JPH03285833A - Manufacture of porous glass - Google Patents

Manufacture of porous glass

Info

Publication number
JPH03285833A
JPH03285833A JP8132090A JP8132090A JPH03285833A JP H03285833 A JPH03285833 A JP H03285833A JP 8132090 A JP8132090 A JP 8132090A JP 8132090 A JP8132090 A JP 8132090A JP H03285833 A JPH03285833 A JP H03285833A
Authority
JP
Japan
Prior art keywords
gel
sol
metal alkoxide
reaction solution
formamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8132090A
Other languages
Japanese (ja)
Inventor
Naohiro Soga
直弘 曽我
Kazuki Nakanishi
和樹 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP8132090A priority Critical patent/JPH03285833A/en
Publication of JPH03285833A publication Critical patent/JPH03285833A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain porous glass having pore size of submicron to micron order and having a narrow pore size distribution, in the method for manufacturing by a sol-gel process, by specifying the quantity of a solvent to be added and that of water in a reaction soln. CONSTITUTION:In a sol-gel reaction soln. contg. metallic alkoxide or its origomer, an acid water soln. and a solvent to be added, the metallic alkoxide or origomer is hydrolyzed and polymerized to prepare a gel. Next, in the stage of manufacturing glass by baking this gel, as the above solvent to be added, formamide is used by 2.0 to 3.2 molar ratio, e.g. to the metallic alkoxide. At this time, a polyhydric alcohol may be used jointly. Then, the ratio of water in the sol-gel reaction soln. is regulated, by molar ratio, to 1.4 to 1.8 to 1 molar of the metallic alkoxide, and hydrolysis and polymerization are executed. At this time, the polymers of the metallic alkoxide undergo phase separation so that an entangling structure with a soln. phase can be formed and is gelatinized and then this gel is baked.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は触媒担体、酵素担体、分離膜素材のようにサブ
ミクロンからミクロンオーダーの細孔が要求される広い
範囲に利用することができる多孔質ガラスをゾル−ゲル
法により製造する方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention provides a porous material that can be used in a wide range of applications where pores on the order of submicrons to microns are required, such as catalyst carriers, enzyme carriers, and separation membrane materials. The present invention relates to a method for producing quality glass by a sol-gel method.

[従来の技術] 従来の多孔質セラミックスのうちサブミクロン以下の極
微細孔径を持つものは主としてホウケイ酸塩ガラスの熱
処理による分相現象を利用して、からみ合い分相構造を
とらせた後、片方の相を酸溶出させることにより作製さ
れている。
[Prior art] Among conventional porous ceramics, those with ultrafine pore diameters of submicrons or less mainly utilize the phase separation phenomenon caused by heat treatment of borosilicate glass to form an entangled phase separation structure. It is made by eluting one phase with acid.

これに対し、ミクロン以上の細孔径のものはセラミック
ス原料粉体を仮焼し熱分解させて粒子又は粒子間に開気
孔を作った後、適切な条件で焼結して作られている。し
かしながらこれらの方法ではサブミクロンから数拾ミク
ロンの範囲の揃った細孔径の多孔質セラミックスを製造
することが困難である。更に、用途により要求される膜
状、繊維状のものを作製しにくい欠点がある。このよう
なことから最近、バルク状、膜状あるいは繊維状のいず
れの形状のセラミックスも作製できるゾル−ゲル法が多
孔質セラミックスの作製にも適用されるようになった。
On the other hand, those with pore diameters of microns or more are made by calcining and thermally decomposing ceramic raw material powder to create particles or open pores between particles, and then sintering under appropriate conditions. However, with these methods, it is difficult to produce porous ceramics with uniform pore diameters ranging from submicrons to several tens of microns. Furthermore, it has the disadvantage that it is difficult to produce membrane-like or fibrous products required depending on the application. For these reasons, recently, the sol-gel method, which can produce ceramics in any shape such as bulk, membrane, or fiber, has been applied to the production of porous ceramics.

しかし、コロイド状シリカを出発物質とするゾル−ゲル
法によっては、サブミクロン以下の細孔を持つ多孔体し
か得ることができず、更に出発溶液に比較的高濃度のア
ルカリが共存するために、最終的な熱処理に先立ってこ
れを溶出させる工程に時間を要するという欠点があった
However, the sol-gel method using colloidal silica as a starting material can only produce porous materials with pores of submicron size or smaller, and furthermore, because a relatively high concentration of alkali coexists in the starting solution, There was a drawback that the step of eluting this prior to the final heat treatment required time.

又、珪素アルコキシドをアルコール等の有機溶媒中で加
水分解・重合して反応溶液系のゲル化を行なった後、生
成した多孔質ゲルをその後焼成する上記の方法で作製さ
れる多孔質ゲル体の細孔径は、二〜三拾ナノメーター以
下と極めて小さい。そこで細孔をミクロンオーダーとす
るため塩酸を多量に加えて加水分解させることも試みら
れているが、細孔径分布が広くなる問題があった。
In addition, a porous gel body prepared by the above method of hydrolyzing and polymerizing silicon alkoxide in an organic solvent such as alcohol to gel the reaction solution system, and then firing the generated porous gel. The pore diameter is extremely small, 2 to 30 nanometers or less. Attempts have therefore been made to add a large amount of hydrochloric acid to hydrolyze the pores in order to reduce them to micron order, but this has resulted in the problem of widening the pore size distribution.

[発明が解決しようとする課題] 本発明は従来技術が有していた上記問題を解決し、細孔
径がサブミクロンからミクロンオーダーであり、その細
孔径分布が狭い多孔質ガラスが得られ、かつ毒性が強い
出発物質を使用することもなく、更に取扱いも容易な多
孔質ガラスの製造法を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned problems of the prior art, and provides a porous glass whose pore diameter is on the order of submicrons to microns and whose pore diameter distribution is narrow. It is an object of the present invention to provide a method for producing porous glass that does not use highly toxic starting materials and is easy to handle.

[課題を解決するための手段] 本発明は、金属アルコキシド又はそのオリゴマーと酸性
水溶液と添加溶媒とを含むゾル−ゲル反応液中で上記金
属アルコキシド又はそのオリゴマーを加水分解・重合し
てゲルを作成し、次いでこのゲルを焼成してガラスを製
造するに当り、上記添加溶媒としてホルムアミドを使用
するとともに、上記ゾル−ゲル反応液中の水を金属アル
コキシド1モルに対しモル比で1.4〜1.8の割合に
調整して上記加水分解・重合過程において金属アルコキ
シドの重合体を溶媒相との間に絡み合い構造を形成する
ように相分離させてゲル化し、次いでこのゲルを焼成す
ることを特徴とする多孔質ガラスの製造法を提供するも
のである。
[Means for Solving the Problems] The present invention creates a gel by hydrolyzing and polymerizing the metal alkoxide or its oligomer in a sol-gel reaction solution containing the metal alkoxide or its oligomer, an acidic aqueous solution, and an added solvent. Then, when this gel is fired to produce glass, formamide is used as the additive solvent, and the molar ratio of water in the sol-gel reaction solution to 1 mole of metal alkoxide is 1.4 to 1. In the hydrolysis/polymerization process, the metal alkoxide polymer is phase-separated and gelled to form an entangled structure with the solvent phase, and then this gel is fired. The present invention provides a method for producing porous glass.

又、本発明は、金属アルコキシド又はそのオリゴマーと
酸性水溶液と添加溶媒とを含むゾル−ゲル反応液中で上
記金属アルコキシド又はそのオリゴマーを加水分解・重
合してゲルを作成し、次いでこのゲルを焼成してガラス
を製造するに当り、上記添加溶媒としてホルムアミドと
多価アルコールとの混合物を使用するとともに、上記ゾ
ル−ゲル反応液中の水を金属アルコキシド1モルに対し
モル比で1.4〜1.8倍の割合に調整して上記加水分
解・重合過程において金属アルコキシドの重合体を溶媒
相との間に絡み合い構造を形成するように相分離させて
ゲル化し、次いでこのゲルを焼成することを特徴とする
多孔質ガラスの製造法を提供するものである。
The present invention also provides a method of hydrolyzing and polymerizing the metal alkoxide or its oligomer in a sol-gel reaction solution containing the metal alkoxide or its oligomer, an acidic aqueous solution, and an added solvent to create a gel, and then calcining this gel. In producing glass, a mixture of formamide and polyhydric alcohol is used as the additive solvent, and the molar ratio of water in the sol-gel reaction solution to 1 mole of metal alkoxide is 1.4 to 1. .Adjust the ratio to 8 times and phase separate the metal alkoxide polymer in the above hydrolysis/polymerization process to form an entangled structure with the solvent phase to form a gel, and then sinter this gel. The present invention provides a method for producing characteristic porous glass.

本発明において使用される金属アルコキシド又はそのオ
リゴマーとしては、メトキシ基、エトキシ基を有するも
のが好ましい。例えば、テトラメトキシシランやテトラ
エトキシシラン等が最適である。なお、プロポキシ基、
又はそれ以上の炭素数のアルコキシル基を有する金属ア
ルコキシドは、反応溶液の極性をホルムアミドの添加に
よって大きく変化させることが困難になる点で好ましく
ない。
The metal alkoxide or oligomer thereof used in the present invention preferably has a methoxy group or an ethoxy group. For example, tetramethoxysilane, tetraethoxysilane, etc. are most suitable. In addition, propoxy group,
A metal alkoxide having an alkoxyl group having a carbon number of 1.5 or more carbon atoms is not preferred because it becomes difficult to significantly change the polarity of the reaction solution by adding formamide.

また、金属アルコキシドの金属としては、最終的に形成
される酸化物の金属、例えば、si。
Further, as the metal of the metal alkoxide, the metal of the oxide that is finally formed, for example, si.

Ti、 Zr、 AI、が使用される。この金属として
は1種又は2種以上であっても良い。代表的なものは、
シリコンアルコキシドが挙げられる。
Ti, Zr, AI are used. This metal may be one type or two or more types. The typical ones are
Examples include silicon alkoxides.

一方、金属アルコキシドのオリゴマーとしては本発明の
溶媒に均一に溶解、又は分散できるものであればよく、
具体的にはlO量体程度まで使用することができる。
On the other hand, the metal alkoxide oligomer may be any oligomer as long as it can be uniformly dissolved or dispersed in the solvent of the present invention.
Specifically, it can be used up to about 10 mer.

本発明のゾル−ゲル反応液においては、上記金属アルコ
キシド、又はそのオリゴマーとともに、金属アルコキシ
ドの加水分解反応の触媒として作用する硝酸、塩酸など
の無機酸と加水分解反応のために必要な水とゾル−ゲル
反応液の極性を調整するための添加溶媒としてのホルム
アミドを含む、上記無機酸は酸性水溶液として加えられ
る。その濃度は0.001規定以上、特に0.5〜1.
5規定のものが好ましい。なお、かかる酸性水溶液の規
定度を調整することにより、多孔質ガラスの細孔径を調
整することができる。例えば、一定の溶液組成の下で硝
酸濃度のみを0.7〜1.4規定に変化させた場合、細
孔径、を約0.111m〜5μmまで変化させることが
できる。
In the sol-gel reaction solution of the present invention, together with the metal alkoxide or its oligomer, an inorganic acid such as nitric acid or hydrochloric acid that acts as a catalyst for the hydrolysis reaction of the metal alkoxide, and water and sol necessary for the hydrolysis reaction. - The inorganic acid is added as an acidic aqueous solution, including formamide as an added solvent to adjust the polarity of the gel reaction solution. Its concentration is 0.001 normal or more, especially 0.5 to 1.
5 standard is preferred. Note that the pore diameter of the porous glass can be adjusted by adjusting the normality of the acidic aqueous solution. For example, when only the nitric acid concentration is changed from 0.7 to 1.4 normal under a constant solution composition, the pore diameter can be changed from about 0.111 m to 5 μm.

又、ゾル−ゲル反応液における水の量は、金属アルコキ
シドの加水分解によって生じるオリゴマーがアルコキシ
ル基を比較的多量に含む疎水性重合体となって成長する
様に、金属アルコキシド1モルに対しモル比で1.4〜
1.8倍の範囲に限定される。水の量が1.4より少な
いと重合体と溶媒が液−液分離を起こし、均一生成物に
ならないので好ましくなく、又1.8を超りると二〜三
拾ナノメーター以下の細孔のみを持つゲルが生成して好
ましくない。なお、この水の割合は金属アルコキシドの
種類に依存し、例えばテトラエトキシシランの場合には
モル比で1.7〜1.8、又テトラメトキシシランの場
合には、モル比で1.4〜1.6の範囲が適当である。
In addition, the amount of water in the sol-gel reaction solution is set at a molar ratio per 1 mole of metal alkoxide so that the oligomer produced by hydrolysis of the metal alkoxide grows as a hydrophobic polymer containing a relatively large amount of alkoxyl groups. 1.4~
The range is limited to 1.8 times. If the amount of water is less than 1.4, the polymer and solvent will undergo liquid-liquid separation, which is undesirable because a homogeneous product will not be obtained. This is undesirable because a gel with only The proportion of this water depends on the type of metal alkoxide; for example, in the case of tetraethoxysilane, the molar ratio is 1.7 to 1.8, and in the case of tetramethoxysilane, the molar ratio is 1.4 to 1.8. A range of 1.6 is appropriate.

又、上記添加溶媒としてのホルムアミド、又は、ホルム
アミド及び多価アルコールの混合物は、ゾル−ゲル反応
液の誘電率を増加させる一方、生成したオリゴマーの重
合を加速させる働きがあり、相分離の固定を行なうため
に最適である。このホルムアミドの誘電率は約110で
あり、水(75〜80)やメタノール、エタノール(2
0〜30)などに比べ高く、ゾル−ゲル反応液の極性を
高い状態にすることができ、又水との相溶性もあるので
最適である。
In addition, formamide or a mixture of formamide and polyhydric alcohol as the above-mentioned additive solvent has the function of increasing the dielectric constant of the sol-gel reaction solution and accelerating the polymerization of the generated oligomer, thereby preventing the fixation of phase separation. Perfect for carrying out. The dielectric constant of this formamide is about 110, and water (75-80), methanol, ethanol (2
0 to 30), it is possible to make the sol-gel reaction solution highly polar, and it is also compatible with water, so it is optimal.

かかるホルムアミドは金属アルコキシド1モルに対しモ
ル比で2.0〜3,2加えられる。この割合が2.0よ
り低いと数十ナノメーターの細孔のみを持つゲルが生成
して好ましくなく、又3.2を超えると、ミクロンオー
ダーの多分散粒子凝集体となって好ましくない。なお、
この添加割合は、金属アルコキシドの種類に依存し、例
えばテトラエトキシシランの場合には、モル比で3.0
〜3.2、又テトラメトキシシランの場合には、モル比
で2.0〜3.0が適当である。
Such formamide is added in a molar ratio of 2.0 to 3.2 per mole of metal alkoxide. If this ratio is lower than 2.0, a gel having only pores of several tens of nanometers will be produced, which is undesirable, and if it exceeds 3.2, polydisperse particle aggregates of micron order will be formed, which is undesirable. In addition,
This addition ratio depends on the type of metal alkoxide; for example, in the case of tetraethoxysilane, the molar ratio is 3.0.
~3.2, and in the case of tetramethoxysilane, a molar ratio of 2.0 to 3.0 is appropriate.

添加溶媒においてホルムアミドと混合して使用される多
価アルコールとしては、グリセリンが最適であるが、そ
の他の多価アルコール類も同様に使用できる。この様な
多価アルコールは、一種類としてホルムアミドに混合し
て使用してもよいし、又複数種類の多価アルコールを併
用してホルムアミドと混合して使用してもよい。
As the polyhydric alcohol mixed with formamide in the additive solvent, glycerin is most suitable, but other polyhydric alcohols can be used as well. Such a polyhydric alcohol may be used as a single type mixed with formamide, or a plurality of types of polyhydric alcohols may be used in combination and mixed with formamide.

添加溶媒としてのホルムアミド、又は、ホルムアミド及
多価アルコールの混合物を使用する場合、ホルムアミド
の添加割合を多くするほど得られる多孔質ガラスの細孔
が粗大化する傾向がある。
When using formamide or a mixture of formamide and polyhydric alcohol as an additive solvent, the pores of the resulting porous glass tend to become coarser as the proportion of formamide added increases.

又、ゾル−ゲル反応液の加水分解・重合反応温度は○℃
〜反応液の沸点程度の温度以下の範囲が最適である。こ
の温度が0℃よりも低いと加水分解・重合反応上好まし
くなく、又反応液の沸点の温度よりも高(なると低沸点
成分が揮散して好ましくない。
In addition, the hydrolysis/polymerization reaction temperature of the sol-gel reaction solution is ○℃
A temperature range of ~about the boiling point of the reaction solution or less is optimal. If this temperature is lower than 0° C., it is not preferable for the hydrolysis/polymerization reaction, and if it is higher than the boiling point of the reaction solution, low-boiling components will volatilize, which is not preferable.

なお、この反応温度も金属アルコキシドの種類に依存し
、例えば、テトラエトキシシランの場合には、約40〜
60℃の範囲が最適であり、又、テトラメトキシシラン
の場合には約40〜80℃の範囲が最適である。又、反
応温度を高くするほど細孔径が小さくなる傾向がある金
属アルコキシド又はそのオリゴマーとホルムアミドと加
水分解触媒としての酸性水溶液とを含むゾルゲル反応液
の作成に当たっては特に限定されるものではないが、酸
性水溶液とホルムアミドを先に混合しておき、この溶液
に金属アルコキシド又はそのオリゴマーを加えて撹拌す
ることにより得るのが最も好ましいが、酸性水溶液と金
属アルコキシド又はそのオリゴマーとを混合した後、ホ
ルムアミドを添加してもよい。
Note that this reaction temperature also depends on the type of metal alkoxide; for example, in the case of tetraethoxysilane, it is about 40 to
A range of 60°C is optimal, and in the case of tetramethoxysilane a range of about 40 to 80°C is optimal. In addition, when creating a sol-gel reaction solution containing a metal alkoxide or its oligomer whose pore diameter tends to become smaller as the reaction temperature is raised, formamide, and an acidic aqueous solution as a hydrolysis catalyst, there are no particular limitations. Most preferably, the acidic aqueous solution and the formamide are mixed in advance, and the metal alkoxide or its oligomer is added to this solution and stirred. However, after mixing the acidic aqueous solution and the metal alkoxide or its oligomer, formamide is May be added.

加水分解・重合反応に当たっては、かかるゾル−ゲル反
応溶液を所定の密閉容器に入れ、室温40〜80℃で0
.5〜5時間保持することにより達成される。加水分解
・重合反応は当初透明な溶液が白濁して相分離を生じ、
ついにゲル化する過程を経る。この際、金属アルコキシ
ドの重合体は溶媒相との間に絡み合い構造が形成される
様に相分離されてゲル化する。
In the hydrolysis/polymerization reaction, the sol-gel reaction solution is placed in a predetermined sealed container and heated to 0.
.. This is achieved by holding for 5 to 5 hours. During the hydrolysis/polymerization reaction, the initially transparent solution becomes cloudy and phase separation occurs.
Finally, it goes through the process of gelling. At this time, the metal alkoxide polymer undergoes phase separation and gelation to form an entangled structure with the solvent phase.

かくしてゲル化したものは、40〜80℃に数時間〜数
十時間程度放置して熟成した後、硝酸水溶液等の酸性水
溶液により処理してゲル表面の未反応のアルコキシル基
の加水分解反応を完了させ、更に必要に応じ水洗し、8
00〜1000℃程度で数時間焼成して多孔質ガラスを
得る。
The thus gelled product is aged by leaving it at 40 to 80°C for several hours to several tens of hours, and then treated with an acidic aqueous solution such as a nitric acid aqueous solution to complete the hydrolysis reaction of unreacted alkoxyl groups on the gel surface. and wash with water if necessary, 8
The porous glass is obtained by firing at about 00 to 1000°C for several hours.

本発明の目的物の細孔立体構造は、ゾル−ゲル反応液の
水の割合やホルムアミドの割合、反応系の温度やpH値
、その他金属アルコキシドの種類などの影響を及ぼす各
種条件によって変わる。従って、細孔立体構造の制御の
手法を一律に述べることは困難であるが、前述した条件
が同じであれば孔径等がほぼ同じの目的物を再現性よく
提供できる。
The pore three-dimensional structure of the object of the present invention changes depending on various conditions that influence the proportion of water and formamide in the sol-gel reaction solution, the temperature and pH value of the reaction system, and the type of metal alkoxide. Therefore, it is difficult to uniformly describe a method for controlling the pore three-dimensional structure, but as long as the above-mentioned conditions are the same, it is possible to provide a target product with substantially the same pore diameter etc. with good reproducibility.

上記の多孔質ゲルは、未反応の有機成分を除去すること
なく焼成すると、この有機成分の分解に伴って生成する
物質がSiO□の純度を下げる等の問題な生ぜしめる。
If the above-mentioned porous gel is fired without removing unreacted organic components, the substances generated due to the decomposition of the organic components will cause problems such as lowering the purity of SiO□.

従って、多孔質ゲルからの有機成分を乾燥前のゲルを水
で洗浄することによって除去することができるが、洗浄
過程の後に更に有機成分が分解あるいは燃焼する程度ま
でゲルを十分長時間加熱することによって有機成分を完
全に除去することができる。かかる処理をした後焼成す
ることによって機械的強度の向上した多孔質を得ること
ができる。
Therefore, the organic components from the porous gel can be removed by washing the pre-dried gel with water, but the gel must be heated for a sufficiently long time after the washing process to the extent that the organic components are further decomposed or burned. Organic components can be completely removed. By firing after such treatment, a porous material with improved mechanical strength can be obtained.

[実施例] 以下、本発明の詳細な説明する。[Example] The present invention will be explained in detail below.

実施例1 ゾル−ゲル反応液として、テトラメトキシシランとホル
ムアミドと1規定硝酸(HNO、)水溶液とをモル比で (No、1) テトラメトキシシラン:ホルムアミド:水=1  :2
.3  :1.5 (No、2) テトラメトキシシラン:ホルムアミド:水=1  :2
.4  :1.5 (No、3) テトラメトキシシラン:ホルムアミド:水=l :2.
5 :1.5 (No、4) テトラメトキシシラン:ホルムアミド:水=1 :2.
6 :1.5 の割合となるように混合、撹拌して均一化し、No、1
〜No、4の4種類を用意した。
Example 1 As a sol-gel reaction solution, tetramethoxysilane, formamide, and a 1N nitric acid (HNO) aqueous solution were used in a molar ratio (No, 1): tetramethoxysilane:formamide:water=1:2
.. 3:1.5 (No, 2) Tetramethoxysilane:formamide:water=1:2
.. 4:1.5 (No, 3) Tetramethoxysilane:formamide:water=l:2.
5:1.5 (No, 4) Tetramethoxysilane:formamide:water=1:2.
Mix and stir so that the ratio is 6:1.5 to make it homogeneous.
~No.4 types were prepared.

このゾル−ゲル反応液10m1をそれぞれ密閉容器に入
れ、この容器を恒温槽に入れて、ゾル−ゲル反応液の反
応温度を40℃として2時間保持して、加水分解・縮重
合反応を行なわしめ、固化させた。この固化した試料を
1規定硝酸水溶液中に室温において1日間浸漬し、次い
で60”Cで10時間乾燥させた後、 100℃/時間
の昇温速度で1000℃まで加熱して、1000℃で2
時間熱処理した。
10 ml of each of the sol-gel reaction solutions was placed in a sealed container, and each container was placed in a constant temperature bath, and the reaction temperature of the sol-gel reaction solution was maintained at 40° C. for 2 hours to carry out hydrolysis and polycondensation reactions. , solidified. This solidified sample was immersed in a 1N nitric acid aqueous solution at room temperature for 1 day, then dried at 60"C for 10 hours, heated to 1000°C at a temperature increase rate of 100°C/hour, and then dried at 1000°C for 2 hours.
Heat treated for hours.

No、lのゾル−ゲル反応溶液を用いて得られたものは
、0.5μm程度の揃った細孔が、またN002のゾル
−ゲル反応溶液を用いて得られたものは1μm程度の程
度の揃った細孔が、またNo、3のゾル−ゲル反応溶液
を用いて得られたものは2μm程度の程度の揃った細孔
が、またNo、 4のゾル−ゲル反応溶液を用いて得ら
れたものは3μm程度の程度の揃った細孔が絡み合い構
造で存在した多孔質ガラスが得られた。
The pores obtained using No.1 sol-gel reaction solution have uniform pores of about 0.5 μm, and those obtained using No. 002 sol-gel reaction solution have pores of about 1 μm. Uniform pores of about 2 μm were obtained using the sol-gel reaction solution of No. 3, and pores of approximately 2 μm were obtained using the sol-gel reaction solution of No. 4. A porous glass was obtained in which pores of approximately 3 μm in size existed in an intertwined structure.

実施例2 ゾル−ゲル反応液として、テトラメトキシシランとホル
ムアミドと1規定硝酸水溶液とをモル比で (No、5) テトラメトキシシラン:ホルムアミド:水=  1  
:  2.5  :  1.45(No、6) テトラメトキシシラン:ホルムアミド:水=  1  
:  2.5  :  1.50(No、7) テトラメトキシシラン:ホルムアミド:水=  l  
:  2.5  :  1.55(No、8) テトラメトキシシラン:ホルムアミド:水= 1 : 
2.6 : 1.55 の割合となるように混合、撹拌して均一化し、No、 
5〜No、 8の4種類を用意した。
Example 2 As a sol-gel reaction solution, tetramethoxysilane, formamide, and 1N nitric acid aqueous solution were used in a molar ratio (No, 5). Tetramethoxysilane:formamide:water=1
: 2.5 : 1.45 (No, 6) Tetramethoxysilane: Formamide: Water = 1
: 2.5 : 1.50 (No, 7) Tetramethoxysilane:Formamide:Water=l
: 2.5 : 1.55 (No, 8) Tetramethoxysilane:formamide:water=1:
Mix and stir to make the mixture uniform at a ratio of 2.6:1.55.
Four types, 5 to No. 8, were prepared.

このゾル−ゲル反応液10m1をそれぞれ密閉容器に入
れ、この容器を恒温槽に入れて、ゾル−ゲル反応液の反
応温度を40℃として2時間保持して、加水分解・縮重
合反応を行なわしめ、固化させた。この固化した試料を
1規定硝酸水溶液中に室温において1日間浸漬し、次い
で60℃で10時間乾燥させた後、100℃/時間の昇
温速度で1000℃まで加熱して、1000℃で2時間
熱処理した。
10 ml of each of the sol-gel reaction solutions was placed in a sealed container, and each container was placed in a constant temperature bath, and the reaction temperature of the sol-gel reaction solution was maintained at 40° C. for 2 hours to carry out hydrolysis and polycondensation reactions. , solidified. This solidified sample was immersed in a 1N nitric acid aqueous solution at room temperature for 1 day, then dried at 60°C for 10 hours, heated to 1000°C at a heating rate of 100°C/hour, and then heated at 1000°C for 2 hours. Heat treated.

No、5のゾル−ゲル反応溶液を用いて得られたものは
、5μm程度の揃った細孔が、またNo、 6のゾル−
ゲル反応溶液を用いて得られたものは2μm程度の程度
の揃った細孔が、またNo、7のゾル−ゲル反応溶液を
用いて得られたものは0.1μm程度の程度の揃った細
孔が、またNo、8のゾル−ゲル反応溶液を用いて得ら
れたものは0.2μm程度の程度の揃った細孔が絡み合
い構造で存在した多孔質ガラスが得られた。
The sol-gel reaction solution No. 5 had uniform pores of about 5 μm, and the sol-gel reaction solution No. 6 had uniform pores of about 5 μm.
The one obtained using the gel reaction solution has uniform pores of about 2 μm, and the one obtained using No. 7 sol-gel reaction solution has uniform pores of about 0.1 μm. The porous glass obtained by using the sol-gel reaction solution No. 8 had a structure in which pores of about 0.2 μm were entangled.

実施例3 ゾル−ゲル反応液として、テトラメトキシシランとホル
ムアミドと1規定硝酸水溶液とをモル比でテトラメトキ
シシラン:ホルムアミド:水=1 :2.5 :1.5
の割合となるように混合・撹拌して均一化し、No、 
9〜No、 10の試料を用意した。
Example 3 Tetramethoxysilane, formamide, and 1N nitric acid aqueous solution were used as a sol-gel reaction solution in a molar ratio of tetramethoxysilane:formamide:water=1:2.5:1.5
Mix and stir to homogenize the ratio of No.
Samples No. 9 to No. 10 were prepared.

実施例1と同様に、このゾル−ゲル反応液l。As in Example 1, this sol-gel reaction solution 1.

mlをそれぞれ密閉容器に入れ、この容器を恒温槽に入
れて、No、 9の試料についてはゾル−ゲル反応液の
反応温度を40”C1No、 10の試料につぃてはゾ
ル−ゲル反応液の反応温度を60℃として2時間保持し
て、加水分解・縮重合反応を行なわしめ、固化させた。
ml of each into a sealed container, put this container into a constant temperature bath, and set the reaction temperature of the sol-gel reaction solution to 40"C1No for samples No. 9 and 40"C1No. for the sol-gel reaction solution for sample No. 10. The reaction temperature was maintained at 60° C. for 2 hours to carry out hydrolysis/polycondensation reactions and solidify.

この固化した試料を1規定硝酸水溶液中に室温において
1日間浸漬し、次いで60℃で10時間乾燥させた後、
100℃/時間の昇温速度で1000℃まで加熱して、
1000℃で2時間熱処理した。
This solidified sample was immersed in a 1N nitric acid aqueous solution at room temperature for 1 day, and then dried at 60°C for 10 hours.
Heating to 1000°C at a temperature increase rate of 100°C/hour,
Heat treatment was performed at 1000°C for 2 hours.

No、 9のゾル−ゲル反応溶液を用いて得られたもの
は、2μm程度の揃った細孔が、またNo、10のゾル
−ゲル反応溶液を用いて得られたものは0.5μm程度
の程度の揃った細孔が、絡み合い構造で存在した多孔質
ガラスが得られた。
The pores obtained using the sol-gel reaction solution No. 9 had uniform pores of about 2 μm, and the pores obtained using the sol-gel reaction solution No. 10 had uniform pores of about 0.5 μm. A porous glass in which pores of uniform size existed in an entangled structure was obtained.

実施例4 ゾル−ゲル反応液として、テトラメトキシシランとホル
ムアミドと硝酸水溶液とをモル比でテトラメトキシシラ
ン:ホルムアミド:水=1=2.571.5の割合とな
るように混合・撹拌して均一化し、No、11〜No、
13の3種類を用意した。No、11は硝酸水溶液とし
て0.7規定のもの、またNo、 12は1.0規定、
No、 13は1.4規定の硝酸水溶液をそれぞれを使
用したものである。
Example 4 As a sol-gel reaction solution, tetramethoxysilane, formamide, and nitric acid aqueous solution were mixed and stirred uniformly so that the molar ratio was tetramethoxysilane:formamide:water=1=2.571.5. , No, 11~No,
13 types were prepared. No. 11 is a nitric acid aqueous solution of 0.7 normal, and No. 12 is 1.0 normal.
No. 13 used a 1.4N nitric acid aqueous solution.

実施例1と同様に、このゾル−ゲル反応液10m1をそ
れぞれ密閉容器に入れ、この容器を恒温槽に入れて、ゾ
ル−ゲル反応液の反応温度を40℃として2時間保持し
て、加水分解・縮重合反応を行なわしめ、固化させた。
In the same manner as in Example 1, 10 ml of this sol-gel reaction solution was placed in a sealed container, and each container was placed in a constant temperature bath, and the reaction temperature of the sol-gel reaction solution was set at 40°C and maintained for 2 hours to perform hydrolysis.・Performed a polycondensation reaction and solidified it.

この固化した試料を1規定硝酸水溶液にて洗滌し、更に
室温において1日間浸漬し、次いで60℃で10時間乾
燥させた後、 100℃/時間の昇温速度で1000℃
まで加熱して、1000℃で2時間熱処理した。
This solidified sample was washed with a 1N nitric acid aqueous solution, further immersed at room temperature for 1 day, then dried at 60°C for 10 hours, and then heated to 1000°C at a heating rate of 100°C/hour.
and heat-treated at 1000° C. for 2 hours.

No、11のゾル−ゲル反応溶液を用いて得られたもの
は、0.5μm程度の揃った細孔が、またNo、12の
ゾル−ゲル反応溶液を用いて得られたものは2μm程度
の程度の揃った細孔が、またNo、13のゾル−ゲル反
応溶液を用いて得られたものは5μm程度の程度の揃っ
た細孔が、絡み合い構造で存在した多孔質ガラスが得ら
れた。
The pores obtained using the sol-gel reaction solution No. 11 had uniform pores of about 0.5 μm, and the pores obtained using the sol-gel reaction solution No. 12 had uniform pores of about 2 μm. Porous glass was obtained in which pores of uniform size were present in an entangled structure, and pores of uniform size of about 5 μm were obtained using the sol-gel reaction solution No. 13.

実施例5 ゾル−ゲル反応液として、テトラエトキシシランとホル
ムアミドと1規定硝酸水溶液とをモル比で (No、14) テトラエトキシシラン:ホルムアミド:水= 1 : 
2.9 : 1.77 (No、15) テトラエトキシシラン:ホルムアミド:水: 1 : 
3.0 : 1.77 (No、16) テトラエトキシシラン:ホルムアミド:水= 1 : 
3.1 : 1.77 の割合となるように混合、撹拌して均一化し、No、 
14. No、 15. No、 16の3種類を用意
した。
Example 5 Tetraethoxysilane, formamide, and 1N nitric acid aqueous solution were used as a sol-gel reaction solution in a molar ratio (No, 14): tetraethoxysilane:formamide:water=1:
2.9: 1.77 (No, 15) Tetraethoxysilane: Formamide: Water: 1:
3.0: 1.77 (No, 16) Tetraethoxysilane:formamide:water=1:
3. Mix and stir to make the mixture uniform at a ratio of 1:1.77.
14. No, 15. Three types, No. 16, were prepared.

このゾル−ゲル反応液10m1をそれぞれ密閉容器に入
れ、この容器を恒温槽に入れて、ゾル−ゲル反応液の反
応温度を60℃として3時間保持して、加水分解・縮重
合反応を行なわしめ、固化させた。この固化した試料を
1規定硝酸水溶液中で室温において1日間浸漬し、次い
で60℃で10時間乾燥させた後、 100℃/時間の
昇温速度で1000℃まで加熱して、1000℃で2時
間熱処理した。
10 ml of each of the sol-gel reaction liquids was placed in a sealed container, and each container was placed in a constant temperature bath, and the reaction temperature of the sol-gel reaction liquid was maintained at 60°C for 3 hours to carry out hydrolysis and polycondensation reactions. , solidified. This solidified sample was immersed in a 1N nitric acid aqueous solution at room temperature for 1 day, then dried at 60°C for 10 hours, heated to 1000°C at a heating rate of 100°C/hour, and then heated at 1000°C for 2 hours. Heat treated.

No、14のゾル−ゲル反応溶液を用いて得られたもの
は、0.5μm程度の揃った細孔が、No。
The sol-gel reaction solution of No. 14 had uniform pores of about 0.5 μm.

15のゾル−ゲル反応溶液を用いて得られたものは、2
μm程度の揃った細孔が、またNo、16のゾル−ゲル
反応溶液を用いて得られたものは5μm程度の程度の揃
った細孔が絡み合い構造で存在した多孔質ガラスが得ら
れた。
What was obtained using the sol-gel reaction solution of 15 was 2
A porous glass was obtained in which the pores had a uniform size of about 5 μm, and in the case of using the sol-gel reaction solution No. 16, the pores had a uniform size of about 5 μm in an intertwined structure.

実施例6 ゾル−ゲル反応液として、テトラエトキシシランとホル
ムアミドと1規定硝酸水溶液とをモル比で (No、17) テトラエトキシシラン:ホルムアミド:水= 1 : 
3.0 : 1.75 (No、18) テトラエトキシシラン:ホルムアミド:水=  1  
:  3.0  :  、1.77(No、 191 テトラエトキシシラン:ホルムアミド:水= 1 : 
3.0 + 1.78 (No、 20) テトラエトキシシラン:ホルムアミド:水= 1 : 
3.0 : 1.80 の割合となるように混合、撹拌して均一化し、No、1
7〜No、20の4種類を用意した。
Example 6 As a sol-gel reaction solution, tetraethoxysilane, formamide, and 1N nitric acid aqueous solution were used in a molar ratio (No. 17): tetraethoxysilane:formamide:water=1:
3.0: 1.75 (No, 18) Tetraethoxysilane:formamide:water=1
: 3.0: , 1.77 (No, 191 Tetraethoxysilane:formamide:water=1:
3.0 + 1.78 (No, 20) Tetraethoxysilane: Formamide: Water = 1:
Mix and stir to make the mixture uniform at a ratio of 3.0:1.80.
Four types, 7 to No. 20, were prepared.

このゾル−ゲル反応液10m1をそれぞれ密閉容器に入
れ、この容器を恒温槽に入れて、ゾル−ゲル反応液の反
応温度を60℃として3時間保持して、加水分解・縮重
合反応を行なわしめ、固化させた。この固化した試料を
1規定硝酸水溶液中に室温において1日間浸漬し、次い
で60℃で10時間乾燥させた後、100℃/時間の昇
温速度で1000℃まで加熱して、1000℃で2時間
熱処理した。
10 ml of each of the sol-gel reaction liquids was placed in a sealed container, and each container was placed in a constant temperature bath, and the reaction temperature of the sol-gel reaction liquid was maintained at 60°C for 3 hours to carry out hydrolysis and polycondensation reactions. , solidified. This solidified sample was immersed in a 1N nitric acid aqueous solution at room temperature for 1 day, then dried at 60°C for 10 hours, heated to 1000°C at a heating rate of 100°C/hour, and then heated at 1000°C for 2 hours. Heat treated.

No、17のゾル−ゲル反応溶液を用いて得られたもの
は、5μm程度の揃った球状粒子からなる骨格を持つ多
孔質ガラスが得られ、またNo。
In the case of No. 17 obtained using the sol-gel reaction solution, a porous glass having a skeleton consisting of uniform spherical particles of about 5 μm was obtained.

18のゾル−ゲル反応溶液を用いて得られたものは2μ
m程度の揃った細孔が、No、 19のゾル−ゲル反応
溶液を用いて得られたものは、0.5μm程度の揃った
細孔が、No、 20のゾル−ゲル反応溶液を用いて得
られたものは、0.1μm程度の揃った細孔が、絡み合
い構造で存在した多孔質ガラスが得られた。
The one obtained using the sol-gel reaction solution of 18 is 2μ
The pores with a uniform size of about 0.5 μm were obtained using the sol-gel reaction solution No. 19, whereas the pores with a uniform size of about 0.5 μm were obtained using the sol-gel reaction solution No. 20. The obtained porous glass had uniform pores of about 0.1 μm existing in an entangled structure.

実施例7 ゾル−ゲル反応液として、テトラエトキシシランとホル
ムアミドと1規定硝酸水溶液とをモル比でテトラエトキ
シシラン:ホルムアミド:水= 1 : 3.0 : 
1.77の割合となるように混合・撹拌して均一化し、
No、 21〜No、 22の試料を用意した。
Example 7 As a sol-gel reaction solution, tetraethoxysilane, formamide, and 1N nitric acid aqueous solution were used in a molar ratio of tetraethoxysilane:formamide:water=1:3.0:
Mix and stir to make the mixture uniform at a ratio of 1.77,
Samples No. 21 to No. 22 were prepared.

実施例1と同様に、このゾル−ゲル反応液10m1をそ
れぞれ密閉容器に入れ、この容器を恒温槽に入れて、N
o、 21の試料についてはゾル−ゲル反応液の反応温
度を60℃、No、 22の試料については、ゾル−ゲ
ル反応液の反応温度を80℃として3時間保持して、加
水分解・縮重合反応を行なわしめ、固化させた。この固
化した試料を1規定硝酸水溶液中に室温において1日間
浸漬し、次いで60℃で10時間乾燥させた後、 10
0℃/時間の昇温速度で1000℃まで加熱して、10
00℃で2時間熱処理した。
In the same manner as in Example 1, 10 ml of this sol-gel reaction solution was placed in each airtight container, the containers were placed in a constant temperature bath, and N
o. For sample No. 21, the reaction temperature of the sol-gel reaction solution was set at 60°C, and for sample No. 22, the reaction temperature of the sol-gel reaction solution was set at 80°C and held for 3 hours to conduct hydrolysis/condensation polymerization. The reaction was carried out and solidified. This solidified sample was immersed in a 1N nitric acid aqueous solution at room temperature for 1 day, and then dried at 60°C for 10 hours.
Heating to 1000℃ at a heating rate of 0℃/hour,
Heat treatment was performed at 00°C for 2 hours.

No、21のゾル−ゲル反応溶液を用いて得られたもの
は、2μm程度の揃った細孔が、またNo、22のゾル
−ゲル反応溶液を用いて得られたものは0.2μm程度
の程度の揃った細孔が絡み、合い構造で存在した多孔質
ガラスが得られた。
The one obtained using the sol-gel reaction solution No. 21 has uniform pores of about 2 μm, and the one obtained using the sol-gel reaction solution No. 22 has pores of about 0.2 μm. A porous glass was obtained in which pores of uniform degree were entwined and existed in a mating structure.

実施例8 ゾル−ゲル反応液として、テトラエトキシシランとホル
ムアミドと硝酸水溶液とをモル比でテトラエトキシシラ
ン:ホルムアミド:水=l: 3.0 : 1.77の
割合となるように混合・撹拌して均一化し、No、 2
3〜No、25の3種類を用意した。No、23はHN
O,水溶液として0.7規定のもの、またNo、 24
は1.0規定、No、25は1.5規定のものを使用し
たものである。
Example 8 As a sol-gel reaction solution, tetraethoxysilane, formamide, and an aqueous nitric acid solution were mixed and stirred at a molar ratio of tetraethoxysilane:formamide:water=1:3.0:1.77. to homogenize, No. 2
Three types, 3 to No. 25, were prepared. No.23 is HN
O, 0.7N as an aqueous solution, and No. 24
No. 1.0 standard, and No. 25 use 1.5 standard.

実施例1と同様に、このゾル−ゲル反応液10m1をそ
れぞれ密閉容器に入れ、この容器を恒温槽に入れて、ゾ
ル−ゲル反応液の反応温度を60℃として3時間保持し
て、加水分解・縮重合反応を行なわしめ、固化させた。
In the same manner as in Example 1, 10 ml of this sol-gel reaction solution was placed in a sealed container, and each container was placed in a constant temperature bath, and the reaction temperature of the sol-gel reaction solution was set at 60°C and maintained for 3 hours to perform hydrolysis.・Performed a polycondensation reaction and solidified it.

この固化した試料を1規定硝酸水溶液中に室温において
1日間浸漬し、次いで60℃で10時間乾燥させた後、
100℃/時間の昇温速度で1000℃まで加熱して、
1000℃で2時間熱処理した。
This solidified sample was immersed in a 1N nitric acid aqueous solution at room temperature for 1 day, and then dried at 60°C for 10 hours.
Heating to 1000°C at a temperature increase rate of 100°C/hour,
Heat treatment was performed at 1000°C for 2 hours.

No、 23のゾル−ゲル反応溶液を用いて得られたも
のは、5μm程度の揃った球状粒子からなる骨格を持つ
多孔質ガラスが得られ、またNo。
No. 23 was obtained using the sol-gel reaction solution, and a porous glass with a skeleton consisting of uniform spherical particles of about 5 μm was obtained.

24のゾル−ゲル反応溶液を用いて得られたものは2μ
m程度の程度の揃った細孔が、またNo。
The one obtained using the sol-gel reaction solution of 24 is 2μ
Pores with a uniform size of about m are also No.

25のゾル−ゲル反応溶液を用いて得られたものは0.
5μm程度の程度の揃った細孔が、絡み合い構造で存在
した多孔質ガラスが得られた。
0.25 was obtained using the sol-gel reaction solution.
A porous glass was obtained in which pores of approximately 5 μm in diameter existed in an entangled structure.

実施例9 No、3のゾル−ゲル反応液を用い、実施例1に従って
作成された多孔質ガラスについて、水銀圧入法により細
孔径の分布を測定した結果を第1図に示す。同図から明
らかな様に、細孔径は狭い範囲に分布していることが分
かる。この細孔容積から計算される気孔率は約70%で
あった。
Example 9 The pore size distribution of the porous glass prepared according to Example 1 using the sol-gel reaction solution No. 3 was measured by mercury porosimetry, and the results are shown in FIG. As is clear from the figure, it can be seen that the pore diameters are distributed in a narrow range. The porosity calculated from this pore volume was about 70%.

実施例10 ゾル−ゲル反応液として、テトラメトキシシランとホル
ムアミドとグリセリンと1規定硝酸水溶液とをモル比で テトラメトキシシラン:ホルムアミド:グリセリン:水
= 1 : 1.25: 1.25: 1.5の割合と
なるように混合、撹拌して均一化し、No、26の試料
を用意した。
Example 10 As a sol-gel reaction solution, tetramethoxysilane, formamide, glycerin, and 1N nitric acid aqueous solution were used in a molar ratio of tetramethoxysilane: formamide: glycerin: water = 1: 1.25: 1.25: 1.5 The mixture was mixed and stirred to be homogenized so that the ratio was as follows, and sample No. 26 was prepared.

このゾル−ゲル反応液10m1を密閉容器に入れ、この
容器を恒温槽に入れて、ゾル−ゲル反応液の反応温度を
40℃として1時間保持して、加水分解・重合反応を行
なわしめ、固化させた。この固化した試料を1規定硝酸
水溶液中に室温において1日間浸漬し、次いで60℃で
10時間乾燥させた後、100℃/時間の昇温速度で1
000℃まで加熱して、1000℃で2時間熱処理した
Put 10 ml of this sol-gel reaction solution into a sealed container, put this container into a constant temperature bath, and maintain the reaction temperature of the sol-gel reaction solution at 40°C for 1 hour to perform hydrolysis/polymerization reaction and solidify. I let it happen. This solidified sample was immersed in a 1N nitric acid aqueous solution at room temperature for 1 day, then dried at 60°C for 10 hours, and then heated at a heating rate of 100°C/hour for 1 day.
The sample was heated to 000°C and heat treated at 1000°C for 2 hours.

No、 26のゾル−ゲル反応溶液を用いて得られた試
料から、0.05μm (500人)程度の揃った細孔
が絡み合い構造で存在した多孔質ガラスが得られた。
From the sample obtained using the sol-gel reaction solution of No. 26, porous glass was obtained in which pores of about 0.05 μm (500 people) existed in an entangled structure.

比較例1 ゾル−ゲル反応液として、テトラメトキシシランとホル
ムアミドと1規定硝酸水溶液とをモル比で (No、27) テトラメトキシシラン:ホルムアミド:水==1:1.
5:1.5 (No、28) テトラメトキシシラン:ホルムアミド:水=1 :3.
5 :1.5 の割合となるように混合、撹拌して均一化し、No、2
7〜No、28の2種類を用意した。
Comparative Example 1 As a sol-gel reaction solution, tetramethoxysilane, formamide, and 1N nitric acid aqueous solution were used in a molar ratio (No, 27): tetramethoxysilane:formamide:water==1:1.
5:1.5 (No, 28) Tetramethoxysilane:formamide:water=1:3.
Mix and stir so that the ratio is 5:1.5 to make it homogeneous, and then
Two types, 7 to No. 28, were prepared.

このゾル−ゲル反応液10m1をそれぞれ密閉容器に入
れ、この容器を恒温槽に入れて、ゾル−ゲル反応液の反
応温度を40℃として2時間保持して、加水分解・縮重
合反応を行なわしめ、固化させた。この固化した試料を
1規定硝酸水溶液中に室温において1日間浸漬し、次い
で60℃で10時間乾燥させた後、100℃/時間の昇
温速度で1000℃まで加熱して、1000℃で2時間
熱処理した。
10 ml of each of the sol-gel reaction solutions was placed in a sealed container, and each container was placed in a constant temperature bath, and the reaction temperature of the sol-gel reaction solution was maintained at 40° C. for 2 hours to carry out hydrolysis and polycondensation reactions. , solidified. This solidified sample was immersed in a 1N nitric acid aqueous solution at room temperature for 1 day, then dried at 60°C for 10 hours, heated to 1000°C at a heating rate of 100°C/hour, and then heated at 1000°C for 2 hours. Heat treated.

No、27は数十ナノメータ以下の細孔のみを持ち、N
o、 28は球状粒子の凝集体となってしまい多孔質ガ
ラスが得られなかった。
No. 27 has only pores of several tens of nanometers or less, and N
No. 28 was formed into an aggregate of spherical particles and no porous glass was obtained.

比較例2 ゾル−ゲル反応液として、テトラメトキシシランとホル
ムアミドと1規定硝酸水溶液とをモル比で (No、29) テトラメトキシシラン:ホルムアミド:水=1 :2.
5 :0.5 (No、30) テトラメトキシシラン:ホルムアミド:水=l  :2
.5  :2.5 の割合となるように混合、撹拌して均一化し、No、2
9〜No、30の2種類を用意した。
Comparative Example 2 As a sol-gel reaction solution, tetramethoxysilane, formamide, and 1N nitric acid aqueous solution were used in a molar ratio (No. 29): tetramethoxysilane:formamide:water=1:2.
5:0.5 (No, 30) Tetramethoxysilane:formamide:water=l:2
.. Mix and stir so that the ratio is 5:2.5 to make it homogeneous, and then
Two types, 9 to No. 30, were prepared.

このゾル−ゲル反応液10m1をそれぞれ密閉容器に入
れ、この容器を恒温槽に入れて、ゾル−ゲル反応液の反
応温度を40℃として2時間保持して、加水分解・縮重
合反応を行なわしめ、固化させた。この固化した試料を
1規定硝酸水溶液中に室温において1日間浸漬し、次い
で60℃で10時間乾燥させた後、100℃/時間の昇
温速度で1000℃まで加熱して、1000°Cで2時
間熱処理した。
10 ml of each of the sol-gel reaction solutions was placed in a sealed container, and each container was placed in a constant temperature bath, and the reaction temperature of the sol-gel reaction solution was maintained at 40° C. for 2 hours to carry out hydrolysis and polycondensation reactions. , solidified. This solidified sample was immersed in a 1N nitric acid aqueous solution at room temperature for 1 day, then dried at 60°C for 10 hours, heated to 1000°C at a heating rate of 100°C/hour, and heated at 1000°C for 2 hours. Heat treated for hours.

No、29は反応溶液が2液に分離し、No、30は数
十ナノメータ以下の細孔のみを持つ固体となって、目的
とする多孔質ガラスが得られなかった。
In No. 29, the reaction solution separated into two liquids, and in No. 30, it became a solid having only pores of several tens of nanometers or less, and the desired porous glass could not be obtained.

比較例3 ゾル−ゲル反応液として、テトラエトキシシランとホル
ムアミドと1規定硝酸水溶液とをモル比で (No、31) テトラエトキシシラン:ホルムアミド:水=  1  
+  2.0  :  1.77(No、32) テトラエトキシシラン:ホルムアミド:水== 1 :
 3.5 : 1.77 の割合となるように混合、撹拌して均一化し、No、3
1〜No、32の2種類を用意した。
Comparative Example 3 As a sol-gel reaction solution, tetraethoxysilane, formamide, and 1N nitric acid aqueous solution were used in molar ratio (No, 31) Tetraethoxysilane:formamide:water=1
+ 2.0: 1.77 (No, 32) Tetraethoxysilane: Formamide: Water == 1:
Mix and stir to make the mixture uniform at a ratio of 3.5:1.77.
Two types, 1 to No. 32, were prepared.

このゾル−ゲル反応液10m1をそれぞれ密閉容器に入
れ、この容器を恒温槽に入れて、ゾル−ゲル反応液の反
応温度を60℃として3時間保持して、加水分解・縮重
合反応を行なわしめ、固化させた。この固化した試料を
1規定硝酸水溶液中に室温において1日間浸漬し、次い
で60℃で10時間乾燥させた後、100℃/時間の昇
温速度で1000℃まで加熱して、1000℃で2時間
熱処理した。
10 ml of each of the sol-gel reaction liquids was placed in a sealed container, and each container was placed in a constant temperature bath, and the reaction temperature of the sol-gel reaction liquid was maintained at 60°C for 3 hours to carry out hydrolysis and polycondensation reactions. , solidified. This solidified sample was immersed in a 1N nitric acid aqueous solution at room temperature for 1 day, then dried at 60°C for 10 hours, heated to 1000°C at a heating rate of 100°C/hour, and then heated at 1000°C for 2 hours. Heat treated.

No、31は二〜三十ナノメータ以下の細孔のみを持ち
、No、 32は球状粒子の凝集体となって、目的とす
る多孔質ガラスが得られなかった。
No. 31 had only pores of 2 to 30 nanometers or less, and No. 32 had aggregates of spherical particles, and the desired porous glass could not be obtained.

比較例4 ゾル−ゲル反応液として、テトラエトキシシランとホル
ムアミドと0.1規定硝酸水溶液とをモル比で (No、 33) テトラエトキシシランニホルムアミド:水=  1  
:’3.0  :  0.8(No、34) テトラエトキシシラン:ホルムアミド:水=1 :3.
0 :3.0 の割合となるように混合、撹拌して均一化し、No、3
3〜No、34の2種類を用意した。
Comparative Example 4 As a sol-gel reaction solution, tetraethoxysilane, formamide, and 0.1 N nitric acid aqueous solution were used in a molar ratio (No. 33) Tetraethoxysilane diformamide:water = 1
:'3.0: 0.8 (No, 34) Tetraethoxysilane:formamide:water=1:3.
Mix and stir so that the ratio is 0:3.0 to make it homogeneous.
Two types, 3 to No. 34, were prepared.

このゾル−ゲル反応液10m1をそれぞれ密閉容器に入
れ、この容器を恒温槽に入れて、ゾル−ゲル反応液の反
応温度を60℃として3時間保持して、加水分解・縮重
合反応を行なわしめ、固化させた。この固化した試料を
1規定硝酸水溶液中に室温において1日間浸漬し、次い
で60℃で10時間乾燥させた後、 100℃/時間の
昇温速度で1000℃まで加熱して、1000℃で2時
間熱処理した。
10 ml of each of the sol-gel reaction liquids was placed in a sealed container, and each container was placed in a constant temperature bath, and the reaction temperature of the sol-gel reaction liquid was maintained at 60°C for 3 hours to carry out hydrolysis and polycondensation reactions. , solidified. This solidified sample was immersed in a 1N nitric acid aqueous solution at room temperature for 1 day, then dried at 60°C for 10 hours, heated to 1000°C at a heating rate of 100°C/hour, and then heated at 1000°C for 2 hours. Heat treated.

No、33は反応溶液が2液に分離し、No、34は〜
三十ナノメータ以下の細孔のみを持つ固体となって、目
的とする多孔質ガラスが得られなかった。
In No. 33, the reaction solution is separated into two liquids, and in No. 34, ~
The resulting solid had only pores of 30 nanometers or less, and the desired porous glass could not be obtained.

以上の比較例において、2液に分離したものは、熱処理
を行なっていない。
In the above comparative examples, the two liquids separated were not subjected to heat treatment.

[作用・効果] 本発明によれば、金属アルコキシドの加水分解・重合に
よって生じたシリカオリゴマーは、反応に関与する水の
量が金属アルコキシド1モルに対し、モル比で1.4〜
1.8と限られているので、アルコキシル基を含む疎水
性重合体として成長する。この際、本発明においては、
添加溶媒としてホルムアミド、又はホルムアミド及びグ
リセリン等の多価アルコールが加えられて溶媒の誘電率
が増加されているので、シリカオリゴマーの重合は加速
して相分離が核生成・成長機構によって進行する準安定
領域ではなく不安定領域で起こるので、両相が互いに絡
み合った変調構造を形成する。しかしながら、この構造
は時間とともに成長し、表面張力の強い相が球状に分離
したり、パーコレーション−クラスター転移によってマ
イナー相が分散したりするいわゆる粗大化を起こす。粗
大化過程が進行する前に両相が互いに絡み合った変調構
造をゲル化によって固定すれば、相分離構造を反映した
揃った周期を持つゲル構造を得ることができ、かかるゲ
ルを焼成した後、細孔径がサブミクロンからミクロンオ
ーダーである多孔質ガラスを得ることができる。
[Function/Effect] According to the present invention, the silica oligomer produced by hydrolysis/polymerization of metal alkoxide has a molar ratio of 1.4 to 1.4 to 1 mole of metal alkoxide.
1.8, it grows as a hydrophobic polymer containing an alkoxyl group. At this time, in the present invention,
Since the dielectric constant of the solvent is increased by adding formamide or formamide and a polyhydric alcohol such as glycerin as an additive solvent, the polymerization of the silica oligomer is accelerated and the phase separation proceeds by a nucleation/growth mechanism, resulting in a metastable state. Since it occurs in an unstable region rather than a region, both phases form a modulation structure in which they are entangled with each other. However, this structure grows over time, causing so-called coarsening in which phases with strong surface tension separate into spherical shapes and minor phases disperse due to percolation-cluster transition. If the modulated structure in which both phases are entangled with each other is fixed by gelation before the coarsening process progresses, a gel structure with a uniform period reflecting the phase separation structure can be obtained, and after firing such a gel, Porous glass having pore diameters on the order of submicrons to microns can be obtained.

[発明の効果コ 本発明によれば、サブミクロンから数拾ミクロンの範囲
の揃った細孔径を有する多孔質セラミックスを容易に提
供できる。又、本発明によれば、強度の高い多孔質ガラ
スを得ることができ、金属ドリル等によって穿孔が可能
であり、又その他の切削加工も容易な多孔質ガラスを提
供することができる。
[Effects of the Invention] According to the present invention, porous ceramics having uniform pore diameters ranging from submicrons to several tens of microns can be easily provided. Further, according to the present invention, it is possible to obtain a porous glass with high strength, which can be drilled with a metal drill or the like, and which can be easily cut.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例I  No、3に従って得られた多孔質
ガラスの細孔径分布図を示す図である。 手続ネ甫正書(方式) 平成2年7月LQ日
FIG. 1 is a diagram showing the pore size distribution diagram of the porous glass obtained according to Example I No. 3. Procedural formalities (method) July 1990 LQ date

Claims (7)

【特許請求の範囲】[Claims] (1)金属アルコキシド又はそのオリゴマーと酸性水溶
液と添加溶媒とを含むゾル−ゲル反応液中で上記金属ア
ルコキシド又はそのオリゴマーを加水分解・重合してゲ
ルを作成し、次いでこのゲルを焼成してガラスを製造す
るに当り、上記添加溶媒としてホルムアミドを使用する
とともに、上記ゾル−ゲル反応液中の水を金属アルコキ
シド1モルに対しモル比で1.4〜1.8倍の割合に調
整して上記加水分解・重合過程において金属アルコキシ
ドの重合体を溶媒相との間に絡み合い構造を形成するよ
うに相分離させてゲル化し、次いでこのゲルを焼成する
ことを特徴とする多孔質ガラスの製造法。
(1) The metal alkoxide or its oligomer is hydrolyzed and polymerized in a sol-gel reaction solution containing the metal alkoxide or its oligomer, an acidic aqueous solution, and an added solvent to create a gel, and then this gel is fired to form a glass. In producing the above, formamide is used as the additive solvent, and the water in the sol-gel reaction solution is adjusted to a molar ratio of 1.4 to 1.8 times per mole of metal alkoxide. A method for producing porous glass, which comprises phase-separating and gelling a metal alkoxide polymer to form an entangled structure with a solvent phase during a hydrolysis/polymerization process, and then firing this gel.
(2)上記ゾル−ゲル反応液中の水を金属アルコキシド
1モルに対しモル比で1.4〜1.8の割合とし、かつ
ホルムアミドを金属アルコキシド1モルに対しモル比で
2.0〜3.2の割合に調整することを特徴とする請求
項1記載の多孔質ガラスの製造法。
(2) The molar ratio of water in the sol-gel reaction solution to 1 mole of metal alkoxide is 1.4 to 1.8, and the molar ratio of formamide to 1 mole of metal alkoxide is 2.0 to 3. 2. The method for producing porous glass according to claim 1, wherein the ratio is adjusted to .2.
(3)金属アルコキシド又はそのオリゴマーと酸性水溶
液と添加溶媒とを含むゾル−ゲル反応液中で上記金属ア
ルコキシド又はそのオリゴマーを加水分解・重合してゲ
ルを作成し、次いでこのゲルを焼成してガラスを製造す
るに当り、上記添加溶媒としてホルムアミドと多価アル
コールとの混合物を使用するととも に、上記ゾル−ゲル反応液中の水を金属アルコキシド1
モルに対しモル比で1.4〜1.8倍の割合に調整して
上記加水分解・重合過程において金属アルコキシドの重
合体を溶媒相との間に絡み合い構造を形成するように相
分離させてゲル化し、次いでこのゲルを焼成することを
特徴とする多孔質ガラスの製造法。
(3) Hydrolyze and polymerize the metal alkoxide or its oligomer in a sol-gel reaction solution containing the metal alkoxide or its oligomer, an acidic aqueous solution, and an additive solvent to create a gel, and then bake this gel to create a glass. In producing the above, a mixture of formamide and polyhydric alcohol is used as the above-mentioned additive solvent, and water in the above-mentioned sol-gel reaction solution is mixed with metal alkoxide 1
Adjust the molar ratio to 1.4 to 1.8 times the molar ratio and phase-separate the metal alkoxide polymer to form an entangled structure with the solvent phase in the above hydrolysis/polymerization process. A method for producing porous glass, which comprises gelling and then firing the gel.
(4)上記ゾル−ゲル反応液中の水を金属アルコキシド
1モルに対しモル比で1.4〜1.8の割合とし、かつ
ホルムアミドと多価アルコールとの合計を金属アルコキ
シド1モルに対しモル比で2.0〜3.2の割合に調整
することを特徴とする請求項3記載の多孔質ガラスの製
造法。
(4) The molar ratio of water in the sol-gel reaction solution to 1 mol of metal alkoxide is 1.4 to 1.8, and the total amount of formamide and polyhydric alcohol is 1 mol to 1 mol of metal alkoxide. 4. The method for producing porous glass according to claim 3, wherein the ratio is adjusted to a ratio of 2.0 to 3.2.
(5)多価アルコールがグリセリンであることを特徴と
する請求項3記載の多孔質ガラスの製造法。
(5) The method for producing porous glass according to claim 3, wherein the polyhydric alcohol is glycerin.
(6)上記酸性水溶液として硝酸水溶液を使用すること
を特徴とする請求項1、又は請求項3記載の多孔質ガラ
スの製造法。
(6) The method for producing porous glass according to claim 1 or 3, wherein a nitric acid aqueous solution is used as the acidic aqueous solution.
(7)請求項1、又は請求項3において、金属アルコキ
シドの重合体を溶媒相との間に絡み合い構造を形成する
ように相分離させてゲル化させた後、そのゲルを酸性水
溶液にて処理 し、ゲルの表面に残存するアルコキシル基の加水分解反
応を完了させることを特徴とする多孔質ガラスの製造法
(7) In claim 1 or 3, the metal alkoxide polymer is phase-separated and gelled to form an entangled structure with the solvent phase, and then the gel is treated with an acidic aqueous solution. A method for producing porous glass, characterized in that the hydrolysis reaction of alkoxyl groups remaining on the surface of the gel is completed.
JP8132090A 1990-03-30 1990-03-30 Manufacture of porous glass Pending JPH03285833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8132090A JPH03285833A (en) 1990-03-30 1990-03-30 Manufacture of porous glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8132090A JPH03285833A (en) 1990-03-30 1990-03-30 Manufacture of porous glass

Publications (1)

Publication Number Publication Date
JPH03285833A true JPH03285833A (en) 1991-12-17

Family

ID=13743108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8132090A Pending JPH03285833A (en) 1990-03-30 1990-03-30 Manufacture of porous glass

Country Status (1)

Country Link
JP (1) JPH03285833A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995003256A1 (en) * 1993-07-19 1995-02-02 Merck Patent Gmbh Inorganic porous material and process for making same
US7217359B2 (en) 2003-07-30 2007-05-15 Ngk Insulators, Ltd. Columns for chromatograph
US7291383B2 (en) 2004-01-23 2007-11-06 Ngk Insulators, Ltd. Supports for solid phase extraction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995003256A1 (en) * 1993-07-19 1995-02-02 Merck Patent Gmbh Inorganic porous material and process for making same
US5624875A (en) * 1993-07-19 1997-04-29 Merck Patent Gesellschaft Mit Beschrankter Haftung Inorganic porous material and process for making same
US7217359B2 (en) 2003-07-30 2007-05-15 Ngk Insulators, Ltd. Columns for chromatograph
US7291383B2 (en) 2004-01-23 2007-11-06 Ngk Insulators, Ltd. Supports for solid phase extraction

Similar Documents

Publication Publication Date Title
US5009688A (en) Process for producing porous glass
US4786618A (en) Sol-gel method for making ultra-low expansion glass
JP4035440B2 (en) Sol-gel process for producing dry gels with large dimensions and glasses derived thereby
JPH038729A (en) Production of porous glass
JPH03285833A (en) Manufacture of porous glass
JPS59116135A (en) Manufacture of quartz glass
JP2635313B2 (en) Method for producing silica glass
JPS6330542A (en) Production of porous material
JPS6065735A (en) Production of quartz glass
JPS59182237A (en) Manufacture of spherical glass article
US5810899A (en) Glass production
KR100722379B1 (en) A method of preparing transparent silica glass
JPH02145442A (en) Production of glass
JPH0547487B2 (en)
JPH02199033A (en) Production of optical glass
JPS632820A (en) Production of glass
JP3582093B2 (en) Method for producing silica glass
KR100310089B1 (en) Composition for making silica glass with sol-gel process
JPS61256928A (en) Production of glass
JPS63182222A (en) Production of silica glass
JPH0388711A (en) Production of spherical porous body
JPH0465322A (en) Production of glass
JPS63171630A (en) Spherical porous body and its production
JPS643812B2 (en)
JPS61236618A (en) Production of quartz glass