JPH038729A - Production of porous glass - Google Patents

Production of porous glass

Info

Publication number
JPH038729A
JPH038729A JP1245947A JP24594789A JPH038729A JP H038729 A JPH038729 A JP H038729A JP 1245947 A JP1245947 A JP 1245947A JP 24594789 A JP24594789 A JP 24594789A JP H038729 A JPH038729 A JP H038729A
Authority
JP
Japan
Prior art keywords
solution
porous
solidified
dried
organic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1245947A
Other languages
Japanese (ja)
Other versions
JPH0829952B2 (en
Inventor
Kazuki Nakanishi
和樹 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1245947A priority Critical patent/JPH0829952B2/en
Publication of JPH038729A publication Critical patent/JPH038729A/en
Publication of JPH0829952B2 publication Critical patent/JPH0829952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Catalysts (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To obtain porous glass having small pore diameter by subjecting metallic alkoxide to hydrolysis and polymerization in a reacting solution containing said alkoxide, etc., and organic polymer such as polyacrylic acid, etc., and burning resultant gel. CONSTITUTION:An organic polymer such as polystyrene sodium sulfonate, polyacrylic acid or polyallylamine is prepared. Then, a reacting solution containing metallic alkoxide or oligomer of said alkoxide and said organic polymer is prepared. Said metallic alkoxide or oligomer of said alkoxide is subjected to hydrolysis and polymerization in said solution to form a gel. Next, resultant gel is burned to afford porous glass containing pores having uniform diameter in a range of micron-order.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は触媒担体、酵素担体、分離膜素材のようにサブ
ミクロンからミクロンオーダーの細孔が要求される広い
範囲に利用することができる多孔質ガラスをゾル−ゲル
法により製造する方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention provides a porous material that can be used in a wide range of applications where pores on the order of submicrons to microns are required, such as catalyst carriers, enzyme carriers, and separation membrane materials. The present invention relates to a method for producing quality glass by a sol-gel method.

[従来の技術] 従来の多孔質セラミックスのうちサブミクロン以下の極
微細孔径を持つものは主としてホウケイ酸塩ガラスの熱
処理による分相現象を利用して、からみ合い分相構造を
とらせた後、片方の相を酸溶出させることにより作製さ
れている。
[Prior art] Among conventional porous ceramics, those with ultrafine pore diameters of submicrons or less mainly utilize the phase separation phenomenon caused by heat treatment of borosilicate glass to form an entangled phase separation structure. It is made by eluting one phase with acid.

これに対し、ミクロン以上の細孔径のものはセラミック
ス原料粉体を仮焼し熱分解させて粒子又は粒子間に開気
孔を作った後、適切な条件で焼結して作られている。し
かしながらこれらの方法ではサブミクロンから数拾ミク
ロンの範囲の揃った細孔径の多孔質セラミックスを製造
することが困難である。更に、用途により要求される膜
状、繊維状のものを作製しに(い欠点がある。このよう
なことから最近、バルク状、膜状あるいは繊維状のいず
れの形状のセラミックスも作製できる金属アルコキシド
を原料としたゾル−ゲル法が多孔質セラミックスの作製
にも適用されるようになった。
On the other hand, those with pore diameters of microns or more are made by calcining and thermally decomposing ceramic raw material powder to create particles or open pores between particles, and then sintering under appropriate conditions. However, with these methods, it is difficult to produce porous ceramics with uniform pore diameters ranging from submicrons to several tens of microns. Furthermore, there is a drawback that it is difficult to produce ceramics in the form of membranes or fibers required depending on the application.For this reason, metal alkoxides, which can be used to produce ceramics in any shape, such as bulk, membrane, or fibers, have recently been developed. The sol-gel method using as a raw material has come to be applied to the production of porous ceramics.

しかし、珪素アルコキシドをアルコール等の有機溶媒中
で加水分解・重合して反応溶液系のゲル化を行なった後
、生成した多孔質ゲルをその後焼成する上記の方法で作
製される多孔質ゲル体の細孔径は、数拾ナノメーター以
下と極めて小さい。そこで細孔をミクロンオーダーとす
るため塩酸を多量に加えて加水分解させることも試みら
れているが、細孔径分布が広くなる課題がある。
However, the porous gel body produced by the above method in which silicon alkoxide is hydrolyzed and polymerized in an organic solvent such as alcohol to gel the reaction solution system, and then the resulting porous gel is fired. The pore diameter is extremely small, several tens of nanometers or less. Therefore, attempts have been made to add a large amount of hydrochloric acid for hydrolysis in order to make the pores on the micron order, but this has the problem of widening the pore size distribution.

また、特開昭62−123032号公報にはシリコンエ
トキシドのゾル液にポリ酢酸ビニルエマルジョンを添加
し混合してゲル化し焼成して多孔質ガラスを製造する方
法が開示されている。しかしながら、かかる方法により
製造された多孔質ガラスの細孔径分布は広(なるという
課題があった。
Further, JP-A-62-123032 discloses a method for producing porous glass by adding a polyvinyl acetate emulsion to a silicon ethoxide sol solution, mixing the mixture, gelling it, and firing it. However, there is a problem in that the pore size distribution of porous glass produced by such a method is wide.

[発明が解決しようとする課題] 本発明は従来技術が有していた上記課題を解消し、細孔
径がミクロンオーダーでありその細孔径分布が狭い多孔
質セラミックの得られる製造法の提供を目的とする。
[Problems to be Solved by the Invention] The purpose of the present invention is to solve the above-mentioned problems that the prior art had, and to provide a manufacturing method capable of producing a porous ceramic whose pore diameter is on the order of microns and whose pore diameter distribution is narrow. shall be.

[課題を解決するための手段] 本発明は、金属アルコキシド又はそのオリゴマーと有機
高分子とを含む反応溶液を準備し、該溶液中で該金属ア
ルコキシド又はそのオリゴマーを加水分解・重合してゲ
ルを作成し、該ゲルを焼成して多孔質ガラスを製造する
方法であって、該有機高分子は、該金属アルコキシド又
はそのオリゴマーの溶液と相溶性を有し、該加水分解・
重合の工程で、相分離を生じ、かつ実質的に沈殿を生じ
ないものである多孔質ガラスの製造法を提供するもので
ある。
[Means for Solving the Problems] The present invention involves preparing a reaction solution containing a metal alkoxide or its oligomer and an organic polymer, and hydrolyzing and polymerizing the metal alkoxide or its oligomer in the solution to form a gel. A method of producing porous glass by preparing a gel and firing the gel, wherein the organic polymer is compatible with a solution of the metal alkoxide or its oligomer, and the organic polymer is compatible with the solution of the metal alkoxide or its oligomer.
The present invention provides a method for producing porous glass that causes phase separation and substantially no precipitation during the polymerization process.

本発明は均一に溶解した有機高分子が金属アルコキシド
又はそのオリゴマーの加水分解・重合の過程で相分離す
る現象を利用するものである。かかる有機高分子として
は、金属アルコキシド又はそのオリゴマーの加水分解に
より生成する溶液に均一に溶解する相溶性を有し、該加
水分解の過程で相分離を生じ、しかも沈殿を生じないも
のが使用される。
The present invention utilizes the phenomenon in which a uniformly dissolved organic polymer undergoes phase separation during the hydrolysis/polymerization process of a metal alkoxide or its oligomer. As such an organic polymer, one is used that has compatibility to dissolve uniformly in a solution generated by hydrolysis of a metal alkoxide or its oligomer, causes phase separation during the hydrolysis process, and does not cause precipitation. Ru.

かかる特性を有する有機高分子としては適当な濃度の水
溶液となし得る水溶性有機高分子であって、金属アルコ
キシド又はそのオリゴマーの加水分解により生成するア
ルコキシド又はそのオリゴマーの加水分解により生成す
るアルコール含有液に均一に溶解するものであればよい
。具体的には高分子金属塩であるポリスチレンスルホン
酸のナトリウム塩、高分子酸であって解離してポリアニ
オンとなるポリアクリル酸等、高分子塩基であって水溶
液中でポリカオチンを生ずるポリアリルアミン及びポリ
エチレンイミン等あるいは中性高分子であって主鎖にエ
ーテル結合を持つポリエチレンオキシド等側鎖にγ−ラ
クタムを有するポリビニルピロリドン等が好適である。
Examples of organic polymers having such characteristics include water-soluble organic polymers that can be made into an aqueous solution of an appropriate concentration, and are alcohol-containing liquids that are generated by hydrolysis of alkoxides or oligomers thereof, which are generated by hydrolysis of metal alkoxides or oligomers thereof. Any material that can be uniformly dissolved in the water may be used. Specifically, sodium salt of polystyrene sulfonic acid, which is a polymeric metal salt, polyacrylic acid, which is a polymeric acid that dissociates to form a polyanion, and polyallylamine and polyethylene, which are polymeric bases that produce polycation in an aqueous solution. Suitable examples include imine, etc., or polyvinylpyrrolidone, which is a neutral polymer and has a γ-lactam in its side chain, such as polyethylene oxide, which has an ether bond in its main chain.

金属アルコキシド又はそのオリゴマーとしてはメトキシ
基、エトキシ基、プロポキシ基等の炭素数の少ないもの
が好ましい。また、その金属としては、最終的に形成さ
れる酸化物の金属例えば、Si、Ti、Zr、Al、が
使用される。この金属としては1種又は2種以上であっ
ても良い。
As the metal alkoxide or its oligomer, those having a small number of carbon atoms such as methoxy group, ethoxy group, propoxy group, etc. are preferable. Further, as the metal, the metal of the oxide that is finally formed, such as Si, Ti, Zr, and Al, is used. This metal may be one type or two or more types.

方、オリゴマーとしてはアルコールに均一に溶解分数で
きるものであればよ(、具体的にはlO量体程度まで使
用することができる。有機高分子は、金属アルコキシド
又はそのオリゴマー1重量部に対し、0.03〜0.4
0重量部の割合で混合することが好ましい。
On the other hand, the oligomer may be one that can be uniformly dissolved in alcohol (specifically, it can be used up to the level of 10-mer). 0.03-0.4
It is preferable to mix at a ratio of 0 parts by weight.

有機高分子の量が上記範囲より多(なると、次の点で好
ましくない。即ち、ゲル化時にSiO2ポリマー相が連
続的な骨格を形成せず粒子状に析出する。一方、有機高
分子の量が上記範囲より少なくなると、有機高分子相と
シリカポリマー相が、からみあった状態でゲル化しない
ため、均一な細孔径の連続貫通孔を有した多孔体ができ
ない。有機高分子と金属アルコキシド又はそのオリゴマ
ーとの混合に当たっては特に限定されるものではないが
、有機高分子を酸性水溶液に溶解し、この溶液と金属ア
ルコキシド又はそのオリゴマーとを撹拌することにより
達成される。酸性水溶液と金属アルコキシド又はそのオ
リゴマーとを混合した後、有機高分子を添加してもよく
、金属アルコキシド又はそのオリゴマーが一部加水分解
・重合した後、有機高分子を添加することもできる。こ
の際使用される酸性水溶液としては、通常塩酸、硝酸等
の鉱酸0、001規定以上のものが好ましい。なお、テ
トラメトキシシラン又はそのオリゴマーを使用する場合
には酸を含有しない水溶液を使用して加水分解すると、
強度の高い多孔質ガラスが得られることかある。加水分
解に当たっては、かかる溶液を密閉容器に入れ、室温4
0〜80°Cで0.5〜5時間保持することにより達成
される。加水¥ 分解は排初透明な溶液が白濁して有機高分子との相分離
を生じついにゲル化する過程を経る。
If the amount of the organic polymer is greater than the above range, it is unfavorable in the following respects. That is, during gelation, the SiO2 polymer phase does not form a continuous skeleton and is precipitated in the form of particles. On the other hand, if the amount of the organic polymer is is less than the above range, the organic polymer phase and the silica polymer phase will not gel in an entangled state, making it impossible to form a porous body with continuous through-holes of uniform pore size. Mixing with the oligomer is not particularly limited, but it can be achieved by dissolving the organic polymer in an acidic aqueous solution and stirring this solution and the metal alkoxide or its oligomer. The organic polymer may be added after mixing with the oligomer, or the organic polymer may be added after the metal alkoxide or its oligomer is partially hydrolyzed and polymerized.In this case, the acidic aqueous solution used is is usually preferably a mineral acid of 0.001N or higher, such as hydrochloric acid or nitric acid.In addition, when tetramethoxysilane or its oligomer is used, if it is hydrolyzed using an aqueous solution containing no acid,
Porous glass with high strength can be obtained. For hydrolysis, the solution is placed in a closed container and kept at room temperature 4.
This is achieved by holding at 0-80°C for 0.5-5 hours. Hydrolysis Decomposition involves a process in which an initially transparent solution becomes cloudy, undergoes phase separation with the organic polymer, and finally gels.

この加水分解過程で有機高分子又はその重合体は分散状
態にありそれらの沈殿は実質的に生じない。
During this hydrolysis process, the organic polymer or its polymer is in a dispersed state and substantially no precipitation occurs.

かくしてゲル化したものは、40〜80℃に数時間〜数
十時間程度放置して熟成した後、水により洗浄して有機
高分子を除去し、 800〜1000℃程度で焼成して
多孔質ガラスを得る。
The thus gelled product is aged by leaving it at 40-80°C for several hours to several tens of hours, then washed with water to remove organic polymers, and fired at about 800-1000°C to form porous glass. get.

本発明の目的物の細孔立体構造は、反応系の温度やpH
値、有機高分子の分子量及び倉荷量、その他金属アルコ
キシド又はそのオリゴマーの反応性および共存する有機
高分子の溶解度に影響を及ぼす各種条件によって変わる
。従って、細孔立体構造の制(卸の手法を一律に述べる
ことは困難であるが、前述した条件が同じであれば孔径
等がほぼ同じの目的物を再現性よく提供できる。
The pore structure of the object of the present invention depends on the temperature and pH of the reaction system.
value, the molecular weight and storage capacity of the organic polymer, and various other conditions that affect the reactivity of the metal alkoxide or its oligomer and the solubility of the coexisting organic polymer. Therefore, although it is difficult to uniformly describe the method for controlling the pore three-dimensional structure, as long as the above-mentioned conditions are the same, it is possible to provide a target product with substantially the same pore diameter etc. with good reproducibility.

中間物質として生成する多孔質ゲルは、そのままでこれ
を利用することも考えられるが、水中で膨潤し、また機
械的強度も小さいため、その利用は制限される。
Although it is possible to use the porous gel produced as an intermediate substance as it is, its use is limited because it swells in water and has low mechanical strength.

上記の多孔質ゲルは、これを焼成すれば機械的強度の向
上したSiO□系多孔質セラミックスとなるが、有機高
分子を除去することなく焼成すると、この有機高分子の
種類によってはその分解に伴って生成する物質がSiO
□のガラス化を妨げる等の問題を生ゼしぬる。
If the porous gel described above is fired, it becomes SiO□-based porous ceramics with improved mechanical strength. However, if it is fired without removing the organic polymer, it may decompose depending on the type of organic polymer. The substance produced is SiO
This creates problems such as hindering the vitrification of □.

中間物質として生成する多孔質ゲルからの有機高分子の
除去は、乾燥前のゲルを水で洗浄することによっである
程度なすことができるが、洗浄過程の後に更に有機高分
子が分解あるいは燃焼する程度までゲルを十分長時間加
熱してこれを完全に除去する方が有利である。
Organic polymers can be removed to some extent from the porous gel produced as an intermediate by washing the gel with water before drying, but the organic polymers may further decompose or burn after the washing process. It is advantageous to heat the gel for a long enough period of time to remove it completely.

[実施例] 以下本発明の詳細な説明する。[Example] The present invention will be explained in detail below.

実施例1:有機高分子としてポリスチレンスルホン酸を
用いる場合 実施例1−1 まず高分子金属塩であるポリスチレンスルホ−1)を、
1規定硝酸水溶液5.51gに溶解して、20重量%溶
液とした。これにメタノール5mQを加え、均一溶液と
した後テトラメトキシシラン5mQを約1分間かけて滴
下し、加水分解反応を行なった。数分撹拌した後得られ
た透明溶液を密閉容器に移し、40℃の恒温槽中に保持
したところ約20時憚後に固化した。固化した試料を更
に数日熟成させ、60℃で乾燥した後100℃/hの昇
温速度で500℃まで加熱した。蒸留水でポリスチレン
スルホン酸ナトリウムの分解生成物を洗浄し、最後に8
00℃で2時間熱処理した。得られた多孔質シリカガラ
ス中には5μm程度の揃った細孔がからみあい構造で存
在した。なお、60℃で乾燥した試料の微細構造および
細孔径は、熱処理を終えた多孔質シリカガラスのそれに
ほぼ一致していた。
Example 1: When polystyrene sulfonic acid is used as an organic polymer Example 1-1 First, polystyrene sulfonate-1), which is a polymeric metal salt, is
It was dissolved in 5.51 g of 1N nitric acid aqueous solution to make a 20% by weight solution. After adding 5 mQ of methanol to make a homogeneous solution, 5 mQ of tetramethoxysilane was added dropwise over about 1 minute to carry out a hydrolysis reaction. After stirring for several minutes, the resulting transparent solution was transferred to a sealed container and kept in a constant temperature bath at 40°C, whereupon it solidified after about 20 hours. The solidified sample was further aged for several days, dried at 60°C, and then heated to 500°C at a temperature increase rate of 100°C/h. Wash the decomposition products of sodium polystyrene sulfonate with distilled water, and finally
Heat treatment was performed at 00°C for 2 hours. In the obtained porous silica glass, uniform pores of about 5 μm existed in an entangled structure. Note that the microstructure and pore diameter of the sample dried at 60° C. almost matched those of the porous silica glass after heat treatment.

実施例1−2 メタノール5mQを加えないこととした外は実施例1と
同様にポリスチレンスルホン酸ナトリ加水分解を行なっ
た。その後保持条件を密閉容器中25℃で10時間以内
と変え、固化した試料を実施例1−1と同じ条件で熟成
、乾燥、加熱、洗浄、熱処理することにより多孔質ガラ
スの細孔径を1μm程度に制御できた。
Example 1-2 Sodium polystyrene sulfonate hydrolysis was carried out in the same manner as in Example 1, except that 5 mQ of methanol was not added. Thereafter, the holding conditions were changed to within 10 hours at 25°C in a closed container, and the solidified sample was aged, dried, heated, washed, and heat treated under the same conditions as in Example 1-1 to reduce the pore diameter of the porous glass to approximately 1 μm. could be controlled.

実施例1−3 ポリスチレンスルホン酸ナトリウムを、1規定硝酸水溶
液5.51gに溶解して、33重量%溶液とした。これ
にメタノール5n+Qを加えた後、テトラメトキシシラ
ン5mQを約1分間かけて滴下し、加水分解反応を行な
った。数分撹拌した後得られた透明溶液を密閉容器に移
し、40℃の恒温槽中に保持したところ約20時間後に
同化した。固化した試料を実施例1−1と同じ条件で熟
成、乾燥、加熱、洗浄、熱処理することにより3μm程
度の球状粒子の凝集構造からなる多孔質シリカガラスが
得られた。
Example 1-3 Sodium polystyrene sulfonate was dissolved in 5.51 g of a 1N nitric acid aqueous solution to make a 33% by weight solution. After adding 5n+Q of methanol to this, 5mQ of tetramethoxysilane was added dropwise over about 1 minute to carry out a hydrolysis reaction. After stirring for several minutes, the resulting clear solution was transferred to a sealed container and kept in a constant temperature bath at 40°C, whereupon it was assimilated after about 20 hours. The solidified sample was aged, dried, heated, washed, and heat treated under the same conditions as in Example 1-1 to obtain porous silica glass having an agglomerated structure of spherical particles of about 3 μm.

実施例1−4 ポリスチレンスルホン酸ナトリウムの分子量範囲の明確
なもの(■東ソー製、P’SL、分子量1万〜3万)を
、l規定硝酸水溶液5.51gに溶解して、24.1重
量%とし、この溶液に撹拌下でテトラメトキシシラン5
mQを滴下して加水分解反応を行なった。数分撹拌した
後得られた透明溶液を密閉容器に移し、40℃の恒温槽
中に保持したところ約2時間以内に固化した。固化した
試料を乾燥に先立ってl規定硝酸水溶液に浸漬し、ポリ
スチレンスルホン酸ナトリウムな固化体から洗い出した
。この後60℃で乾燥させた試料は、 tol1μm程
度の細孔径の絡み合った構造からなる多孔質であった。
Example 1-4 Sodium polystyrene sulfonate with a clear molecular weight range (P'SL manufactured by Tosoh, molecular weight 10,000 to 30,000) was dissolved in 5.51 g of lN nitric acid aqueous solution to give a solution of 24.1 weight % and tetramethoxysilane 5% was added to this solution under stirring.
A hydrolysis reaction was carried out by adding mQ dropwise. After stirring for several minutes, the resulting transparent solution was transferred to a sealed container and kept in a constant temperature bath at 40°C, whereupon it solidified within about 2 hours. Prior to drying, the solidified sample was immersed in an aqueous 1N nitric acid solution and washed out of the solidified sodium polystyrene sulfonate. The sample, which was then dried at 60°C, was porous and had a structure in which pores with a tol diameter of about 1 μm were intertwined.

この試料を 100’C/hの昇温速度で更に900℃
まで加熱することにより、はぼ同様の構造を持った多孔
質シリカガラスが得られた。
This sample was further heated to 900°C at a heating rate of 100'C/h.
Porous silica glass with a structure similar to that of Habo was obtained.

実施例1−5 ポリスチレンスルホン酸ナトリウムの分子量範囲の明確
なもの((…東ソー製、Psi、分子量1万〜3万)を
、l規定硝酸水溶液5.51gに溶解して、25.0重
量%とし、この溶液に撹拌下でテトラメトキシシラン5
mQを滴下して加水分解反応を行なった。数分攪拌した
後得られた透明溶液を密閉容器に移し、60℃の恒温槽
中に保持したところ約1時間以内に固化した。固化した
試料を乾燥に先立って1規定硝酸水溶液に浸漬し、ポリ
スチレンスルホン酸ナトリウムな固化体から洗い出した
。この後60°Cで乾燥させた試料は、0.3μm程度
の細孔径の絡み合った構造からなる多孔質であった。ま
た、ポリスチレンスルホン酸ナトリウムの濃度を27.
5重量%まで増加することにより、細孔径を約20μm
まで連続的に制御することができた。乾燥した試料に所
定の熱処理を行なうことにより、はぼ同様の構造を持っ
た多孔質シリカガラスが得られた。
Example 1-5 Sodium polystyrene sulfonate with a clear molecular weight range (manufactured by Tosoh, Psi, molecular weight 10,000 to 30,000) was dissolved in 5.51 g of lN nitric acid aqueous solution to give a concentration of 25.0% by weight. and add 55% of tetramethoxysilane to this solution while stirring.
A hydrolysis reaction was carried out by adding mQ dropwise. After stirring for several minutes, the resulting transparent solution was transferred to a closed container and kept in a constant temperature bath at 60° C., whereupon it solidified within about 1 hour. Prior to drying, the solidified sample was immersed in a 1N aqueous nitric acid solution, and the solidified material, which was sodium polystyrene sulfonate, was washed out. The sample, which was then dried at 60°C, was porous and had a structure in which pores with a diameter of about 0.3 μm were intertwined. In addition, the concentration of sodium polystyrene sulfonate was 27.
By increasing the pore size to 5% by weight, the pore size is approximately 20 μm.
could be controlled continuously. By subjecting the dried sample to a predetermined heat treatment, porous silica glass with a structure similar to that of Habo was obtained.

実施例1−6 ポリスチレンスルホン酸ナトリウムの分子量範囲の明確
なもの((掬東ソー製、PS5.分子量5万〜lO万)
を、1規定硝酸水溶液5.51gに溶解して、19.1
重量%とじ、この溶液に撹拌下でテトラメトキシシラン
5mQを滴下して加水分解反応を行なった。数分攪拌し
た後得られた透明溶液を密閉容器に移し、40℃の恒温
槽中に保持したところ約2時間以内に固化した。固化し
た試料を乾燥に先立って1規定硝酸水溶液に浸漬し、ポ
リスチレンスルホン酸ナトリウムの分解生成物を固化体
から洗い出した。この後60°Cで乾燥させた試料は、
50μm程度の細孔径の絡み合った構造からなる多孔質
であった。
Example 1-6 Sodium polystyrene sulfonate with a clear molecular weight range (manufactured by Kik Tosoh, PS5. molecular weight 50,000 to 10,000)
was dissolved in 5.51 g of 1N nitric acid aqueous solution to obtain 19.1
After adjusting the weight percentage, 5 mQ of tetramethoxysilane was added dropwise to this solution under stirring to perform a hydrolysis reaction. After stirring for several minutes, the resulting transparent solution was transferred to a closed container and kept in a constant temperature bath at 40° C., whereupon it solidified within about 2 hours. Prior to drying, the solidified sample was immersed in a 1N aqueous nitric acid solution to wash out decomposition products of sodium polystyrene sulfonate from the solidified body. The sample was then dried at 60°C.
It was porous and had an entangled structure with pores having a diameter of about 50 μm.

また、ポリスチレンスルホン酸ナトリウムの濃度を16
.6重量%まで減少させることにより、細孔径の大きさ
を約0.3μmまで連続的に制御することができた。同
様に、ポリスチレンスルホン酸ナトリウムの添加量を固
定して、1規定硝酸水溶液の量を6.17gまで増加す
ることにより、細孔径を約0.1tLmまで、連続的に
制御することができた。乾燥した試料に所定の熱処理を
行なうことにより、こほぼ同様の構造を持った多孔質シ
リカガラスが得られた。
In addition, the concentration of sodium polystyrene sulfonate was increased to 16
.. By reducing the amount to 6% by weight, the pore size could be continuously controlled to about 0.3 μm. Similarly, by fixing the amount of sodium polystyrene sulfonate added and increasing the amount of 1N nitric acid aqueous solution to 6.17 g, the pore diameter could be continuously controlled to about 0.1 tLm. By subjecting the dried sample to a prescribed heat treatment, porous silica glass with almost the same structure was obtained.

なお、ポリスチレンスルホン酸ナトリウム1.20g、
l規定硝酸水溶液5.51g、テトラメトキシシラン5
mlよりなる溶液から作成した多孔質ガラスについて水
銀圧大法により測定した細孔径の分布を第1図に・印で
示す。
In addition, 1.20 g of sodium polystyrene sulfonate,
lNitric acid aqueous solution 5.51g, tetramethoxysilane 5
The pore size distribution measured by the mercury pressure method for a porous glass prepared from a solution consisting of 1 ml is shown in Fig. 1 by marks.

実施例1−7 ポリスチレンスルホン酸ナトリウムの分子量範囲の明確
なもの(■東ソー製、PS5.分子量5万〜10万)を
、l規定硝酸水溶液5.51gに溶解して、19.1重
量%とし、この溶液に攪拌下でテトラメトキシシラン5
mQを滴下して加水分解反応を行なった。数分撹拌した
後得られた透明溶液を密閉容器に移し、60℃の恒温槽
中に保持したところ約1時間以内に固化した。固化した
試料を乾燥に先立って1規定硝酸水溶液に浸漬し、ポリ
スチレンスルホン酸ナトリウムを固化体から洗い出した
。この後60℃で乾燥させた試料は、0.5μm程度の
細孔径の絡み合った構造からなる多孔質であった。また
、ポリスチレンスルホン酸ナトリウムの濃度を21.4
重量%まで増加させることにより、細孔径を約20μm
まで連続的に制御することができた。同様に、ポリスチ
レンスルホン酸ナトリウムの添加量を固定して、1規定
硝酸水溶液の量を5.(17gまで減少することにより
、細孔径を約20μmまで連続的に制御することができ
た。乾燥した試料に所定の熱処理を行なうことにより、
はぼ同様の構造を持った多孔質シリカガラスが得られた
Example 1-7 Sodium polystyrene sulfonate with a clear molecular weight range (PS5, manufactured by Tosoh, molecular weight 50,000 to 100,000) was dissolved in 5.51 g of lN nitric acid aqueous solution to give a concentration of 19.1% by weight. , tetramethoxysilane 5 was added to this solution under stirring.
A hydrolysis reaction was carried out by adding mQ dropwise. After stirring for several minutes, the resulting transparent solution was transferred to a sealed container and kept in a constant temperature bath at 60°C, whereupon it solidified within about 1 hour. Prior to drying, the solidified sample was immersed in a 1 N nitric acid aqueous solution to wash out sodium polystyrene sulfonate from the solidified body. The sample, which was then dried at 60° C., was porous and had a structure in which pores with a diameter of about 0.5 μm were intertwined. In addition, the concentration of sodium polystyrene sulfonate was 21.4
By increasing the pore size to about 20 μm by weight%
could be controlled continuously. Similarly, the amount of sodium polystyrene sulfonate added was fixed, and the amount of 1N nitric acid aqueous solution was adjusted to 5. (By reducing the pore size to 17 g, we were able to continuously control the pore diameter to about 20 μm. By subjecting the dried sample to a prescribed heat treatment,
Porous silica glass with a structure similar to that of Habo was obtained.

実施例1−8 ポリスチレンスルホン酸ナトリウムの分子量範囲の明確
なもの(■東ソー製、PS50 、分子量40〜60万
)を、l規定硝酸水溶液5.51gに溶解して、14.
0重量%とし、この溶液に攪拌下でテトラメトキシシラ
ン5m(2を滴下して加水分解反応を行なった。数分撹
拌した後得られた透明溶液を密閉容器に移し、40℃の
恒温槽中に保持したところ約2時間以内に固化した。固
化した試料を乾燥に先立って1規定硝酸水溶液に浸漬し
、ポリスチレンスルホン酸ナトリウムを同化体から洗い
出した。この後60℃で乾燥させた試料は、0.3μm
程度の細孔径の絡み合った構造からなる多孔質であった
。また、ポリスチレンスルホン酸ナトリウムの濃度を1
3.2重量%とし、反応時にメタノール1m12を共存
させると、細孔径の大きさは約0.5μmとなった。乾
燥した試料に所定の熱処理を行なうことにより、はぼ同
様の構造を持った多孔質シリカガラスが得られた。
Example 1-8 Sodium polystyrene sulfonate with a clear molecular weight range (■ Tosoh, PS50, molecular weight 400,000 to 600,000) was dissolved in 5.51 g of lN nitric acid aqueous solution, and 14.
0% by weight, and 5 m (2) of tetramethoxysilane was added dropwise to this solution while stirring to perform a hydrolysis reaction. After stirring for several minutes, the resulting transparent solution was transferred to a sealed container and placed in a constant temperature bath at 40°C. It solidified within about 2 hours when kept at 60°C.Prior to drying, the solidified sample was immersed in a 1N nitric acid aqueous solution to wash out sodium polystyrene sulfonate from the assimilate.After this, the sample was dried at 60°C. 0.3μm
It was porous, consisting of an intertwined structure with pores of approximately In addition, the concentration of sodium polystyrene sulfonate was increased to 1
When the concentration was 3.2% by weight and 1 ml of methanol was allowed to coexist during the reaction, the pore size was about 0.5 μm. By subjecting the dried sample to a predetermined heat treatment, porous silica glass with a structure similar to that of Habo was obtained.

実施例1−9 ポリスチレンスルホン酸ナトリウムの分子量範囲の明確
なもの((掬東ソー製、PS5.分子量5〜10万)を
、1規定硝酸水溶液9.36gに溶解して、11.4重
量%とし、この溶液に攪拌下でテトラエトキシシラン7
mQを滴下して加水分解反応を行なった。数分撹拌した
後得られた透明溶液を密閉容器に移し、60℃の恒温槽
中に保持したところ約2時間以内に固化した。固化した
試料を乾燥に先立って1規定硝酸水溶液に浸漬し、ポリ
スチレンスルホン酸ナトリウムを同化体から洗い出した
。この後60℃で乾燥させた試料は、2μm程度の細孔
径の絡み合った構造からなる多孔質であった。また、ポ
リスチレンスルホン酸ナトリウムの濃度を10.5重量
%から11.8重量%まで変化させることにより、細孔
径を約0.3μm〜約15μmまで連続的に制i卸する
ことができた。同様に、ポリスチレンスルホン酸ナトリ
ウムの添加量を固定して、■規定硝酸水溶液の量を9.
64gから9.09gまで変化させることにより、細孔
径を約0.5μmから約50μmまで連続的に制御する
ことができた。更に反応温度を40℃から80°Cまで
変化させることにより、細孔径を1μm以下から数拾μ
mまで制御することができた。乾燥した試料に所定の熱
処理を行なうことにより、はぼ同様の構造を持った多孔
質シリカガラスが得られた。
Example 1-9 Sodium polystyrene sulfonate with a clear molecular weight range (manufactured by Kik Tosoh, PS5, molecular weight 5 to 100,000) was dissolved in 9.36 g of a 1 N nitric acid aqueous solution to give a concentration of 11.4% by weight. , tetraethoxysilane 7 was added to this solution under stirring.
A hydrolysis reaction was carried out by adding mQ dropwise. After stirring for several minutes, the resulting transparent solution was transferred to a closed container and kept in a constant temperature bath at 60° C., whereupon it solidified within about 2 hours. Prior to drying, the solidified sample was immersed in a 1N aqueous nitric acid solution to wash out sodium polystyrene sulfonate from the assimilate. The sample, which was then dried at 60° C., had a porous structure with entangled pores of about 2 μm in diameter. Furthermore, by changing the concentration of sodium polystyrene sulfonate from 10.5% by weight to 11.8% by weight, the pore diameter could be continuously controlled from about 0.3 μm to about 15 μm. Similarly, the amount of sodium polystyrene sulfonate added is fixed, and the amount of ■ normal nitric acid aqueous solution is 9.
By changing from 64 g to 9.09 g, the pore size could be continuously controlled from about 0.5 μm to about 50 μm. Furthermore, by changing the reaction temperature from 40°C to 80°C, the pore diameter can be reduced from less than 1 μm to several tens of μm.
It was possible to control up to m. By subjecting the dried sample to a predetermined heat treatment, porous silica glass with a structure similar to that of Habo was obtained.

実施例2;有機高分子としてポリアクリル酸を用いる場
合 実施例2−1 まず高分子酸であるポリアクリル酸の25重量%水溶液
(アルドリッチ製商品番号19205−8、分子量9万
)を蒸留水で希釈して7.4%水溶液とし、これに濃硝
酸を加えて1規定硝酸酸性とした。この溶液5.19g
に撹拌下でテトラエトキシシラン7mQを加えて加水分
解反応を行なった。数分後得られた透明溶液を密閉容器
に移し、60℃の恒温槽中に保持したところ約2時間後
に固化した。固化した試料を更に数時間熟成し、蒸留水
とエタノールで数回洗浄した後、60℃で乾燥した。乾
燥した試料には3μm程度の揃った細孔がからみあい構
造で存在していた。
Example 2: When using polyacrylic acid as an organic polymer Example 2-1 First, a 25% by weight aqueous solution of polyacrylic acid, which is a polymeric acid (Product No. 19205-8 manufactured by Aldrich, molecular weight 90,000), was dissolved in distilled water. It was diluted to make a 7.4% aqueous solution, and concentrated nitric acid was added to this to make it acidic with 1N nitric acid. 5.19g of this solution
7 mQ of tetraethoxysilane was added to the mixture under stirring to carry out a hydrolysis reaction. After several minutes, the resulting transparent solution was transferred to a sealed container and kept in a constant temperature bath at 60°C, whereupon it solidified after about 2 hours. The solidified sample was further aged for several hours, washed several times with distilled water and ethanol, and then dried at 60°C. The dried sample had a tangled structure of uniform pores of about 3 μm.

なお、第2図に水銀圧入法で測定した細孔径分布を・印
で示す。上記反応溶液にエタノールを最大5mQまで添
加して固化させると、得られる多孔質体の細孔径は小さ
くなり、最小0.5μm程度までこれを連続的に制御す
ることができた。また、用いる1規定硝酸水溶液の量を
最小3.3gから最大16.5gまで変化させて、生成
する多孔質体の細孔径を最大約20μmから最小的0.
5LLmの範囲で制御することができた。更に、ポリア
クリル酸の濃度や、反応温度を変化させても同様に細孔
径を制御することができた。これらの乾燥した試料を1
00℃/hの昇温速度で900℃まで加熱して、この温
度に2時間保持したところ、はぼ同じ構造を持った多孔
質シリカガラスが得られた。
In addition, in FIG. 2, the pore size distribution measured by the mercury intrusion method is shown by marks. When ethanol was added to the reaction solution up to a maximum of 5 mQ and solidified, the pore diameter of the resulting porous body became smaller, and this could be continuously controlled to a minimum of about 0.5 μm. In addition, the amount of the 1N nitric acid aqueous solution used was varied from a minimum of 3.3 g to a maximum of 16.5 g, and the pore diameter of the resulting porous body was varied from a maximum of approximately 20 μm to a minimum of 0.0 μm.
It was possible to control within a range of 5LLm. Furthermore, the pore diameter could be similarly controlled by changing the concentration of polyacrylic acid and the reaction temperature. 1 of these dried samples
When heated to 900°C at a heating rate of 00°C/h and held at this temperature for 2 hours, porous silica glass having almost the same structure was obtained.

実施例2−2 まず高分子酸であるポリアクリル酸の25重量%水溶液
(アルドリッチ製商品番号19205−8  。
Example 2-2 First, a 25% by weight aqueous solution of polyacrylic acid, which is a polymeric acid (product number 19205-8 manufactured by Aldrich).

分子量9万)を蒸留水で希釈して7.4%水溶液とした
後、濃硝酸を加えて1規定硝酸酸性とした。ポリアクリ
ル酸0.4gと1規定硝酸5.51gとからなるこの溶
液に撹拌下でテトラメトキシシラン5mQを加えて加水
分解反応を行なった。数分後得られた透明溶液を密閉容
器に移し、60°Cの恒温槽中に保持したところ約2時
間後に固化した。固化した試料を更に数時間熟成し、蒸
留水とエタノールで数回洗浄した後、60℃で乾燥した
。乾燥した試料には300μm程度の骨格と骨格内に微
小な細孔を含む絡み合い構造が存在していた。上記反応
溶液にメタノールを最大5mQまで添加して固化させる
と、得られる多孔質体の細孔径は小さくなり、最小10
μm程度までこれを連続的に制御することができた。ま
た、メタノールを加えずに1規定硝酸水溶液の量を最大
11gまで増加させると、細孔径を最小30μm程度ま
で連続的に制御することができた。
(molecular weight 90,000) was diluted with distilled water to make a 7.4% aqueous solution, and then concentrated nitric acid was added to make the solution acidic with 1N nitric acid. To this solution consisting of 0.4 g of polyacrylic acid and 5.51 g of 1N nitric acid, 5 mQ of tetramethoxysilane was added under stirring to carry out a hydrolysis reaction. After several minutes, the resulting transparent solution was transferred to a sealed container and kept in a constant temperature bath at 60°C, whereupon it solidified after about 2 hours. The solidified sample was further aged for several hours, washed several times with distilled water and ethanol, and then dried at 60°C. The dried sample had a skeleton of about 300 μm and an entangled structure containing minute pores within the skeleton. When methanol is added to the above reaction solution up to a maximum of 5 mQ and solidified, the pore diameter of the resulting porous material becomes small, and the pore size of the obtained porous material becomes smaller, with a minimum of 10 mQ.
This could be continuously controlled down to about μm. Furthermore, when the amount of 1N nitric acid aqueous solution was increased to a maximum of 11 g without adding methanol, the pore diameter could be continuously controlled to a minimum of about 30 μm.

これらの乾燥した試料に所定の熱処理を行なうことによ
ほぼ同じ構造を持った多孔質シリカガラスが得られた。
By subjecting these dried samples to a prescribed heat treatment, porous silica glass having almost the same structure was obtained.

実施例2−3 まず高分子酸であるポリアクリル酸(アルドリッチ製商
品番号18128−5 、分子量25万)を1規定硝酸
水溶液5.51gに溶解して3.50重量%とした。こ
の溶液に撹拌下でテトラエトキシシラン7mQを加えて
加水分解反応を行なった。数分後得られた透明溶液を密
閉容器に移し、80℃の恒温槽中に保持したところ約1
時間後に固化した。固化した試料を更に数時間熟成し、
蒸留水とエタノールで数回洗浄した後、60℃で乾燥し
た。乾燥した試料には30μm程度の骨格と、骨格内に
微小な細孔を含む絡み合い構造が存在していた。上記反
応溶液にエタノールを最大5mQまで添加して固化させ
ると、得られる多孔質体の細孔径は小さくなり、最小l
Oμm程度までこれを連続的に制御することができた。
Example 2-3 First, polyacrylic acid (product number 18128-5 manufactured by Aldrich, molecular weight 250,000), which is a high molecular acid, was dissolved in 5.51 g of a 1N nitric acid aqueous solution to give a concentration of 3.50% by weight. 7 mQ of tetraethoxysilane was added to this solution under stirring to carry out a hydrolysis reaction. After a few minutes, the resulting transparent solution was transferred to a sealed container and kept in a constant temperature bath at 80°C.
It solidified after some time. The solidified sample was further aged for several hours,
After washing several times with distilled water and ethanol, it was dried at 60°C. The dried sample had a skeleton of approximately 30 μm and an entangled structure containing minute pores within the skeleton. When ethanol is added to the above reaction solution up to a maximum of 5 mQ and solidified, the pore diameter of the resulting porous material becomes small and the minimum l
This could be continuously controlled to about 0 μm.

また、エタノールを加えずに1規定硝酸水溶液の量を最
大11gまで増加させると、細孔径を最小lOμm程度
まで連続的に制御することができた。更に、ポリアクリ
ル酸の濃度や、反応温度を変化させても同様に細孔径を
制御することができた。これらの乾燥した試料に所定の
熱処理を行なうことによほぼ同じ構造を持った多孔質シ
リカガラスが得られた。
Furthermore, when the amount of 1N nitric acid aqueous solution was increased to a maximum of 11 g without adding ethanol, the pore diameter could be continuously controlled to a minimum of about 10 μm. Furthermore, the pore diameter could be similarly controlled by changing the concentration of polyacrylic acid and the reaction temperature. By subjecting these dried samples to a prescribed heat treatment, porous silica glass having almost the same structure was obtained.

実施例2−4 まず高分子酸であるポリアクリル酸(アルドリッチ製商
品番号18128−5 、分子量25万)を蒸留水5.
0gに溶解して7.4重量%とじた。この溶液に加水分
解触媒の酸を加えずに、撹拌下でテトラメトキシシラン
5mQを加えて加水分解反応を行なった。数分後得られ
た透明溶液を密閉容器に移し、60℃の恒温槽中に保持
したところ約1時間後に固化した。固化した試料を更に
数時間熟成し、蒸留水とエタノールで数回洗浄した後、
60℃で乾燥した。乾燥した試料には0.5μm程度の
揃った細孔が絡み合い構造で存在していた。上記反応溶
液にメタノールを最大2mQまで添加して固化させると
、得られる多孔質体の細孔径は小さ(なり、最小0.2
μm程度までこれを連続的に制御することができた。ま
た、メタノールを加えずに蒸留水の量を最小4.0gか
ら最大6.0gまで変化させると、細孔径を最大5μm
から最小0.1μm程度まで連続的に制御することがで
きた。更に、ポリアクリル酸の濃度や、反応温度を変化
させても同様に細孔径を制i卸することができた。これ
らの乾燥した試料に所定の熱処理を行なうことにより、
はぼ同じ構造を持った多孔質シリカガラスが得られた。
Example 2-4 First, polyacrylic acid (product number 18128-5 manufactured by Aldrich, molecular weight 250,000), which is a high molecular acid, was added to 5.5 liters of distilled water.
It was dissolved in 0g to give a concentration of 7.4% by weight. A hydrolysis reaction was carried out by adding 5 mQ of tetramethoxysilane to this solution with stirring without adding an acid as a hydrolysis catalyst. After several minutes, the resulting transparent solution was transferred to a sealed container and kept in a constant temperature bath at 60°C, whereupon it solidified after about 1 hour. After the solidified sample was further aged for several hours and washed several times with distilled water and ethanol,
It was dried at 60°C. In the dried sample, pores of approximately 0.5 μm were present in an entangled structure. When methanol is added to the above reaction solution up to a maximum of 2 mQ and solidified, the pore diameter of the resulting porous material becomes small (minimum 0.2 mQ).
This could be continuously controlled down to about μm. In addition, when the amount of distilled water is changed from a minimum of 4.0 g to a maximum of 6.0 g without adding methanol, the pore size can be increased to a maximum of 5 μm.
It was possible to continuously control the thickness from 0.1 μm to a minimum of about 0.1 μm. Furthermore, the pore diameter could be similarly controlled by changing the concentration of polyacrylic acid and the reaction temperature. By performing prescribed heat treatment on these dried samples,
Porous silica glass with almost the same structure was obtained.

実施例2−5 まず高分子酸であるポリアクリル酸(アルドリッチ製商
品番号18128−5 、分子量25万)を1規定硝酸
5.51gに溶解して3.50重量%とした。
Example 2-5 First, polyacrylic acid (product number 18128-5 manufactured by Aldrich, molecular weight 250,000), which is a high molecular acid, was dissolved in 5.51 g of 1N nitric acid to give a concentration of 3.50% by weight.

この溶液にあらかじめ混合・溶解したテトラメトキシシ
ラン5.15gおよびチタンテトラブトキシド(オルト
チタン酸ブチル) 0.515gを撹拌下で加えて、加
水分解反応を行なった。数分後得られた透明溶液を密閉
容器に移し、40℃の恒温槽中に保持したところ約1時
間後に固化した。
5.15 g of tetramethoxysilane and 0.515 g of titanium tetrabutoxide (butyl orthotitanate), which had been mixed and dissolved in advance, were added to this solution under stirring to carry out a hydrolysis reaction. After several minutes, the resulting transparent solution was transferred to a sealed container and kept in a constant temperature bath at 40°C, whereupon it solidified after about 1 hour.

固化した試料を更に数時間熟成し、1規定硝酸とエタノ
ールで数回洗浄した後、60℃で乾燥した。乾燥した試
料には1μm程度の揃った細孔が絡み合い構造で存在し
ていた。乾燥した試料をさらに 100℃/′hの昇温
速度で加熱し、800°Cで1時間保持したところ、は
ぼ同じ構造を持ち、X線回折法によって微結晶析出の認
められないシリカ−チタニア系多孔質ガラスが得られた
The solidified sample was further aged for several hours, washed several times with 1N nitric acid and ethanol, and then dried at 60°C. In the dried sample, pores of approximately 1 μm were present in an entangled structure. When the dried sample was further heated at a heating rate of 100°C/'h and held at 800°C for 1 hour, it was found that silica-titania had almost the same structure and no microcrystal precipitation was observed by X-ray diffraction. A porous glass was obtained.

実施例3;有機高分子としてポリエチレンオキシド(ポ
リエチレングリコール)を用い る場合 実施例3−1 まず中性高分子であるポリエチレンオキシド(アルドリ
ッチ製商品番号1819g −6:分子量10万)を、
1規定硝酸水溶液6.61gに溶解して13.1重量%
とした。この溶液に撹拌下でテトラエトキシシラン7m
Qを加えて加水分解反応を行なった。数分後得られた透
明溶液を密閉容器に移し、40℃の恒温槽中に保持した
ところ約8時間後に固化した。固化した試料を更に数時
間熟成し、蒸留水とエタノールで数回洗浄した後、60
℃で乾燥した。乾燥した試料には3μm程度の揃った細
孔が絡み合い構造で存在していた。
Example 3: When using polyethylene oxide (polyethylene glycol) as the organic polymer Example 3-1 First, polyethylene oxide (product number 1819g-6 manufactured by Aldrich: molecular weight 100,000), which is a neutral polymer, was
13.1% by weight when dissolved in 6.61g of 1N nitric acid aqueous solution
And so. Add 7ml of tetraethoxysilane to this solution while stirring.
Q was added to carry out a hydrolysis reaction. After several minutes, the resulting transparent solution was transferred to a sealed container and kept in a constant temperature bath at 40°C, whereupon it solidified after about 8 hours. The solidified sample was further aged for several hours and washed several times with distilled water and ethanol.
Dry at °C. The dried sample had a tangled structure of uniform pores of about 3 μm.

上記反応溶液のポリエチレングリコールの濃度を最小1
2.6重量%から14.3重量%まで変化しさせると、
細孔径を最大6μmから最小0.5μm程度まで連続的
に制御することができた。さらに1規定硝酸水溶液及び
エタノールの濃度や反応温度を変化させても同様に細孔
径を制御することができた。これらの乾燥した試料を 
100”C/hの昇温速度で900℃まで加熱して、こ
の温度に2時間保持したところ、はぼ同様の構造を持っ
た多孔質シリカガラスが得られた。
Reduce the concentration of polyethylene glycol in the above reaction solution to a minimum of 1
When changing from 2.6% by weight to 14.3% by weight,
The pore diameter could be continuously controlled from a maximum of 6 μm to a minimum of about 0.5 μm. Furthermore, the pore diameter could be similarly controlled by changing the concentrations of 1N nitric acid aqueous solution and ethanol, and the reaction temperature. These dried samples
When heated to 900° C. at a heating rate of 100”C/h and held at this temperature for 2 hours, porous silica glass having a similar structure was obtained.

実施例3−2 まず中性高分子であるポリエチレンオキシド(アルドリ
ッチ製商品番号18199−4 :分子量20万)を、
■規定硝酸水溶液e、6tgに溶解して13.1重量%
とした。この溶液に撹拌下でテトラエトキシシラン7m
Qを加えて加水分解反応を行なった。数分後得られた透
明溶液を密閉容器に移し、40℃の恒温槽中に保持した
ところ約8時間後に固化した。固化した試料を更に数時
間熟成し、蒸留水とエタノールで数回洗浄した後、60
℃で乾燥した。乾燥した試料には1μm程度の揃った細
孔が絡み合い構造で存在していた。
Example 3-2 First, polyethylene oxide (product number 18199-4 manufactured by Aldrich, molecular weight 200,000), which is a neutral polymer, was
■Normal nitric acid aqueous solution e, dissolved in 6tg, 13.1% by weight
And so. Add 7ml of tetraethoxysilane to this solution while stirring.
Q was added to carry out a hydrolysis reaction. After several minutes, the resulting transparent solution was transferred to a sealed container and kept in a constant temperature bath at 40°C, whereupon it solidified after about 8 hours. The solidified sample was further aged for several hours and washed several times with distilled water and ethanol.
Dry at °C. In the dried sample, pores of approximately 1 μm were present in an entangled structure.

反応溶液中のポリエチレングリコール、1規定硝酸水溶
液及びエタノールの濃度や反応温度を変化させることに
より細孔径を制御することができた。これらの乾燥した
試料に所定の熱処理を行なうことにより、はぼ同様の構
造を持った多孔質シリカガラスが得られた。
The pore diameter could be controlled by changing the concentrations of polyethylene glycol, 1N nitric acid aqueous solution, and ethanol in the reaction solution, and the reaction temperature. By subjecting these dried samples to a predetermined heat treatment, porous silica glass having a structure similar to that of Habo was obtained.

実施例3−3 まず中性高分子であるポリエチレングリコール(和光紬
薬工業(掬製商品番号16812221 :分子量4万
〜6万)を、l規定硝酸水溶液6.61gに溶解して1
2.6重量%とした。この溶液に撹拌下でテトラエトキ
シシラン7mQを加えて加水分解反応を行なった。数分
後得られた透明溶液を密閉容器に移し、40℃の恒温槽
中に保持したところ約8時間後に固化した。固化した試
料を更に数時間熟成し、蒸留水とエタノールで数回洗浄
した後、60℃で乾燥した。乾燥した試料には2μm程
度の揃った細孔が絡み合い構造で存在していた。反応溶
液中のポリエチレングリコール、1規定硝酸水溶液及び
エタノールの濃度や反応温度を変化させることにより細
孔径を制御することができた。これらの乾燥した試料に
所定の熱処理を行なうことにより、はぼ同様の構造を持
った多孔質シリカガラスが得られた。
Example 3-3 First, a neutral polymer, polyethylene glycol (Wako Tsumugi Kogyo Co., Ltd. (Kiyomi product number 16812221: molecular weight 40,000 to 60,000), was dissolved in 6.61 g of lN nitric acid aqueous solution.
The content was 2.6% by weight. 7 mQ of tetraethoxysilane was added to this solution under stirring to carry out a hydrolysis reaction. After several minutes, the resulting transparent solution was transferred to a sealed container and kept in a constant temperature bath at 40°C, whereupon it solidified after about 8 hours. The solidified sample was further aged for several hours, washed several times with distilled water and ethanol, and then dried at 60°C. In the dried sample, pores of approximately 2 μm in size were present in an entangled structure. The pore diameter could be controlled by changing the concentrations of polyethylene glycol, 1N nitric acid aqueous solution, and ethanol in the reaction solution, and the reaction temperature. By subjecting these dried samples to a predetermined heat treatment, porous silica glass having a structure similar to that of Habo was obtained.

実施例3−4 まず中性高分子であるポリエチレングリコール(林純薬
工業■製:分子量2万)を、l規定硝酸水溶液6.61
gに溶解して12.0重量%水溶液とした。この溶液に
撹拌下でテトラエトキシシラン7m(2を加えて加水分
解反応を行なった。数分後得られた透明溶液を密閉容器
に移し、40°Cの恒温槽中に保持したところ約8時間
後に固化した。固化した試料を更に拍数時間熟成し、蒸
留水とエタノールで数回洗浄した後、60℃で乾燥した
。乾燥した試料には1μm程度の揃った細孔が絡み合い
構造で存在していた。反応溶液中のポリエチレングリコ
ール、■規定硝酸水溶液及びエタノールの濃度や反応温
度を変化させることにより細孔径を制御することができ
た。
Example 3-4 First, polyethylene glycol (manufactured by Hayashi Pure Chemical Industries, Ltd.: molecular weight 20,000), which is a neutral polymer, was added to a 6.61 liter aqueous solution of nitric acid.
g to obtain a 12.0% by weight aqueous solution. To this solution, 7 m (2 m) of tetraethoxysilane was added under stirring to perform a hydrolysis reaction.After a few minutes, the resulting transparent solution was transferred to a sealed container and kept in a constant temperature bath at 40°C for about 8 hours. After that, it solidified.The solidified sample was further aged for several hours, washed several times with distilled water and ethanol, and then dried at 60°C.The dried sample had an entangled structure of uniform pores of about 1 μm. The pore diameter could be controlled by changing the concentrations of polyethylene glycol, normal nitric acid aqueous solution, and ethanol in the reaction solution, as well as the reaction temperature.

これらの乾燥した試料に所定の熱処理を行なうことによ
り、はぼ同様の構造を持った多孔質シリカガラスが得ら
れた。
By subjecting these dried samples to a predetermined heat treatment, porous silica glass having a structure similar to that of Habo was obtained.

実施例3−5 まず中性高分子であるポリエチレングリコール(林純薬
工業■製:分子量6000)を、1規定硝酸水溶液6.
16gに溶解して7.03重量%水溶液とした。この溶
液に撹拌下でテトラエトキシシラン7mQを加えて加水
分解反応を行なった。数分後得られた透明溶液を密閉容
器に移し、40℃の恒温槽中に保持したところ約8時間
後に固化した。固化した試料を更に袷数時間熟成し、蒸
留水とエタノールで数回洗浄した後、60℃で乾燥した
。乾燥した試料には1μm程度の揃った細孔が絡み合い
構造で存在していた。反応溶液中のボ゛リエチレングリ
コール、1規定硝酸水溶液及びエタノールの濃度や反応
温度を変化させることにより細孔径を制御することがで
きた。
Example 3-5 First, a neutral polymer, polyethylene glycol (manufactured by Hayashi Pure Chemical Industries, Ltd., molecular weight: 6,000), was added to a 1N aqueous nitric acid solution of 6.
It was dissolved in 16 g to make a 7.03% by weight aqueous solution. 7 mQ of tetraethoxysilane was added to this solution under stirring to carry out a hydrolysis reaction. After several minutes, the resulting transparent solution was transferred to a sealed container and kept in a constant temperature bath at 40°C, whereupon it solidified after about 8 hours. The solidified sample was further aged for several hours, washed several times with distilled water and ethanol, and then dried at 60°C. In the dried sample, pores of approximately 1 μm were present in an entangled structure. The pore diameter could be controlled by changing the concentrations of polyethylene glycol, 1N nitric acid aqueous solution, and ethanol in the reaction solution, and the reaction temperature.

これらの乾燥した試料に所定の熱処理を行なうことによ
り、はぼ同様の構造を持った多孔質シリカガラスが得ら
れた。
By subjecting these dried samples to a predetermined heat treatment, porous silica glass having a structure similar to that of Habo was obtained.

実施例4;有機高分子としてポリビニルピロリドンを用
いる場合 実施例4−1 まず中性高分子であるポリビニルピロリドン(アルドリ
ッチ製商品番号85645−2 :分子量1万)を、1
規定硝酸水溶液5.51gに溶解して21.4重量%と
した。この溶液に撹拌下でテトラメトキシシラン5m(
2を加えて加水分解反応を行なった。数分後得られた透
明溶液を密閉容器に移し、60℃の恒温槽中に保持した
ところ約1時間後に固化した。固化した試料を更に拍数
時間熟成し、蒸留水とエタノールで数回洗浄した後、6
0℃で乾燥した。乾燥した試料には3μm程度の揃った
細孔が絡み合い構造で存在していた。
Example 4: When polyvinylpyrrolidone is used as an organic polymer Example 4-1 First, polyvinylpyrrolidone (product number 85645-2 manufactured by Aldrich, molecular weight 10,000), which is a neutral polymer, is
It was dissolved in 5.51 g of normal nitric acid aqueous solution to give a concentration of 21.4% by weight. Add 5 m of tetramethoxysilane (
2 was added to perform a hydrolysis reaction. After several minutes, the resulting transparent solution was transferred to a sealed container and kept in a constant temperature bath at 60°C, whereupon it solidified after about 1 hour. The solidified sample was further aged for several hours, washed several times with distilled water and ethanol, and then
It was dried at 0°C. The dried sample had a tangled structure of uniform pores of about 3 μm.

反応溶液中の高分子の濃度や反応温度を変化させること
によって、異なる細孔径を持つ多孔体が得られた。これ
らの乾燥した試料を 100℃/hの昇温速度で900
°Cまで加熱してこの温度に2時間保持したところ、は
ぼ同様の構造を持った多孔質シリカガラスが得られた。
By changing the concentration of polymer in the reaction solution and the reaction temperature, porous bodies with different pore sizes were obtained. These dried samples were heated to 900 °C at a heating rate of 100 °C/h.
When heated to °C and held at this temperature for 2 hours, porous silica glass having a structure similar to that of Habo was obtained.

実施例4−2 まず中性高分子であるポリビニルピロリドン(アルドリ
ッチ製商品番号85656−g :分子N4万)を蒸留
水5.0gに溶解して23.1重量%とした。この溶液
に撹拌下でテトラメトキシシラン5m(2を加えて加水
分解反応を行なった。数分後得られた透明溶液を密閉容
器に移し、60℃の恒温槽中に保持したところ約30分
以内に固化した。固化した試料を更に数時間熟成し、蒸
留水とエタノールで数回洗浄した後、60℃で乾燥した
試料には043μm程度の揃った細孔が絡み合い構造で
存在していた。なお、第3図水銀圧入法で測定した細孔
径分布を示す。反応溶液中の高分子の濃度や反応温度を
変化させることによって、異なる細孔径を持つ多孔体が
得られた。
Example 4-2 First, polyvinylpyrrolidone (product number 85656-g manufactured by Aldrich, molecular weight N40,000), which is a neutral polymer, was dissolved in 5.0 g of distilled water to give a concentration of 23.1% by weight. 5 m (2) of tetramethoxysilane was added to this solution with stirring to perform a hydrolysis reaction. After a few minutes, the resulting transparent solution was transferred to a sealed container and kept in a constant temperature bath at 60°C, and within about 30 minutes. The solidified sample was further aged for several hours, washed several times with distilled water and ethanol, and then dried at 60°C. The sample had a tangled structure of uniform pores of about 0.043 μm. Figure 3 shows the pore size distribution measured by mercury intrusion porosimetry.By changing the concentration of polymer in the reaction solution and the reaction temperature, porous bodies with different pore sizes were obtained.

これらの乾燥した試料に所定の熱処理を行なうことによ
り、はぼ同様の構造を持った多孔質シリカガラスが得ら
れた。
By subjecting these dried samples to a predetermined heat treatment, porous silica glass having a structure similar to that of Habo was obtained.

実施例5;有機高分子としてポリアリルアミンを用いる
場合 実施例5−1 まず側鎖に第一アミンのみを有するポリアリルアミン(
日東紡績製PAA−1(CL−L :分子量8000〜
11000 )を、0.5規定硝酸水溶液に溶解して1
1.8重量%とした。この溶液10.51gに撹拌下で
テトラメトキシシラン5mQを加えて、加水分解反応を
行なった。数分後得られた透明溶液を密閉容器に移し、
40℃の恒温槽中に保持したところ約2時間以内に固化
した。固化した試料を更に数時間熟成し、蒸留水とエタ
ノールで数回洗浄した後、60℃で乾燥した。乾燥した
試料には3μm程度の揃った細孔が絡み合い構造で存在
していた。反応溶液中の高分子の濃度や反応温度を変化
させることによって、異なる細孔径を持つ多孔体が得ら
れた。これらの乾燥した試料を100℃/hの昇温速度
で900℃まで加熱してこの温度に2時間保持したとこ
ろ、はぼ同様の構造を持った多孔質シリカガラスが得ら
れた。
Example 5: When using polyallylamine as an organic polymer Example 5-1 First, polyallylamine having only a primary amine in the side chain (
Nittobo PAA-1 (CL-L: molecular weight 8000~
11000) in a 0.5 N nitric acid aqueous solution and
The content was 1.8% by weight. 5 mQ of tetramethoxysilane was added to 10.51 g of this solution under stirring to carry out a hydrolysis reaction. After a few minutes, transfer the resulting clear solution to a sealed container.
When kept in a constant temperature bath at 40°C, it solidified within about 2 hours. The solidified sample was further aged for several hours, washed several times with distilled water and ethanol, and then dried at 60°C. The dried sample had a tangled structure of uniform pores of about 3 μm. By changing the concentration of polymer in the reaction solution and the reaction temperature, porous bodies with different pore sizes were obtained. When these dried samples were heated to 900° C. at a heating rate of 100° C./h and held at this temperature for 2 hours, porous silica glass having a similar structure was obtained.

実施例5−2 まず側鎖に第一アミンのみを有するポリアリルアミンの
塩酸塩(日東紡績製PAA−HCL−H:分子量500
00〜65000 )を、0.5規定硝酸水溶液に溶解
して3.67重量%とした。この溶液10.51gに撹
拌下でテトラメトキシシラン3m(2を加えて、加水分
解反応を行なった。数分後得られた透明溶液を密閉容器
に移し、60℃の恒温槽中に保持したところ約1時間以
内に固化した。固化した試料を更に数時間熟成し、蒸留
水とエタノールで数回洗浄した後、60°Cで乾燥した
。乾燥した試料には0.54Lm程度の揃った細孔が絡
み合い構造で存在していた。反応溶液中の高分子の濃度
や反応温度を変化させることによって、異なる細孔径を
持つ多孔体が得られた。これらの乾燥した試料を所定の
熱処理を行なうことにより、はぼ同様の構造を持った多
孔質シリカガラスが得られた。
Example 5-2 First, polyallylamine hydrochloride having only a primary amine in the side chain (PAA-HCL-H manufactured by Nittobo Co., Ltd.: molecular weight 500
00-65000) was dissolved in a 0.5 N nitric acid aqueous solution to give a concentration of 3.67% by weight. 3 m (2) of tetramethoxysilane was added to 10.51 g of this solution under stirring to perform a hydrolysis reaction. After a few minutes, the resulting transparent solution was transferred to a sealed container and kept in a constant temperature bath at 60°C. It solidified within about 1 hour.The solidified sample was further aged for several hours, washed several times with distilled water and ethanol, and then dried at 60°C.The dried sample had uniform pores of about 0.54 Lm. existed in an entangled structure. By changing the concentration of polymer in the reaction solution and the reaction temperature, porous bodies with different pore diameters were obtained. These dried samples were subjected to a prescribed heat treatment. Porous silica glass with a structure similar to that of Habo was obtained.

実施例6;有機高分子としてポリエチレンイミンを用い
る場合 実施例6−1 まず主鎖に窒素原始を有するポリエチレンイミンの50
重量%水溶液(アルドリッチ製商品番号18197−8
)を20重量%に希釈し、この溶液6、25gに62重
量%の濃硝酸2.54gと水1mQを加えて均一溶液と
した。この溶液に撹拌下でテトラメトキシシラン5m+
Qを加えて、加水分解反応を行なった。数分後得られた
透明溶液を密閉容器に移し、60℃の高温槽中に保持し
たところ約2時間以内に固化した。固化した試料を更に
数時間熟成し、蒸留水とエタノールで数回洗浄した後、
60℃で乾燥した。乾燥した試料には0.1μm程度の
揃った細孔が絡み合い構造で存在していた。反応溶液中
の高分子の濃度や反応温度を変化させることによって、
異なる細孔径を持つ多孔体が得られた。これらの乾燥し
た試料を所定の熱処理を行なうことにより、はぼ同様の
構造を持った多孔質シリカガラスが得られた。
Example 6: When using polyethyleneimine as an organic polymer Example 6-1 First, 50% of polyethyleneimine having a nitrogen primitive in the main chain
Weight% aqueous solution (Aldrich product number 18197-8
) was diluted to 20% by weight, and 2.54g of 62% by weight concentrated nitric acid and 1 mQ of water were added to 6.25g of this solution to make a homogeneous solution. Add 5m+ of tetramethoxysilane to this solution while stirring.
Q was added to carry out a hydrolysis reaction. After several minutes, the resulting transparent solution was transferred to a sealed container and kept in a high temperature bath at 60°C, whereupon it solidified within about 2 hours. After the solidified sample was further aged for several hours and washed several times with distilled water and ethanol,
It was dried at 60°C. In the dried sample, pores of about 0.1 μm were present in an entangled structure. By changing the concentration of polymer in the reaction solution and the reaction temperature,
Porous bodies with different pore sizes were obtained. By subjecting these dried samples to a predetermined heat treatment, porous silica glass having a structure similar to that of Habo was obtained.

上述の実施例では、原料がテトラアルコキシシランであ
ったため多孔質シリカガラスが得られたが、テトラアル
コキシシランに少量の他の金属アルコキシドを添加した
原料を用いれば同様にして各種のSiO□系多孔質セラ
ミックスが得られる。また、昇温速度や最高加熱温度を
多少変更しても同様な多孔質セラミックスが得られる。
In the above example, porous silica glass was obtained because the raw material was tetraalkoxysilane, but if a raw material made by adding a small amount of other metal alkoxide to tetraalkoxysilane was used, various SiO□-based porous glass could be obtained in the same way. High quality ceramics can be obtained. In addition, similar porous ceramics can be obtained even if the heating rate and the maximum heating temperature are slightly changed.

[比較例] テトラエトキシシラン250mQに0.O1規定の塩酸
200n+Qを加え撹拌した。次いでこれに10〜50
重量%のポリ酢酸ビニルエマルジョンを加えて分散させ
た。次いでこれにアンモニアを添加し、pH値を〜3.
5〜6.6に調整した後、密閉容器に入れ、20〜30
℃で放置しゲル化させた。次いでこれを焼成し多孔質ガ
ラスを製造した。この多孔質ガラスについて細孔径を測
定した結果を第1図に印でプロットした。同図から明ら
かなように、この細孔径は広い範囲に分布している。
[Comparative Example] 0.00 mQ of tetraethoxysilane. 200 n+Q of O1 normal hydrochloric acid was added and stirred. Then add 10 to 50
% by weight of polyvinyl acetate emulsion was added and dispersed. Ammonia is then added to this to bring the pH value to ~3.
After adjusting the temperature to 5 to 6.6, put it in an airtight container and heat it to 20 to 30.
The mixture was allowed to stand at ℃ to form a gel. Next, this was fired to produce porous glass. The results of measuring the pore diameter of this porous glass are plotted in FIG. 1 with marks. As is clear from the figure, the pore diameters are distributed over a wide range.

[発明の効果] 本発明によれば、サブミクロンから数拾ミクロンの範囲
の揃った細孔径を有する多孔質セラミックスを容易に提
供できる。
[Effects of the Invention] According to the present invention, porous ceramics having uniform pore diameters ranging from submicrons to several tens of microns can be easily provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は、細孔径分布図を示す図であ
る。 特〕゛「出題人 プ「理士大門 博
FIG. 1, FIG. 2, and FIG. 3 are diagrams showing pore size distribution maps. Special feature: “Questioner” Hiroshi Daimon

Claims (2)

【特許請求の範囲】[Claims] (1)金属アルコキシド又はそのオリゴマーと有機高分
子とを含む反応溶液を準備し、該溶液中で該金属アルコ
キシド又はそのオリゴマーを加水分解・重合してゲルを
作成し、該ゲルを焼成して多孔質ガラスを製造する方法
であって、該有機高分子は、該金属アルコキシド又はそ
のオリゴマーの溶液と相溶性を有し、該加水分解・重合
の工程で、相分離を生じ、かつ実質的に沈殿を生じない
ものである多孔質ガラスの製造法。
(1) Prepare a reaction solution containing a metal alkoxide or its oligomer and an organic polymer, hydrolyze and polymerize the metal alkoxide or its oligomer in the solution to create a gel, and bake the gel to form a porous A method for producing quality glass, wherein the organic polymer is compatible with a solution of the metal alkoxide or its oligomer, and in the hydrolysis/polymerization step, phase separation occurs and substantially no precipitation occurs. A method for producing porous glass that does not produce
(2)前記有機高分子は、ポリスチレンスルホン酸ナト
リウム、ポリアクリル酸、ポリアリルアミン、ポリエチ
レンイミン、ポリエチレンオキシド又はポリビニルピロ
リドンである請求項(1)記載の多孔質ガラスの製造法
(2) The method for producing porous glass according to claim (1), wherein the organic polymer is sodium polystyrene sulfonate, polyacrylic acid, polyallylamine, polyethyleneimine, polyethylene oxide, or polyvinylpyrrolidone.
JP1245947A 1988-09-28 1989-09-21 Porous glass manufacturing method Expired - Lifetime JPH0829952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245947A JPH0829952B2 (en) 1988-09-28 1989-09-21 Porous glass manufacturing method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP24553288 1988-09-28
JP63-245532 1988-09-28
JP5688689 1989-03-08
JP1-56886 1989-03-08
JP1245947A JPH0829952B2 (en) 1988-09-28 1989-09-21 Porous glass manufacturing method

Publications (2)

Publication Number Publication Date
JPH038729A true JPH038729A (en) 1991-01-16
JPH0829952B2 JPH0829952B2 (en) 1996-03-27

Family

ID=27296071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245947A Expired - Lifetime JPH0829952B2 (en) 1988-09-28 1989-09-21 Porous glass manufacturing method

Country Status (1)

Country Link
JP (1) JPH0829952B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104016A (en) * 2004-10-05 2006-04-20 Tokuyama Corp Method for producing binary porous silica bead
JP2006291089A (en) * 2005-04-13 2006-10-26 Dainippon Ink & Chem Inc Water borne coating composition and method of forming coating film
JP2007070145A (en) * 2005-09-05 2007-03-22 Chiba Univ Method for producing binary porous silica
JP2008297517A (en) * 2007-06-04 2008-12-11 Dic Corp Aqueous dispersion of organic-inorganic hybrid resin, curable resin composition, coating material and coated material
JP2009052011A (en) * 2007-07-27 2009-03-12 Dic Corp Organic-inorganic hybrid resin aqueous dispersion, curable resin composition, coating material and coated article
WO2009034949A1 (en) * 2007-09-12 2009-03-19 Rei Medical Co., Ltd. Adsorption column for purifying body fluid
JPWO2011108649A1 (en) * 2010-03-04 2013-06-27 地方独立行政法人 東京都立産業技術研究センター Method for producing porous silica and porous silica

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049119A (en) 2003-07-30 2005-02-24 Ngk Insulators Ltd Column for chromatograph
JP2005233941A (en) 2004-01-23 2005-09-02 Ngk Insulators Ltd Carrier for solid phase extraction
JP5963248B2 (en) 2012-06-14 2016-08-03 国立研究開発法人産業技術総合研究所 Antibody purification carrier, production method thereof and use thereof
WO2018207932A1 (en) 2017-05-12 2018-11-15 国立大学法人広島大学 Cancer diagnosis device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104016A (en) * 2004-10-05 2006-04-20 Tokuyama Corp Method for producing binary porous silica bead
JP4559813B2 (en) * 2004-10-05 2010-10-13 株式会社トクヤマ Method for producing dual pore silica beads
JP2006291089A (en) * 2005-04-13 2006-10-26 Dainippon Ink & Chem Inc Water borne coating composition and method of forming coating film
JP2007070145A (en) * 2005-09-05 2007-03-22 Chiba Univ Method for producing binary porous silica
JP4684813B2 (en) * 2005-09-05 2011-05-18 国立大学法人 千葉大学 Method for producing dual pore silica
JP2008297517A (en) * 2007-06-04 2008-12-11 Dic Corp Aqueous dispersion of organic-inorganic hybrid resin, curable resin composition, coating material and coated material
JP2009052011A (en) * 2007-07-27 2009-03-12 Dic Corp Organic-inorganic hybrid resin aqueous dispersion, curable resin composition, coating material and coated article
WO2009034949A1 (en) * 2007-09-12 2009-03-19 Rei Medical Co., Ltd. Adsorption column for purifying body fluid
JP2009066117A (en) * 2007-09-12 2009-04-02 Rei Medical Co Ltd Adsorption column for body fluid purifying treatment
JPWO2011108649A1 (en) * 2010-03-04 2013-06-27 地方独立行政法人 東京都立産業技術研究センター Method for producing porous silica and porous silica
JP5647669B2 (en) * 2010-03-04 2015-01-07 地方独立行政法人東京都立産業技術研究センター Method for producing porous silica
JP2015003860A (en) * 2010-03-04 2015-01-08 地方独立行政法人東京都立産業技術研究センター Method for producing porous silica

Also Published As

Publication number Publication date
JPH0829952B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
US5009688A (en) Process for producing porous glass
JP2939889B2 (en) Manufacturing method of airgel monolith
EP0293064B1 (en) Sol-gel method for making ultra-low expansion glass
US5096745A (en) Preparation of titanium oxide ceramic membranes
JPH038729A (en) Production of porous glass
JPH07247180A (en) Production of organic functional group bound inorganic porous material
CA1313886C (en) Preparation of titanium ceramic membranes
JP2635313B2 (en) Method for producing silica glass
JPH03285833A (en) Manufacture of porous glass
JPH01183421A (en) Production of quartz glass
JP2621153B2 (en) Manufacturing method of spherical porous body
JP2668958B2 (en) Method for producing spherical silica porous material
JPH02145442A (en) Production of glass
JPH0222120A (en) Spherical silica porous form and production thereof
JPS63151623A (en) Production of organic substance-containing silica bulk material
JPH0388711A (en) Production of spherical porous body
US20050095416A1 (en) Inorganic porous materials containing dispersed particles
JPS60180923A (en) Manufacture of spherical glass body
JPH0465322A (en) Production of glass
JPH0547487B2 (en)
JPS61270225A (en) Production of high-silica glass
JPS61256928A (en) Production of glass
JPH02199033A (en) Production of optical glass
JPH09208237A (en) Production of silica glass
JPS61186227A (en) Production of quartz glass

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 14