすると溶接
ワイヤWの捩りピツチPは次式で表わされる。 P=V/N N:ワイヤの回転速度 今、溶接ワイヤWの送給速度V=10m/minとす
ると、上記各曲線3,4,5に於ける捩りピツチ
Pの値はそれぞれ80mm,60mm,40mmとなる。 ところで、上記各曲線3,4,5を第2図に示
す曲線1及び2と対比させて送給径路に生じる湾
曲部の曲率半径Rに対する溶接ワイヤWの偏位量
を比較してみると、本発明の方法による場合、同
じ曲率半径Rのときのワイヤの偏位量δが従来の
送給方法の場合に比して遥かに低い値に減少して
いる。 また本発明によれば記各曲線3,4,5を比較
してわかるように、溶接ワイヤWの偏位量δが曲
線3よりも曲線4の方が、また曲線4よりも曲線
5の方が減少している。つまり、このことはワイ
ヤの回転速度Nが大で、捩りピツチPの値が小さ
くなる程この発明の効果が顕著になることを示し
ている。 また、溶接ワイヤWの溶接部に於ける偏位量δ
の実用上の限界は前述した通り0.5mmであつて、
この偏位量に於ける送給径路の曲率半径Rの値は
Q3,Q4,Q5に示すようにそれぞれ75mm,55mm,
20mmであつて、従来の送給方法に於けるQ1,Q2
の値、すなわち115mm及び90mmに比べて遥かに低
い値になつている。 つまり、このことは溶接ワイヤの溶接部に於け
る偏位量δを所定の値以下に抑えなければならな
い制約下で、本発明による方法によれば、送給径
路に生じる湾曲部の曲率半径Rが従来の送給方法
に比してかなり小さい値まで許容されるものであ
つて、送給径路を設定する上での自由度が大幅に
拡大されたことになる。 また換言すれば、本発明の方法による場合は溶
接ワイヤの送給径路中に相当極端な湾曲部が存在
しても溶接ワイヤは殆んど湾曲変形することな
く、略直線状のままで溶接部に正確に送給される
ことを意味している。 また第5図は前述の測定と同様、径1.2mmの
CO2溶接用鋼ワイヤを用いてワイヤの回転速度を
順次変化させ、捩りピツチPを変化させた場合に
於けるワイヤの偏位量δの変化を送給径路に存在
する湾曲部の曲率半径Rの値を種々に変更して測
定し、その結果をグラフで示したものである。 このグラフからも前述の第4図に示づグラフと
同様、捩りピツチPが小さくなればなる程偏位量
δの値も小さくなり、本発明のワイヤ送給方法の
ように溶接ワイヤを湾曲部の手前側で捩じりなが
ら送給する方法が大いに効果のあることが容易に
理解される。 次に、本発明のワイヤ送給方法による場合、従
来の送給方法に比してワイヤの偏位量が如何に減
少すかについて説明する。 第6図aは通常のワイヤ送給方法によつて、湾
曲したワイヤガイド20の先端部から送り出され
る溶接ワイヤWの湾曲状態を示したもので、溶接
ワイヤWにはこのワイヤの中心線に沿つて曲率半
径Roとなるような曲がり癖を生じている。 直線状のワイヤWがこのように湾曲するのは、
ワイヤガイド20の湾曲部を通過する際に、ワイ
ヤWが曲げ変形を起こしたことによるが、これは
曲率半径R2で示すワイヤWの外周に近い部分に
引張応力が生じ、内周に近いR1で示す部分に圧
縮応力が生じ、その結果として円弧状にワイヤW
が変形したものである。 同図において引張力が作用して伸び変形を起し
た部分に斜線を施している。 また第6図bは本発明のワイヤ送給方法によつ
て第6図aと同様に湾曲したワイヤガイド20の
先端部から送り出される溶接ワイヤWの状態を示
したものであつて、このワイヤWの周上の1点S0
が時間の経過とともにどのように移動するかを
S1,S2,S3,S4で示している。 ワイヤWのS0の部分がワイヤガイド20の先端
部から出た瞬間T0の時点ではワイヤWがワイヤ
ガイド20の湾曲方向と同一方向に曲げ変形を受
け、このS0の部分に引張応力が作用して伸び変形
を受けている。 捩りピツチPの1/4期間が経過した時点T1
は、T0に於けるS0の部分がワイヤWの中心軸に
対して90゜回転してS1の位置に到達し、このS1
おけるワイヤWの湾曲方向もS0の部分に対して
90゜ずれている。 同様に溶接ワイヤWが1/4ピツチづつ回転して
T2,T3,T4となる時点ではS0の部分がS2,S3
S4と90゜づつ回転しながら前進し、湾曲方向もそ
れに従つて90゜づつずれてゆく。 尚、同図においてワイヤWの斜線を施した部分
は引張応力が作用して伸び変形を起した部分を示
している。 したがつて、このような変化を溶接ワイヤの1
ピツチ以上の捩りピツチ区間で考えた場合、溶接
ワイヤの各部に作用する引張力や圧縮力がワイヤ
の円周方向に均一に分散され、溶接ワイヤがその
円周方向に対して平均的に変形することになる訳
で、第6図aに示すように溶接ワイヤが特定の方
向のみに引張力や圧縮力を受ける場合とは全く異
なつた現象を呈することが容易に理解される。 またこのような状態にある溶接ワイヤを巨視的
にみた場合、ワイヤの進行方向は常に一定であつ
て、略直線に近い状態でワイヤが送給されること
になる。 したがつて、溶接部における正規の溶接位置か
らの偏位量も極めて少なく、安定した溶接作業を
実施できるものである。 尚、上記実施例では溶接トーチ12に湾曲部1
1を伴う場合について説明したが、溶接トーチに
限らず、溶接ワイヤを溶接個所まで送給する送給
径路中の如何なる場所に湾曲部が生じる場合につ
いても適用できるものである。 また溶接ワイヤを捩る個所についても溶接トー
チの手前側に限るものでなく、例えばガイドチユ
ーブの基端部側にワイヤ捩り装置を設けてもよ
く、要は送給径路中に発生する湾曲部の手前側で
溶接ワイヤをその円周方向に捩じるようにすれば
よい。 またワイヤ捩り装置についても本実施例に示す
ものに限るものでない。
[Table] Also, in Figure 1, the normal welding position of the welding part is P
Assuming that the protrusion length of the welding wire W is L, and the position equidistant from this protrusion length L and where the welding wire W is actually supplied is P1 , P,
If the distance δ between P' is the amount of deviation of the wire tip caused by the bending deformation of the welding wire W, then the relationship shown in FIG. 2 can be obtained based on the experimental results shown in Table 1. That is, curves 1 and 2 in the figure show the relationship between the radius of curvature R of the feeding path and the amount of wire deviation δ when the protruding length L of the welding wire is set to 30 mm and 20 mm, respectively. . By the way, in a welding method using such a welding wire, the amount of deviation δ of the welding wire tip must be at least
It is generally known that it is necessary to suppress the thickness to 0.5 mm or less. Therefore, when the protrusion length L of the welding wire is set to 30 mm or 200 mm as shown by Q 1 and Q 2 in Fig. 2, the radius of curvature R of the curved part existing in the feeding path must be approximately 115 mm or 90 mm or more. This was a major obstacle in designing welding equipment, as the feed path had to be maintained in a fairly gently curved manner. The present invention has been made in view of the above circumstances, and its purpose is to prevent the welding wire from moving in a specific direction even when there is an extremely curved part in the middle of the welding wire feeding route. It is an object of the present invention to provide a welding wire feeding method capable of accurately feeding a welding wire to a proper position of a welding part without being subjected to bending deformation. In order to achieve such an object, the present invention is characterized by being configured as follows. In other words, the welding wire is fed through a feeding path that includes a curved part. The bending deformation that occurs in the welding wire as it passes through the welding part is evenly distributed in the circumferential direction of the wire, and the welding wire is fed almost directly, allowing the welding wire to be accurately fed to the proper position of the welding part. It is something that can be done. The method of the present invention will be explained below based on the embodiment shown in FIG. FIG. 3 shows a state in which the wire twisting device 10 is provided in the middle of the feeding path shown in FIG. A twisting device 10 is provided to twist the welding wire W in the circumferential direction (direction indicated by arrow β in the figure) on the near side of this curved portion 11. By the way, in the wire twisting device 10, a bracket 15 is attached to the output shaft 13a of the drive motor 13, and the bracket 15 has a pair of supporting arms 14, 14 protruding from each other facing each other. Pressure rolls 16, 16 are pivotally supported via support shafts 17, 17, and a spring member (not shown) and a spring pressure adjustment member are provided between both support arms 14, 14, and both pressure rolls 16, 16 are Therefore, the welding wire W is clamped and the clamping pressure can be adjusted as appropriate by the spring pressure adjusting member. Incidentally, a recess is provided in the outer periphery of the pressure rolls 16, 16 along the circumferential direction, so that when the welding wire W is clamped and rotated, the welding wire W is pressed against the pressure roll 1.
I try not to deviate from 6.16. Next, the operation of this embodiment will be explained. When the welding wire W is fed in the direction of arrow a by a wire feeder (not shown), the welding wire W is twisted in the circumferential direction by the wire twisting device 10 provided on the front side of the welding torch 12. Although the welding wire W passed through the welding torch 12 while passing through the welding torch 12 and passed through the curved part 11 with the radius of curvature R, the welding wire W remained almost straight and was not far from the normal welding position P. You will be passing through a nearby location. As described above, according to the feeding method of the present invention, the welding wire W is fed to the welding part in a state that is approximately straight in appearance. Here, the welding wire W for the regular welding position P
Welding wire of the same standard as the welding wire used to obtain the measurement results shown in Figure 2 above,
In other words, Figure 4 shows the results of detailed measurements using a CO 2 welding steel wire with a diameter of 1.2 mm. In the figure, curves 3, 4, and 5 indicate the rotation speed N of the wire twisting device 10 at 125, 167,
The change in the deviation amount δ of the welding wire W with respect to the radius of curvature R of the curved portion 11 when the speed was changed to 250 rpm was measured. Further, the welding wire W is fed through the feeding path at a constant speed, and when the speed is V, the twist pitch P of the welding wire W is expressed by the following equation. P=V/N N: Wire rotation speed Now, if welding wire W feeding speed V=10 m/min, the values of torsion pitch P in each of the above curves 3, 4, and 5 are 80 mm, 60 mm, and 60 mm, respectively. It will be 40mm. By the way, when comparing the curves 3, 4, and 5 mentioned above with the curves 1 and 2 shown in FIG. 2, and comparing the amount of deviation of the welding wire W with respect to the radius of curvature R of the curved portion occurring in the feeding path, In the case of the method of the present invention, the amount of wire deviation δ for the same radius of curvature R is reduced to a much lower value than in the case of the conventional feeding method. Further, according to the present invention, as can be seen by comparing the curves 3, 4, and 5, the deviation amount δ of the welding wire W is larger in curve 4 than in curve 3, and also in curve 5 than in curve 4. is decreasing. In other words, this shows that the effect of the present invention becomes more pronounced as the rotation speed N of the wire increases and the value of the twist pitch P decreases. Also, the amount of deviation δ at the welding part of the welding wire W
As mentioned above, the practical limit is 0.5 mm,
The value of the radius of curvature R of the feeding path at this amount of deviation is
As shown in Q 3 , Q 4 and Q 5 , 75mm, 55mm, and
20mm, Q 1 , Q 2 in conventional feeding method
The value is much lower than that of 115mm and 90mm. In other words, under the constraint that the amount of deviation δ at the welding part of the welding wire must be suppressed to a predetermined value or less, according to the method according to the present invention, the radius of curvature R of the curved part generated in the feeding path can be reduced. This allows for a much smaller value than in conventional feeding methods, which means that the degree of freedom in setting the feeding route is greatly expanded. In other words, when using the method of the present invention, even if there is a fairly extreme curved part in the welding wire feeding path, the welding wire hardly curves and deforms and remains substantially straight at the welding area. This means that it will be delivered accurately. In addition, Figure 5 shows a diameter of 1.2 mm, similar to the measurement described above.
Using a CO 2 welding steel wire, the change in the deviation amount δ of the wire when the rotational speed of the wire is sequentially changed and the twist pitch P is changed is calculated by calculating the radius of curvature R of the curved part in the feeding path. Measurements were made with various values of , and the results are shown in a graph. Similar to the graph shown in FIG. 4, this graph also shows that the smaller the torsion pitch P, the smaller the value of the deviation amount δ. It is easily understood that the method of feeding the material while twisting it on the near side is very effective. Next, a description will be given of how the wire feeding method of the present invention reduces the amount of wire deviation compared to the conventional feeding method. FIG. 6a shows a curved state of the welding wire W fed out from the tip of the curved wire guide 20 by a normal wire feeding method, and the welding wire W is fed along the center line of the wire. It has a tendency to bend so that the radius of curvature is Ro. The straight wire W curves like this because
This is because the wire W undergoes bending deformation when passing through the curved part of the wire guide 20. This is because tensile stress is generated near the outer periphery of the wire W, which is indicated by the radius of curvature R2 , and the wire W is bent near the inner periphery. Compressive stress occurs in the part indicated by 1 , and as a result, the wire W
is a modified version. In the figure, the portions where tensile force is applied and elongation deformation occurs are shaded. Furthermore, FIG. 6b shows the state of the welding wire W fed out from the tip of the curved wire guide 20 in the same manner as in FIG. 6a by the wire feeding method of the present invention. One point on the circumference S 0
how it moves over time
Indicated by S 1 , S 2 , S 3 , and S 4 . At the moment T 0 when the S 0 portion of the wire W comes out from the tip of the wire guide 20, the wire W undergoes bending deformation in the same direction as the bending direction of the wire guide 20, and tensile stress is applied to this S 0 portion. It is undergoing elongation and deformation. At time T 1 when 1/4 period of the torsion pitch P has passed, the part S 0 at T 0 rotates 90 degrees with respect to the central axis of the wire W and reaches the position S 1 , and this S 1 The bending direction of the wire W in is also relative to the S 0 part.
It is shifted by 90 degrees. Similarly, the welding wire W rotates by 1/4 pitch.
At the time when T 2 , T 3 , T 4 , the S 0 part becomes S 2 , S 3 ,
It moves forward while rotating by 90 degrees with S 4 , and the direction of curvature also shifts by 90 degrees accordingly. In the figure, the shaded portion of the wire W indicates a portion where tensile stress is applied and elongation deformation occurs. Therefore, such changes can be caused by one change in the welding wire.
When considering a torsion pitch section that is larger than pitch, the tensile and compressive forces acting on each part of the welding wire are uniformly distributed in the circumferential direction of the wire, and the welding wire deforms averagely in the circumferential direction. Therefore, it is easy to understand that a completely different phenomenon occurs when the welding wire is subjected to tensile force or compressive force only in a specific direction as shown in FIG. 6a. Further, when the welding wire in such a state is viewed macroscopically, the direction of movement of the wire is always constant, and the wire is fed in a state close to a straight line. Therefore, the amount of deviation from the normal welding position in the welded part is extremely small, and stable welding work can be performed. In the above embodiment, the welding torch 12 has a curved portion 1.
1 has been described, but the present invention is applicable not only to welding torches but also to cases where a curved portion occurs anywhere in the feeding path for feeding the welding wire to the welding location. Furthermore, the location where the welding wire is twisted is not limited to the front side of the welding torch; for example, a wire twisting device may be provided at the proximal end of the guide tube. The welding wire may be twisted in the circumferential direction on the side. Further, the wire twisting device is not limited to that shown in this embodiment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術の問題点を説明するためのワ
イヤ送給径路の概略図、第2図は第1図に示すワ
イヤ送給径路に溶接ワイヤを送給した場合の湾曲
部を曲率半径と溶接ワイヤの偏位量との関係を示
すグラフ、第3図は本発明の1実施例を示す概略
図、第4図は同実施例における湾曲部の曲率半径
と溶接ワイヤの偏位量との関係を示すグラフ、第
5図は同実施例における溶接ワイヤの捩りピツチ
と溶接ワイヤの偏位量との関係を示すグラフ、第
6図a,bはそれぞれ従来の送給方法と本発明に
よる送給方法によつて送給した場合の溶接ワイヤ
の変形状態を示す説明図である。 11……湾曲部、12……送給径路(溶接トー
チ)、W……溶接ワイヤ。
Fig. 1 is a schematic diagram of a wire feeding path for explaining the problems of the conventional technology, and Fig. 2 shows the radius of curvature of the curved portion when the welding wire is fed to the wire feeding path shown in Fig. 1. Graph showing the relationship between the deviation amount of the welding wire, FIG. 3 is a schematic diagram showing one embodiment of the present invention, and FIG. 4 shows the relationship between the radius of curvature of the curved part and the deviation amount of the welding wire in the same embodiment. 5 is a graph showing the relationship between the twist pitch of the welding wire and the amount of deviation of the welding wire in the same example, and FIGS. 6a and 6b are graphs showing the relationship between the conventional feeding method and the feeding method of the present invention, respectively. FIG. 3 is an explanatory diagram showing a deformed state of the welding wire when fed by the feeding method. DESCRIPTION OF SYMBOLS 11... Curved part, 12... Feeding path (welding torch), W... Welding wire.

Claims (1)

【特許請求の範囲】[Claims] 1 湾曲部を伴う送給経路に溶接ワイヤを送給す
るもので、湾曲部を経て送給される溶接ワイヤを
その湾曲部の手前側で円周方向に捩じりながら送
給することを特徴とする溶接ワイヤ送給方法。
1 The welding wire is fed through a feeding path that includes a curved portion, and the welding wire that is fed through the curved portion is twisted in the circumferential direction in front of the curved portion while being fed. Welding wire feeding method.
JP12701082A 1982-07-20 1982-07-20 Feeding method of welding wire Granted JPS5916677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12701082A JPS5916677A (en) 1982-07-20 1982-07-20 Feeding method of welding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12701082A JPS5916677A (en) 1982-07-20 1982-07-20 Feeding method of welding wire

Publications (2)

Publication Number Publication Date
JPS5916677A JPS5916677A (en) 1984-01-27
JPH0329513B2 true JPH0329513B2 (en) 1991-04-24

Family

ID=14949445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12701082A Granted JPS5916677A (en) 1982-07-20 1982-07-20 Feeding method of welding wire

Country Status (1)

Country Link
JP (1) JPS5916677A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0929441A (en) * 1995-07-20 1997-02-04 Toyota Motor Corp Arc welding torch

Also Published As

Publication number Publication date
JPS5916677A (en) 1984-01-27

Similar Documents

Publication Publication Date Title
US6301944B1 (en) Methods of fabricating mechanized welding wire
JPH0570551B2 (en)
JPS6025208B2 (en) Process and equipment for bending elongated items
JPH0329513B2 (en)
US4956541A (en) Current nozzle for MIG- and MAG-welding burner
JPH0117793B2 (en)
JPH0117794B2 (en)
KR100215554B1 (en) Arc welding torch
JP2021510632A (en) Welding torch with wire forming unit and wire forming unit
JPS60206571A (en) Feeding method of wire
US11794267B2 (en) Welding torch comprising a device for feeding a consumable welding wire towards the tool center point
JPH09277047A (en) Welding wire straightening device
JPS5830857B2 (en) Welding wire feeding device
JPH07112276A (en) Method and device for feeding welding filler metal and consumable electrode
JPS591512B2 (en) Flux-cored wire for welding
JPS649912B2 (en)
US20070175877A1 (en) Weld wire with large cast, method of making same, and loaded spool article of manufacture
JP2001087860A (en) Device for feeding welding wire
JPS6113166Y2 (en)
JPH0724572A (en) Filler wire feeder
JPH0311851B2 (en)
JPH10263862A (en) Butt welding method by laser beam and its device
JP2769240B2 (en) Method for controlling bead thickness of thin welded pipe
JPH0687073A (en) Filler wire feeder
JPH08267143A (en) Twist correcting device for electric resistance welded tube